Zufallsvariablen [random variable]

Größe: px
Ab Seite anzeigen:

Download "Zufallsvariablen [random variable]"

Transkript

1 Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden meist mit Großbuchstaben bezeichnet (z.b. X, Y, Z, X 1, X 2, X 3,...). Die Funktionswerte (Realisierung, Wert für einen konkreten Versuchsausgang ω) werden meist mit kleinen Buchstaben bezeichnet (z.b. x, y, z, x 1, x 2, x 3,...). 1

2 Beispiel: Würfeln mit zwei Würfeln Ω = {(1, 1), (1, 2),..., (6, 6)} X... Summe der Augenzahlen z.b.: X((3, 4)) = 7 Y... Maximum der Augenzahlen z.b.: Y ((3, 4)) = 4 Der Zufall steckt nicht in der Funktion X, sondern im zufälligen Versuch mit Ausgang ω. 2

3 Es interessieren z.b. die folgenden Ereignisse: {X x} = {ω Ω X(ω) x} Ω, {X = x} = {ω Ω X(ω) = x} Ω, {X > x} = {ω Ω X(ω) > x} Ω, Die Wahrscheinlichkeiten dieser Ereignisse lassen sich berechnen. Beispiel: (s.o.) P (X = 7) = P ({ω Ω X(ω) = 7}) = P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) = 6 36 = 1 6 3

4 Problem: Welche Werte x kann die Zufallsvariable X mit welcher Wahrscheinlichkeit annehmen? Vorteil von Zufallsvariablen: Man kann mit ihnen rechnen; z.b. ist X + Y ebenfalls eine Zufallsvariable. Nachteil von Zufallsvariablen: Mit einer Zufallsvariablen X kann eine Vergröberung der Ausgänge des zufälligen Versuches verbunden sein; z.b. Summe der Augenzahlen statt der einzelnen Augenzahlen. 4

5 Diskrete Zufallsvariable [discrete random variable] Eine Zufallsvariable, die nur endlich viele Werte (x 1,..., x n ) oder abzählbar unendlich viele Werte (x 1, x 2,...) annehmen kann, heißt diskrete Zufallsvariable. Beispiel: Idealer Farbwürfel Ω = {schwarz, rot, gelb, grün, blau, weiß } X(schwarz) = 1, X(rot) = 2, X(gelb) = 3, X(grün) = 4, X(blau) = 5, X(weiß) = 6 Mögliche Werte für x i sind 1, 2, 3, 4, 5, 6. P (X = x i ) = 1 6 5

6 Verteilungstabelle: x i x 1 x 2... p i p 1 p 2... Beispiel: X = Summe der Augenzahlen bei zwei Würfeln (Werte zwischen 2 und 12) x i p i (Probe: Summe der Wahrscheinlichkeiten = 1) 6

7 Die Verteilungstabelle beschreibt die Verteilung der Zufallsvariable vollständig; d.h. aus ihr lassen sich die Wahrscheinlichkeiten aller interessierenden Ereignisse für die Zufallsvariable berechnen. Beispiel: (s.o.) P (6 X 8) = P ({X = 6} {X = 7} {X = 8}) = P (X = 6) + P (X = 7) + P (X = 8) = = = 4 9 Grafische Darstellung diskreter Verteilungen: Balkendiagramme 7

8 Unabhängige Zufallsvariablen [independent random variables] Zwei diskrete Zufallsvariablen X und Y heißen unabhängig, wenn P (X = x, Y = y) = P (X = x) P (Y = y) für alle x, y R gilt. Bemerkungen: P (X = x, Y = y) = P ({X = x} {Y = y}) Für alle x, y R sind die Ereignisse {X = x} und {Y = y} unabhängig. 8

9 Erwartungswert einer diskreten Zufallsvariablen [expectation (mean) of a discrete random variable] E(X) = n p i x i bzw. E(X) = i=1 p i x i i=1 (falls der Grenzwert existiert) Beispiel: Idealer Würfel = 3.5 Der Erwartungswert beschreibt den Schwerpunkt der Verteilung; vgl. arithmetisches Mittel in deskriptiver Statistik: x = 1 n k i=1 n i x i = k i=1 n i n x i = k i=1 f i x i 9

