Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Station Von Zuckerwürfeln und Schwimmbecken Teil 1"

Transkript

1 Station Von Zuckerwürfeln und Teil 1 Tischnummer Arbeitsheft Teilnehmercode

2 Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Was haben ein Zuckerwürfel und ein Schwimmbecken eigentlich gemeinsam? Ist doch ganz klar: Nichts. Aber stimmt das tatsächlich oder haben sie doch mehr Gemeinsamkeiten als man auf den ersten Blick annehmen sollte. Ihr werdet euch heute etwas genauer mit diesem Thema befassen und herausfinden, ob sie wirklich so unterschiedlich sind, wie wir im ersten Moment denken. Arbeitet bitte die folgenden Aufgaben der Reihe nach durch - bitte keine Aufgaben überspringen! Falls es mit der Zeit knapp wird, dann arbeitet trotzdem der Reihe nach weiter. Notfalls bearbeitet ihr die letzten Aufgaben nicht (sie sind mit optional gekennzeichnet). Falls ihr nicht wisst, wie ihr an eine Aufgabe herangehen sollt, oder bei eurer Bearbeitung stecken bleibt, könnt ihr die Hilfestellungen (kleines Heft) nutzen. Wenn es zu einer Aufgabe eine Hilfestellung gibt, könnt ihr dies am Symbol am Rand neben der Aufgabe erkennen. Nutzt diese bitte nur, wenn ihr sie auch benötigt! Immer dann, wenn ihr eure Ergebnisse im Heft Gruppenergebnisse festhalten sollt, wird euch dies mit dem Symbol am Rand angezeigt. Wenn eine Simulation zu einem Thema vorhanden ist und verwendet werden soll, könnt ihr das am Symbol am Rand neben der Aufgabe erkennen. Das Symbol verweist darauf, dass hier mit einem gegenständlichen Modell gearbeitet werden soll. Die Simulationen und weiterführende Informationen zum Thema eurer Laborstation findet ihr auf der Internetseite des Mathematik-Labors Mathe ist mehr unter der Adresse oder Wir wünschen Euch viel Spaß beim Experimentieren und Entdecken! Das Mathematik-Labor-Team 2

3 Aufgabe 1: Eigenschaften von Quadern 1.1 An eurem Stationstisch finden sich verschiedene Materialien. Teilt eure Gruppe in zwei Zweiergruppen auf. Einigt euch welche Zweiergruppe das Kantenmodell und welche das Flächenmodell baut. Bearbeitet entsprechend Aufgabe 1.1A (S. 2-3) oder Aufgabe 1.1B (S. 4-6) Partnerarbeit 1.1A Quadermodell aus Trinkhalmen und Pfeifenreinigern (Kantenmodell) Material Pfeifenreiniger Trinkhalme gleicher Farbe in verschiedenen Längen Schere Schneidet von einem Pfeifenreiniger 3 gleichlange Stücke (ca. 4-5cm) ab. Biegt sie wie auf dem Bild gezeigt zu einem rechten Winkel. Legt sie wie abgebildet aneinander und verdreht jeweils 2 Enden miteinander. 3

4 Aufgabe 1: Eigenschaften von Quadern 1.1A.1 Wie viele der abgebildeten Ecken müsst ihr basteln, um einen Quader damit bauen zu können? Wie viele Trinkhalme benötigt ihr? Stellt gemeinsam eine Vermutung auf. Benötigte Materialien zum Bau eines Quaders: Anzahl der Ecken: Anzahl der Trinkhalme: 1.1A.2 Baut nun ein Quadermodell aus den Pfeifenreinigerecken und den Trinkhalmen. War eure Vermutung richtig? Falls nicht, notiert wie viele Ecken und wie viele Trinkhalme ihr tatsächlich verbaut habt. Wenn ihr fertig seid, beginnt bereits mit dem Vollmodell (Seite 7). 4

5 Aufgabe 1: Eigenschaften von Quadern Partnerarbeit 1.1B Quadermodell aus Plastikflächen (Flächenmodell) Material 3 Plastikrechtecke (10cm x 15cm) 3 Plastikrechtecke (10cm x 5cm) 3 Plastikrechtecke (15cm x 5cm) 3 Plastikquadrate (10cm x 10 cm) 3 kleine rechtwinklige Plastikdreiecke 3 große rechtwinklige Plastikdreiecke 3 große gleichschenklige Plastikdreiecke 3 kleine gleichschenklige Plastikdreiecke Klebestreifen Schere Betrachtet euch die gegebenen Flächen. Kann man zwei Flächen so übereinander legen, dass nirgendwo etwas übersteht, dann bezeichnet man diese Flächen als deckungsgleich. Untersucht nun welche der gegebenen Flächen deckungsgleich sind. 1.1B.1 Wie viele und welche dieser Flächen muss man auswählen und wie muss man sie anordnen, damit sie sich zu einem Quadermodell zusammenfalten lassen? Überlegt gemeinsam und zeichnet dazu eine Skizze. 5

6 Aufgabe 1: Eigenschaften von Quadern 1.1B.2 Legt die Flächen entsprechend eurer Skizze nebeneinander und fixiert sie wie abgebildet mit Klebestreifen aneinander. Überprüft nun, ob sich eure zusammengesetzte Fläche zum Quader falten lässt. Korrigiert gegebenenfalls eure Skizze hier: Wenn sich daraus ein Quader falten lässt, dann spricht man bei den zusammenhängenden Flächen vom Netz des Quaders. 6

7 Aufgabe 1: Eigenschaften von Quadern 1.1B.3 Bei welcher der abgebildeten zusammengesetzten Flächen handelt es sich um das Netz eines Quaders? Kreuze an. Ruft einen Betreuer und zeigt ihm für welches Netz ihr euch entschieden habt. Begründet eure Wahl. Wenn ihr richtig liegt, wird der Betreuer jedem von euch eine Vorlage geben. 1.1B.4 Jeder schneidet nun eine dieser Vorlagen aus und faltet das Modell anschließend entlang der gestrichelten Linien. Fixiert sie jeweils mit zwei, der in der Mitte des Tisches liegenden Haushaltsgummis so, dass sich ein Quader ergibt. Wenn ihr fertig seid, beginnt bereits mit dem Vollmodell (Seite 7). 7

8 Aufgabe 1: Eigenschaften von Quadern Partnerarbeit 1.2 Quadermodell aus Holzwürfeln (Vollmodell) Material Holzwürfel (Kantenlänge 2cm) Versucht aus den Holzwürfeln ein Quadermodell zu bauen. Denkt daran eure Modelle auf Unterlagen zu bauen, damit ihr sie nachher transportieren könnt Wenn ihr euer Quadermodell fertig gebaut habt betrachtet es von allen Seiten. Könnt ihr herausfinden, wie viele Würfel ihr verbaut habt, ohne das Modell nochmal auseinander zu nehmen? Überlegt in der Gruppe, wie ihr vorgehen könntet, um das heraus zu finden. Wir haben Würfel verbaut. Notiert, wie ihr die Anzahl der Würfel bestimmt habt. 8

9 Aufgabe 1: Eigenschaften von Quadern 1.3 Betrachtet in eurer Zweiergruppe das Quadermodell, das ihr in Aufgabe 1.1A oder 1.1B konstruiert habt von allen Seiten. Was fällt euch an eurem Quader auf? Versucht möglichst viele Eigenschaften eines Quaders zu entdecken. Notiert hier die von euch entdeckten Eigenschaften. Gruppenarbeit 1.4 Präsentiert euch gegenseitig am Tisch eure Modelle. Erklärt dabei auch, welche Eigenschaften ihr entdeckt habt. 1.5 Ergänzt nun die Eigenschaften, die eure Gruppenmitglieder zusätzlich zu den von euch notierten Eigenschaften entdeckt haben. Ihr könnt auch gemeinsam überlegen, ob ihr noch mehr Eigenschaften finden könnt. Notiert hier alle weiteren von euch gefundenen Eigenschaften des Quaders. Gruppenergebnis Diskutiert eure Ergebnisse aus Aufgabe 1.5 und tragt dann alle Eigenschaften, die ihr finden konntet im Heft Gruppenergebnisse auf S. 2 ein. 9

10 Aufgabe 2: Veränderung der Quaderkanten Gruppenarbeit 2.1 Diskutiert zunächst in der Gruppe wie viele unterschiedliche Kantenlängen in einem Quader höchstens vorkommen können und notiert hier eure Vermutung. Experiment 1: Wie viele verschiedene Trinkhalmlängen können maximal in einem Modell aus Trinkhalmen und Pfeifenreinigern vorkommen? Material Modell aus Pfeifenreinigern und Trinkhalmen 6 gelbe Trinkhalme (ca. 5 cm) 6 orangene Trinkhalme (ca. 7cm) 6 rotetrinkhalme (ca. 10cm) 6 grüne Trinkhalme (ca. 12cm) 6 weiß-lila-grün gestreifte Trinkhalme (ca. 15cm). Partnerarbeit 2.2 Baut euer Quadermodell aus Trinkhalmen und Pfeifenreinigern so um, dass alle Trinkhalme gleicher Länge auch dieselbe Farbe haben und versucht dabei, so viele verschiedene Farben wie möglich zu benutzen. War eure Vermutung aus 2.1 korrekt? Korrigiert sie gegebenenfalls. 10