10 Varianz (Streuung) einer diskreten Zufallsvariablen [variance of a discrete random variable] n var(x) = p i (x i E(X)) 2 i=1 bzw. var(x) = p i (x i E(X)) 2 i=1 (falls der Erwartungswert und der Grenzwert existieren) Es gilt: ( 2 var(x) = E(X E(X)) 2 = E(X 2 ( ) 2 ) E(X)) = pi x 2 i pi x i (vgl. Stichprobenvarianz bzw. empirische Varianz in deskriptiver Statistik) 10

11 Beispiel: Idealer Würfel var(x) = 6 p i x 2 i i=1 ( 6 ) 2 p i x i i=1 = = 1 6 ( ) 3.52 = , 92 11

12 Rechenregeln für Erwartungswert und Varianz Seien X, Y Zufallsvariablen und a, b R. Dann gilt E(a X + b) = a E(X) + b var(a X + b) = a 2 var(x) E(X + Y ) = E(X) + E(Y ) Wenn X und Y unabhängig sind, gilt außerdem var(x + Y ) = var(x) + var(y ) Bemerkung: Diese Rechenregeln gelten nicht nur für diskrete, sondern auch für beliebige Zufallsvariablen. 12

13 Binomialverteilung [binomial distribution] Ein Versuch wird unter konstanten Bedingungen n mal unabhängig wiederholt. Registriert wird jeweils nur das Eintreten eines interessierenden Ereignisses A (Erfolg). X bezeichne die Anzahl der Erfolge in den n Versuchen, ϑ = P (A) die Erfolgswahrscheinlichkeit in jedem Einzelversuch. P (X = k) = ( ) n k ϑ k (1 ϑ) n k, k = 0, 1,..., n X heißt dann binomialverteilt mit Parametern n und ϑ. Bezeichnung: X B(n; ϑ) 13

14 Es gilt: E(X) = n ϑ var(x) = n ϑ (1 ϑ) Beispiel: 3 maliges Werfen eines idealen Würfels X... Anzahl des Auftretens der Augenzahl 6 P (X = 1) = ( 3 1 ) (1 6 = ) 1 ( 1 1 )

15 Stetige Zufallsvariable [continuous random variable] Eine Zufallsvariable die alle reellen Zahlen oder alle reellen Zahlen aus einem gegebenen Intervall annehmen kann heißt stetige Zufallsvariable. Die Verteilung einer stetigen Zufallsvariablen X wird mit Hilfe ihrer (nichtnegativen) Dichtefunktion f X [density function] (beschreibt die Form einer Verteilung) angegeben. Die Wahrscheinlichkeit, dass die Zufallsvariable X Werte in einem Intervall [a, b] annimmt, ergibt sich als Integral dieser Dichte über dem Intervall: P (X [a, b]) = P (a X b) = b a f X (x)dx 15

16 Häufig wird mit der Verteilungsfunktion [distribution function] F X, die durch gegeben ist, gearbeitet: F X (x) = P (X x) = x f X (z)dz P (a X b) = b a f X (x)dx = F X (b) F X (a) Erwartungswert und Varianz einer stetigen Zufallsvariablen X: E(X) = var(x) = (falls die Integrale existieren) x f X (x) dx (x E(X)) 2 f X (x) dx 16

17 Bemerkungen: Sei X eine stetige Zufallsvariable. Für jeden Einzelwert x gilt P (X = x) = 0. Daher sind die Wahrscheinlichkeiten P (a < X < b), P (a < X b), P (a X < b) und P (a X b) alle gleich. Unabhängige Zufallsvariablen Zwei (stetige) Zufallsvariablen X und Y heißen unabhängig, wenn P (X x, Y y) = P (X x) P (Y y) für alle x, y R gilt. 17

18 Normalverteilung [normal distribution] Dichtefunktion der Normalverteilung (Gaußsche Glockenkurve): f X (x) = 1 σ 2π (x µ) 2 e 2σ 2, < x < mit Parameter µ R und σ (0, ). Bezeichung: X N(µ, σ 2 ) Bedeutung der Parameter: E(X) = µ, var(x) = σ 2 18