11 Aufgabe 2: Veränderung der Quaderkanten 2.3 Betrachtet zunächst Trinkhalme gegenüberliegender Flächen. a) Wie viele Trinkhalme bilden eine Fläche? b) Wie liegen die Trinkhalme gegenüberliegender Flächen zueinander? c) Vergleicht ihre Längen der Trinkhalme, die sich gegenüberliegen. Notiert hier eure Ergebnisse. 2.4 Betrachtet die Trinkhalme die sich an einer Ecke treffen. a) Wie viele gibt es davon an jeder Ecke? b) Wie stehen diese Trinkhalme aufeinander? c) Vergleicht ihre Längen dieser Trinkhalme. Notiert hier eure Ergebnisse: 11

12 Aufgabe 2: Veränderung der Quaderkanten Gruppenarbeit 2.5 Ist es auch möglich, einen Quader mit weniger Trinkhalmfarben, also weniger verschiedenlangen Kanten zu bauen? a) Beratet euch in der Gruppe und notiert eine Vermutung. b) Welche besonderen Körperformen könnten entstehen. 2.6 Überprüft eure Vermutung aus Aufgabe 2.5 mit Hilfe der Simulation 1. War eure Vermutung richtig? Notiert gegebenenfalls hier das richtige Ergebnis. Gruppenergebnis Diskutiert eure Ergebnisse aus Aufgabe 2.4 in der Gruppe und tragt dann euer gemeinsames Ergebnis im Heft Gruppenergebnisse auf S. 3 ein. 12

13 Aufgabe 3: Untersuchung Zuckerwürfel Material 1 Zuckerwürfel 1 Lineal Auf dem Tisch findet ihr ein Stück Würfelzucker. Betrachtet es von allen Seiten. Einzelarbeit 3.1 Handelt es sich beim Zuckerwürfel tatsächlich um einen Würfel? Begründe deine Antwort. Der Zuckerwürfel ist Würfel, weil 3.2 Zu welcher Körperform gehört der Zuckerwürfel? 3.3 Nenne mindestens drei Eigenschaften, die dich zu dieser Überzeugung geführt haben. 13

14 Aufgabe 3: Untersuchung Zuckerwürfel Gruppenarbeit 3.4 Besprecht und vergleicht eure Ergebnisse aus den Aufgaben 3.1, 3.2 und 3.3 in der Vierergruppe. c) Wenn ihr unterschiedliche Lösungen habt, diskutiert, welche Lösung die Richtige ist. (Wenn ihr euch nicht einigen könnt, ruft einen Betreuer zu Hilfe.) d) Notiert hier gegebenenfalls Korrekturen: 14

15 Gruppenarbeit V.1 Trage nochmal alle dir bekannten Eigenschaften eines Quaders in die erste Spalte der Tabelle ein. Eigenschaften eines Quaders Körper A Körper B Körper C V.2 Überprüfe, ob die Körper A und B die Eigenschaften eines Quaders erfüllen. Kontrolliere dabei alle von euch aufgestellten Eigenschaften. 15

16 Körper A Körper B V.3 Fügt mit Hilfe der Pfeifenreiniger und Trinkhalme einen beliebigen Körper zusammen. Überprüft nochmals die Eigenschaften der Körper anhand der Tabelle. Einzelarbeit V.4 Male alle Quader bunt aus. 16

17

18

19

20 Mathematik-Labor Mathe-ist-mehr Didaktik der Mathematik (Sekundarstufen) Institut für Mathematik Universität Koblenz-Landau Fortstraße Landau Zusammengestellt von: Hannah Penth Betreut von: Prof. Dr. Jürgen Roth Veröffentlicht am:

Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Station Von Zuckerwürfeln und Schwimmbecken Teil 1 Schule Station Von Zuckerwürfeln und Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Von Zuckerwürfeln und Liebe Schülerinnen und Schüler! Was haben ein Zuckerwürfel und

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 2

Station Von Zuckerwürfeln und Schwimmbecken Teil 2 Station Von Zuckerwürfeln und Teil 2 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Im ersten Teil habt ihr bereits einige Eigenschaften

Mehr

Schule. Klasse. Station Von Zuckerwürfeln und Schwimmbecken Teil 2. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Von Zuckerwürfeln und Schwimmbecken Teil 2. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Von Zuckerwürfeln und Teil 2 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Im ersten Teil habt ihr bereits

Mehr

Station Umgestaltung des Campus Teil 2

Station Umgestaltung des Campus Teil 2 Station Umgestaltung des Campus Teil 2 Tischnummer Arbeitsheft Teilnehmercode -2. Teil- Liebe Schülerinnen und Schüler! Die immer größer werdende Diskussion über die Inklusion, hat den Campus Landau erreicht.

Mehr

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode (Schüler-ID und Geburtstag)

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode (Schüler-ID und Geburtstag) Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode (Schüler-ID und Geburtstag) Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich

Mehr

Station Spieglein, Spieglein. Arbeitsheft. Tischnummer. Teilnehmercode

Station Spieglein, Spieglein. Arbeitsheft. Tischnummer. Teilnehmercode Station Spieglein, Spieglein Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Spieglein, Spieglein Liebe Schülerinnen und Schüler! Spieglein, Spieglein an der Wand, wer ist die Schönste

Mehr

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Station Strahlensätze Teil 1. Arbeitsheft. Teilnehmercode

Station Strahlensätze Teil 1. Arbeitsheft. Teilnehmercode Station Strahlensätze Teil 1 Arbeitsheft Teilnehmercode Mathematik-Labor Station Strahlensätze Teil 1 Liebe Schülerinnen und Schüler! Schon immer haben sich die Menschen Gedanken gemacht, wie man Strecken

Mehr

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich willkommen im Mathematik-Labor

Mehr

Station Trigonometrie des Fußballs - 2. Teil -

Station Trigonometrie des Fußballs - 2. Teil - Station Trigonometrie des Fußballs - 2. Teil - Aufgabenblätter Mathematik-Labor Station Trigonometrie des Fußballs Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln der Trigonometrie

Mehr

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode Station Tatort Tankstelle Teil 3 Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! In den ersten beiden Teilen der Station Tatort Tankstelle

Mehr

Schule. Station Jakobsstab & Co. Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Jakobsstab & Co. Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Schule Station Jakobsstab & Co. Teil 2 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Klicken Sie hier, um Text einzugeben. Liebe Schülerinnen und Schüler! In Teil 1 der Station

Mehr

Station Strahlensätze Teil 3

Station Strahlensätze Teil 3 Station Strahlensätze Teil 3 Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Strahlensätze Teil 3 Liebe Schülerinnen und Schüler! Arbeitet bitte die folgenden Aufgaben der Reihe nach durch

Mehr

Schule. Station Tatort Tankstelle Teil 1. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Tatort Tankstelle Teil 1. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Schule Station Tatort Tankstelle Teil 1 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! Vergangene Nacht wurde in der Tankstelle

Mehr

Schule. Klasse. Station Mathematik und Kunst Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Mathematik und Kunst Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Mathematik und Kunst Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Klicken Sie hier, um Text einzugeben. Liebe Schülerinnen und Schüler! Herzlich willkommen

Mehr

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Station Löffelliste Teil 2 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 2 Liebe Schülerinnen und Schüler! Nachdem Opa Helmut seine Reise zum Mond beendet hat,

Mehr

Schule. Klasse. Station Figurierte Zahlen Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Figurierte Zahlen Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Figurierte Zahlen Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt. Die Steinchen

Mehr

Station Trigonometrie des Fußballs - 1. Teil -

Station Trigonometrie des Fußballs - 1. Teil - Station Trigonometrie des Fußballs - 1. Teil - Aufgabenblätter Mathematik-Labor Station Trigonometrie des Fußballs - 1. Teil - Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln

Mehr

Schule. Station Löffelliste Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Löffelliste Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Station Löffelliste Teil 3 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 3 Liebe Schülerinnen und Schüler! Opa Helmut hat nun bereits die meisten Punkte auf seiner

Mehr

Station Strahlensätze Teil 2. Aufgabenblätter

Station Strahlensätze Teil 2. Aufgabenblätter Station Strahlensätze Teil 2 Aufgabenblätter Mathematik-Labor Station Strahlensätze Teil 2 Liebe Schülerinnen und Schüler! In der letzten Stunde habt ihr den zweiten Strahlensatz in Zusammenhang mit dem

Mehr

Schule. Klasse. Station Mathematik und Kunst. Tischnummer. Gruppenergebnisse

Schule. Klasse. Station Mathematik und Kunst. Tischnummer. Gruppenergebnisse Schule Station Mathematik und Kunst Gruppenergebnisse Klasse Tischnummer Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Beim Bearbeiten der Station Mathematik und Kunst

Mehr

Schule. Station Löffelliste Teil I. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Löffelliste Teil I. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Station Löffelliste Teil I Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Liebe Schülerinnen und Schüler! Opa Helmut möchte einige seiner Lebenswünsche erfüllen und stellt

Mehr

Schule. Klasse. Station Figurierte Zahlen Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Figurierte Zahlen Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Figurierte Zahlen Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt. Die Steinchen

Mehr

Schule. Station USA ein Land unbegrenzter Möglichkeiten? Teil 1. Klasse. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Station USA ein Land unbegrenzter Möglichkeiten? Teil 1. Klasse. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station USA ein Land unbegrenzter Möglichkeiten? Teil 1 Arbeitsheft Klasse Tischnummer Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station USA - ein Land der In Ihrem bisherigen

Mehr

Verschiedene Quader mit gleichem Rauminhalt

Verschiedene Quader mit gleichem Rauminhalt Kopiervorlage 4 Verschiedene Quader mit gleichem Rauminhalt Aufgaben:. Baut aus 2 Einheitswürfeln den Quader mit der größten Oberfläche und gebt die Länge der Kanten an (ein Einheitswürfel hat die Kantenlänge

Mehr

Station Trigonometrie Teil 1. Hilfeheft

Station Trigonometrie Teil 1. Hilfeheft Station Trigonometrie Teil 1 Hilfeheft Liebe Schülerinnen und Schüler! Dies ist das Hilfeheft zur Station Trigonometrie Teil 1. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Station Trigonometrie des Fußballs - 3. Teil -

Station Trigonometrie des Fußballs - 3. Teil - Station Trigonometrie des Fußballs - 3. Teil - Aufgabenblätter Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln der Trigonometrie nicht nur anwenden, sondern auch damit spielen

Mehr

Schule. Station Figurierte Zahlen Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Figurierte Zahlen Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Schule Station Figurierte Zahlen Teil 3 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit

Mehr

Station USA ein Land der unbegrenzten Möglichkeiten Teil 1. Arbeitsheft. Schule. Klasse. Tischnummer. Teilnehmercode

Station USA ein Land der unbegrenzten Möglichkeiten Teil 1. Arbeitsheft. Schule. Klasse. Tischnummer. Teilnehmercode Station USA ein Land der unbegrenzten Teil 1 Arbeitsheft Schule Klasse Tischnummer Teilnehmercode Mathematik-Labor USA ein Land der unbegrenzten Liebe Schülerinnen und Schüler! In Ihrem bisherigen Schulverlauf

Mehr

Würfel. Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel

Würfel. Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel Würfel Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel Das Material thematisiert vier Schwerpunkte: Eigenschaften, Würfelgebäude und Bauplan, Würfelnetze, Farbwürfel (Ansichten). Grundsätzlich gibt

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften

Mehr

Station Gleichdicks. Hilfestellungen

Station Gleichdicks. Hilfestellungen Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Station Vermessungen. Aufgabenblätter

Station Vermessungen. Aufgabenblätter Station Vermessungen Aufgabenblätter Mathematik-Labor Station Vermessungen Liebe Schülerinnen und Schüler! Wie wurden in früheren Zeiten, in denen moderne technische Geräte ein Fremdwort waren, die Höhen

Mehr

Station Ziegenproblem. Aufgabenheft

Station Ziegenproblem. Aufgabenheft Station Ziegenproblem Aufgabenheft Mathematik-Labor Station Ziegenproblem 1 Mathematik-Labor Station Ziegenproblem Liebe Schülerinnen und Schüler! Erfolgreiche Quizshows wie Let s Make A Deal aus Amerika

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Mein Tipp: Das stimmt.

Mein Tipp: Das stimmt. Station P: Prismen aus Netzen bauen 1 a) Gib einen Tipp ab. Ergeben die folgenden Netze ein Prisma? Trage deine Meinung in die folgende Liste ein. Stelle dir gedanklich vor, wie die Netze geklappt werden

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

Schule. Klasse. Station Tatort Tankstelle Teil 1. Tischnummer. Arbeitsheft

Schule. Klasse. Station Tatort Tankstelle Teil 1. Tischnummer. Arbeitsheft Schule Station Tatort Tankstelle Teil 1 Klasse Tischnummer Arbeitsheft Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! Vergangene Nacht wurde in der Tankstelle Spiegelland an

Mehr

Station Freizeitpark Teil 1. Hilfeheft

Station Freizeitpark Teil 1. Hilfeheft Station Freizeitpark Teil 1 Hilfeheft Liebe Schülerinnen und Schüler! Dies ist das Hilfeheft zur Station Freizeitpark Teil 1. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Körperformen. Carolin Donat. Downloadauszug aus dem Originaltitel: Geometrie

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Körperformen. Carolin Donat. Downloadauszug aus dem Originaltitel: Geometrie Download Carolin Donat Mathe an Stationen Spezial Geometrie 1+2 Körperformen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher Lern

Mehr

Stationenarbeit Dezimalbrüche

Stationenarbeit Dezimalbrüche Stationenarbeit Dezimalbrüche Name: Klasse: 6c Regeln Es sollen möglichst alle vier Stationen bearbeitet werden. Falls die Zeit knapp wird lasst Station 4 aus. Wer mit allen Stationen fertig ist nimmt

Mehr

Station GPS. Aufgabenblätter

Station GPS. Aufgabenblätter Station GPS Aufgabenblätter Mathematik-Labor Station GPS Liebe Schülerinnen und Schüler! In dieser Station werdet ihr einiges erleben... Ihr begebt euch auf die abenteuerliche Suche nach einem wertvollen

Mehr

03 Brüche und gemischte Zahlen

03 Brüche und gemischte Zahlen Brüche 7 0 Brüche und gemischte Zahlen A5 Stelle eines der beiden Tiere selbst her. (Welches Tier du herstellen sollst, erkennst du an der Farbe des Papiers, das du von deinem Lehrer oder deiner Lehrerin

Mehr

denken sie schon? Projekt der kreativen Mathematik

denken sie schon? Projekt der kreativen Mathematik Woche EINS Bereich 1 Pizza Fiesta Brettspiel zum Erlernen und Verwenden von Bruchzahlen/ Bruchstücken zu beziehen bei ivo haas, Lehrmittelversand und Verlag www.ivohaas.com office@ivohaas.com Bereich 2

Mehr

Geometrische Körper Fragebogen zum Film - Lösung B1

Geometrische Körper Fragebogen zum Film - Lösung B1 Geometrische Körper Fragebogen zum Film - Lösung B Fragen zum Film Geometrische Körper (BR Alpha) ) Ergänze mit den passenden Begriffen! Eine _Kante_ entsteht dort, wo zwei _Flächen_ zusammenstoßen. Eine

Mehr

Form und Raum Beitrag 27 Geometrisch knobeln 1 von 22. Geometrisch Knobeln Stationenzirkel zum Aufbau räumlicher Vorstellungskraft

Form und Raum Beitrag 27 Geometrisch knobeln 1 von 22. Geometrisch Knobeln Stationenzirkel zum Aufbau räumlicher Vorstellungskraft Form und Raum Beitrag 27 Geometrisch knobeln 1 von 22 Geometrisch Knobeln Stationenzirkel zum Aufbau räumlicher Vorstellungskraft Beitrag von Walter Czech, Krumbach Mit sieben Körpern aus Holzwürfeln knobeln

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Station Schaltalgebra. Aufgabenblätter

Station Schaltalgebra. Aufgabenblätter Station Schaltalgebra Aufgabenblätter Mathematik-Labor Station Schaltalgebra Liebe Schülerinnen und Schüler! Habt ihr Euch schon einmal gefragt, wie ein Taschenrechner oder Computer rechnet? Warum zeigt

Mehr

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Anleitungen für die Papierverpackungen ab Seite 86

Anleitungen für die Papierverpackungen ab Seite 86 1 Anleitungen für die Papierverpackungen ab Seite 86 Engelchen 2 Stück Papier im Format 10x15 cm ein Stück Schnur eine Perle mit Durchmesser 3 cm Für die Engel nimmt man 2 Stück Papier in der Größe 10

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema Kreis Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier: School-Scout.de Thema: Unterrichtsreihe zum Thema Kreis

Mehr

Geometrische Körper. Übungen: 1 2. Wer bin ich? Übung mit den 10 Steckbriefen Zunächst einen Satz der Steckbriefe

Geometrische Körper. Übungen: 1 2. Wer bin ich? Übung mit den 10 Steckbriefen Zunächst einen Satz der Steckbriefe Geometrische Körper Für die drei folgenden Übungen mit geometrischen Körpern benötigen Sie lediglich die Kopiervorlagen der folgenden Seiten sowie ausreichend Stifte, Scheren, Klebestifte und ein Heftgerät.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben Station 1 Ordne die Eigenschaften und Beschreibungen den einzelnen Bildern auf dem Arbeitsblatt zu. Vergleiche mit dem Lösungsblatt auf dem Lehrertisch und stelle richtig, wenn nötig. In Ägypten stehen

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Pustemännchen. Baut eure eigenen Pustemännchen. Max, Ida und Leon haben Pustemännchen gebaut. Jetzt pusten sie um die Wette.

Pustemännchen. Baut eure eigenen Pustemännchen. Max, Ida und Leon haben Pustemännchen gebaut. Jetzt pusten sie um die Wette. Pustemännchen Max, Ida und Leon haben Pustemännchen gebaut. Jetzt pusten sie um die Wette. Baut eure eigenen Pustemännchen. 1 2 3 4 Vergleicht eure Männchen: Welches lässt sich möglichst weit pusten? Eignen

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Quadern abwickeln Inhaltsbezogene Kompetenzen: - Körpernetze erkennen - Würfelnetze gedanklich überprüfen - Körpernetze von

Mehr

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach S 1 Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen Walter Czech, Krumbach Spiele mit Streichhölzern und Holzwürfeln Laufzettel Trage zunächst das Datum, deinen Namen und

Mehr

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Naturwissenschaft Sabrina Spahr Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Unterrichtsentwurf Wie bastelt man einen Würfel? Struktur, Vorstellungen,

Mehr

Station 1: Mein Weltbild

Station 1: Mein Weltbild Station 1: Mein Weltbild Wie stellst du dir unser Universum vor? Stell dir vor, du fliegst mit einem Raumschiff weit von der Erde weg. Zeichne auf, was du alles siehst, wenn du von dort Richtung Erde zurückschaust!

Mehr

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt Name: Klasse: Datum: Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte DOWNLOAD Andrea Schubert / Martin Schuberth Eigenschaften geometrischer Körper Arbeitsblätter für Schüler mit sonderpädagogischem Förderbedarf Andrea Schuberth Martin Schuberth Downloadauszug aus dem Originaltitel:

Mehr

Einführungen zu den einzelnen Themen. roter Ranzen Farben

Einführungen zu den einzelnen Themen. roter Ranzen Farben Einführungen zu den einzelnen Themen roter Ranzen Farben Hier findet ihr alles rund um das Thema Farben. Ihr könnt sie mit Hilfe des Farbfächers mischen. Euer Gedächtnis beim Farbmemory testen oder auch

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Anhangsverzeichnis. Kompetenzen... S. II, III, IV. Die Maus und der Elefant... S. V + VI. Tafelbild... S. VII. Arbeitsblätter... S.

Anhangsverzeichnis. Kompetenzen... S. II, III, IV. Die Maus und der Elefant... S. V + VI. Tafelbild... S. VII. Arbeitsblätter... S. Anhangsverzeichnis Kompetenzen.................. S. II, III, IV Die Maus und der Elefant....... S. V + VI Tafelbild..................... S. VII Arbeitsblätter................ S. VIII, IX Literaturangaben...............

Mehr

Quaderhunde und Würfelkörper

Quaderhunde und Würfelkörper R. Reimer Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe Quaderhunde und Würfelkörper Kurzprojekte in den Klassenstufen 5 und 6 Anregungen für einen schülerverantwortlichen Mathematikunterricht

Mehr

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha?

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha? - 3 Punkte Beispiele - ) Was ist 2005 00 + 2005? A) 2005002005 B) 20052005 C) 2007005 D) 22055 E) 202505 200500 + 2005 = 202505 2) Anna und Bertha haben zusammen 0 Zuckerln. Bertha hat 2 mehr als Anna.

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

von Marsha J. Falco amigo-spiele.de/04713

von Marsha J. Falco amigo-spiele.de/04713 von Marsha J. Falco amigo-spiele.de/04713 Das Würfelspiel zum beliebten Klassiker! Spieler: 2 4 Personen Alter: ab 8 Jahren Dauer: ca. 35 Minuten Form 42 SET-Würfel 1 Spielplan 1 Stoffbeutel Inhalt Anzahl

Mehr

Unmögliche Figuren perspektivisches Zeichnen:

Unmögliche Figuren perspektivisches Zeichnen: Unmögliche Figuren perspektivisches Zeichnen: Kompetenzen: Die Schüler/innen sollen Ein quaderförmiges Werkstück in der Schrägbildperspektive darstellen und bemaßen können. Ein Werkstück mit veränderter

Mehr

Lösungen Klasse 3. Klasse 3

Lösungen Klasse 3. Klasse 3 Klasse 3 Lösungen Klasse 3 1. Welche der folgenden Figuren kann man zeichnen ohne dabei den Bleistift abzuheben und ohne eine bereits gezeichnete Linie erneut nachzufahren? (A) (B) (C) (D) (E) Lösung:

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

o statisch (Vorstellung und Verständnis von räumlicher Konstellationen)

o statisch (Vorstellung und Verständnis von räumlicher Konstellationen) Ziele Schulung der Raumvorstellung: o statisch (Vorstellung und Verständnis von räumlicher Konstellationen) o dynamisch (Durchführung von Handlungen an vorgestellten Objekten in der Vorstellung), vgl.

Mehr

Du erhältst jeweils ein Lösungswort: a), b). 10 cm 31,4 dm (O) 3,7 cm 1086,4 mm (L) 7 cm 3,8 m (T) 11,5 m 6091,6 m (B)

Du erhältst jeweils ein Lösungswort: a), b). 10 cm 31,4 dm (O) 3,7 cm 1086,4 mm (L) 7 cm 3,8 m (T) 11,5 m 6091,6 m (B) Kreise und Vielecke Kreisumfang berechnen Material: Zirkel und Faden 1 a) Zeichne den, den Radius und den Durchmesser des Kreises mit verschiedenen Farben ein. Beschrifte die Zeichnung. b) Bestimme alle

Mehr

2 Baue nun den Somawürfel nur aus fünf, vier oder drei Seitenansichten.

2 Baue nun den Somawürfel nur aus fünf, vier oder drei Seitenansichten. Würfel bauen Spielziel würfel mit Hilfe von Seitenansichten bauen. Seitenansichten aufgrund des würfels zeichnen. Lernziel Seitenansichten interpretieren und in Bezug zueinander setzen. Spielverlauf 1

Mehr

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel: Download Carolin Donat Mathe an Stationen Spezial Geometrie 1+2 Geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher

Mehr

Addieren und subtrahieren

Addieren und subtrahieren Addieren und subtrahieren Zahlenmauern Mirko und Luca schreiben möglichst oft die Ziffer in ihre Zahlenmauer.. Mirko 0 0 8 Luca 0 0 Basissteine:, 0, (Die Zahl 0 ist verboten.) 90 0 Basissteine:,,, 0 (Die

Mehr

Form und Raum Beitrag 24 Insektenbilder achsensymmetrisch ergänzen 1 von 32

Form und Raum Beitrag 24 Insektenbilder achsensymmetrisch ergänzen 1 von 32 Form und Raum Beitrag 24 Insektenbilder achsensymmetrisch ergänzen 1 von 32 Was krabbelt hier? Insektenbilder achsensymmetrisch ergänzen auf drei Niveaus Von Jessica Retzmann, Astheim Illustriert von Julia

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Bearbeitungszeit: Name: Erklärung

Bearbeitungszeit: Name: Erklärung Ausgabe: Mittwoch, 05.05.2004 Abgabe: Freitag, 14.05.2004 Am Freitag den 14.05.2004 halte ich die Mathestunde. Bring deshalb auch dann dein Übungsblatt mit! Bearbeitungszeit: Name: Erklärung 1 2 3 Pflichtaufgabe

Mehr

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Dem Zufall auf der Spur ein Stationenlauf zur Einführung in die Wahrscheinlichkeitsrechnung Von Matthias Nowak, Schorndorf

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Ausschneidebogen. 7 Figuren und Flächen im Alltag LS 01.M3. Aus diesen geometrischen Flächen können drei gleich große Quadrate gelegt werden.

Ausschneidebogen. 7 Figuren und Flächen im Alltag LS 01.M3. Aus diesen geometrischen Flächen können drei gleich große Quadrate gelegt werden. 7 Figuren und Flächen im Alltag LS 01.M3 Ausschneidebogen Aus diesen geometrischen Flächen können drei gleich große Quadrate gelegt werden. Möglichkeiten, Quadrate zu bilden, gibt es viele, aber nur eine

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

Antje Rümenapf Setkoordination Naturwissenschaften Reichelsheim In der Aue 28 Tel.: 06164/4895 Fax: 06164/

Antje Rümenapf Setkoordination Naturwissenschaften Reichelsheim In der Aue 28 Tel.: 06164/4895 Fax: 06164/ Anschauliche Versuche zum Erleben, Erfahren und Erfassen mechanischer Grundgesetze im Lernen an Stationen Leitung Petra Köhler, Reinhard Reichelt, Antje Rümenapf Staatliches Schulamt für den Kreis Bergstraße

Mehr

Für diesen Versuch benötigt ihr:

Für diesen Versuch benötigt ihr: Anleitung zu Station 1: Die Farben des Lichtes Eine Stromquelle (= Netzgerät) eine Lichtquelle mit einer Lichtblende (mit einer Öffnung) ein Glasprisma eine Sammellinse a) Schaltet zuerst das Netzgerät

Mehr

Das weiß ich schon! Das will ich wissen?

Das weiß ich schon! Das will ich wissen? Das weiß ich schon! Das will ich wissen? 1 Schreibe zum Thema Längen : 1. Das weiß ich schon: 2. Das will ich wissen: Bringe Material oder Bücher zum Thema für unseren Thementisch mit! Wer ist der Größte?

Mehr