19 Bemerkungen: Wichtigste stetige Verteilung, da viele Größen näherungsweise normalverteilt sind. (C. F. Gauß: Beschreibung von Messfehlern) Der Zentrale Grenzwertsatz besagt, dass die Verteilung von Summen von unabhängigen Zufallsvariablen in vielen Fällen gut durch eine Normalverteilung angenähert werden kann. Die Verteilungsfunktion einer Normalverteilung ist keine elementare Funktion, also nicht mit einer Formel darstellbar. 19

20 Es gilt P (µ σ X µ + σ) = 0.68 P (µ 2σ X µ + 2σ) = 0.95 P (µ 3σ X µ + 3σ) =

21 Mathematische Stichprobe [random sample] Die Zufallsvariablen X 1,..., X n bilden eine (mathematische) Stichprobe, wenn sie unabhängig sind und die gleiche Verteilung besitzen [i.i.d.]. In diesem Fall bezeichnen wir mit X = 1 n X i n das Stichprobenmittel und mit i=1 die Stichprobenvarianz. S 2 X = 1 n 1 n (X i X) 2 i=1 Hinweis: X und S 2 sind Zufallsvariablen. 21

22 Das Modell der Mathematischen Stichprobe ist die Grundlage der schließenden Statistik! 22

23 t Verteilung Sei X 1,..., X n eine Stichprobe von N(µ, σ 2 ) verteilten Zufallsvariablen. Die Verteilung der Zufallsvariablen Z = (X µ) n S X heißt t Verteilung mit n 1 Freiheitsgraden. Die t Verteilung besitzt eine um Null symmetrische, glockenförmige Dichte, die sich für großes n der Dichte der Normalverteilung annähert. 23

24 χ 2 Verteilung Sei X 1,..., X n eine Stichprobe von N(0, 1) verteilten Zufallsvariablen. Die Verteilung der Zufallsvariablen Z = X Xn 2 heißt χ 2 Verteilung mit n Freiheitsgraden. Die Dichten sind für negative Argumente Null. Für positive Argumente sind sie für kleine n linkssteil und rechtsschief, für große n nähern sie sich einer Glockenkurve an. 24

25 Überschreitungswahrscheinlichkeiten [p-values] Sei Z eine Zufallsvariable. In der schließenden Statistik interessieren uns oftmals folgende Überschreitungswahrscheinlichkeiten: P (Z z), P (Z z), P ( Z z) Im Falle um Null symmetrischer Dichten gilt P (Z z) = P (Z z) P ( Z z) = P (Z z) + P (Z z) = 2 P (Z z) 25

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA Workshop Mini-Einführung und Auffrischung zu einigen Teilen der angewandten 12. und 14. Prof. Dr. Stefan Etschberger HSA Outline 1 : Einführung Fehler durch Gute und schlechte Grafiken Begriff Grundbegriffe

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert,

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, 2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, momentenerzeugende Funktion Ziel des Kapitels: Mathematische Präzisierung der Konzepte Zufallsvariable Verteilungsfunktion Dichtefunktion Erwartungswerte

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Was für Kenngrößen von Verteilungen kennst du? Ortsparameter (Arithmetisches Mittel, Median, MedMed,

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Übungen zur Stochastik, Blatt Nr. 1

Übungen zur Stochastik, Blatt Nr. 1 Prof. Dr. A. Stoffel SS 202 Übungen zur Stochastik, Blatt Nr. ) Zwei Würfel werden gleichzeitig oder nacheinander geworfen. a) Schreiben Sie alle Elemente des Grundraums in Form einer Matrix auf. b) Wie

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Martin Hutzenthaler & Dirk Metzler 11. Mai 2011 Inhaltsverzeichnis 1 Deterministische und zufällige

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Vorbemerkung: Die folgenden Seiten sind nicht zur Abschreckung gedacht, sondern als Ergänzung zu den Darstellungen, die

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr