Grundgesamtheit und Stichprobe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundgesamtheit und Stichprobe"

Transkript

1 Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U i wird ein eindeutiger (unbekannter) Merkmalswert Y i zugeordnet, i = 1,...,N. Definition 2 Eine n-elementige Teilmenge {y 1,...,y n } aus der Grundgesamtheit Y 1...,Y N heißt Stichprobe vom Umfang n. Eine Stichprobe wird auch als S bezeichnet. 3. Einfache Zufallsstichprobenverfahren 1

2 Auswahlwahrscheinlichkeit Definition 3 Die Auswahlwahrscheinlichkeit erster Ordnung für die Einheit Y i, i = 1,...,N, bezeichnen wir mit π i := P(Y i Stichprobe) = P(S), i = 1,...,N. Stichprobe S enthält Y i Die Auswahlwahrscheinlichkeit zweiter Ordnung für Y i und Y j, i j und i,j = 1,...,N ist definiert als π ij := P(Y i S und Y j S) = P(S) i,j = 1,...,N. S enthält Y i und Y j 3. Einfache Zufallsstichprobenverfahren 2

3 Repräsentative Stichprobe Definition 4 Eine Stichprobe heißt repräsentativ, wenn aus ihr der Schluss auf die zugrunde gelegte Grundgesamtheit erlaubt ist. Eine Stichprobe heißt repräsentativ in Bezug auf einen interessierenden Parameter, wenn dieser (annähernd) unverzerrt geschätzt werden kann (und eine vorgegebene Genauigkeitsanforderung erfüllt ist). 3. Einfache Zufallsstichprobenverfahren 3

4 Einfache Zufallsauswahl Definition 5 Eine Stichprobe vom Umfang n aus einer Grundgesamtheit vom Umfang N heißt einfache Zufallsstichprobe ohne Zurücklegen (ezoz) vom Umfang n, wenn sie die gleiche Auswahlwahrscheinlichkeit wie alle möglichen Stichproben gleichen Umfangs besitzen. 3. Einfache Zufallsstichprobenverfahren 4

5 Beispiel N = 4, Merkmalswerte {1,3,5,7}, Stichprobe vom Umfang n = 2. Mögliche Stichproben {1,3} {1,5} {1,7} {3,5} {3,7} {5,7} Auswahlwahrscheinlichkeiten 1/6 1/6 1/6 1/6 1/6 1/6 einfache Zufallsstichprobe Auswahlwahrscheinlichkeiten 1/ /2 einfache Zufallsstichprobe 3. Einfache Zufallsstichprobenverfahren 5

6 Mit und ohne Zurücklegen (i) Man unterscheidet Modelle ohne Zurücklegen (ezoz) und mit Zurücklegen (ezmz). (ii) Modell ohne Zurücklegen: y 1,...,y n identisch verteilt, aber stochastisch abhängig. (iii) Modell mit Zurücklegen: y 1,...,y n unabhängig und identisch verteilt. (iv) Problem: viele statistische Analysen (z. B. Lineares Modell, statistische Tests) setzen stochastische Unabhängigkeit voraus; in der Praxis werden aber meist Modelle ohne Zurücklegen angewendet. 3. Einfache Zufallsstichprobenverfahren 6

7 Ohne Zurücklegen Urnenmodell für das Ziehen ohne Zurücklegen mit Beachtung der Reihenfolge N N 1 N 2. Möglichkeiten für 1. Kugel, Möglichkeiten für 2. Kugel, Möglichkeiten für 3. Kugel,. N n+1 Möglichkeiten für n-te Kugel. Insgesamt N(N 1)(N 2)... (N n+1) = N! (N n)!. 3. Einfache Zufallsstichprobenverfahren 7

8 Ohne Zurücklegen Anzahl der möglichen Ziehungen beim Modell ohne Zurücklegen und ohne Beachtung der Reihenfolge: ( ) N! 1 N (N n)! n! =. n Eine konkrete Stichprobe vom Umfang n besitzt also die Auswahlwahrscheinlichkeit 1 ( N n). 3. Einfache Zufallsstichprobenverfahren 8

9 Mit Zurücklegen 3. Einfache Zufallsstichprobenverfahren 9

10 Auswahlwahrscheinlichkeiten ohne Zurücklegen Satz 1 Für das Modell ohne Zurücklegen: a) Für alle k {1,...,N} fest folgt, dass P(y i = Y k ) = P(y j = Y k ) = 1 N, für alle i,j {1,...,n}, d.h. y 1,...,y n besitzen alle die gleiche Verteilung. b) π i = n N, i = 1,...,N. c) π ij = n(n 1) N(N 1), i j,i,j = 1,...,N 3. Einfache Zufallsstichprobenverfahren 10

11 Beweis: 3. Einfache Zufallsstichprobenverfahren 11

12 Beweis: 3. Einfache Zufallsstichprobenverfahren 12

13 Auswahlwahrscheinlichkeiten mit Zurücklegen Satz 2 Für das Modell mit Zurücklegen: a) Für alle k {1,...,N} fest folgt, dass P(y i = Y k ) = P(y j = Y k ) = 1 N, für alle i,j {1,...,n}, d.h. y 1,...,y n besitzen alle die gleiche Verteilung. b) Für k,l {1,...,N} fest folgt, dass P(y i = Y k,y j = Y l ) = P(y i = Y k )P(y j = Y l ) für alle i j {1,...,n}, d.h. y 1,...,y n sind stochastisch unabhängig. c) π i = 1 ( ) N 1 n, N i = 1,...,N. ( ) n d) π ij = ) ( N 1 2 2, N) i,j = 1,...,N 3. Einfache Zufallsstichprobenverfahren 13

14 Beweis: 3. Einfache Zufallsstichprobenverfahren 14

15 Auswahlsatz Definition 6 Der Quotient f = n N bezeichnet. wird als Auswahlsatz Ist der Auswahlsatz klein so ist der Unterschied zwischen ezoz und ezmz gering häufig einfachere Formeln anwendbar. 3. Einfache Zufallsstichprobenverfahren 15

16 Umsetzung in R >set.seed(42) >sample(x,size,replace=false,prob=null) > x<-c(9,17,23,28,30) > sample(x,3) [1] > sample(x,3) [1] Einfache Zufallsstichprobenverfahren 16

17 Grundgesamtheit Y i, i = 1,...,N Merkmal des i-ten Merkmalträgers der Grundgesamtheit N Umfang der Grundgesamtheit Ȳ := 1 N N i=1 Y i Mittelwert des Merkmals in der Grundgesamtheit Y. := N i=1 Y i Merkmalssumme in der Grundgesamtheit S 2 := 1 N 1 N i=1 (Y i Ȳ)2 Varianz des Merkmals in der Grundgesamtheit 3. Einfache Zufallsstichprobenverfahren 17

18 Stichprobe y i, i = 1,...,n Merkmal des i-ten Merkmalträgers der Stichprobe n ȳ := 1 n n i=1 Umfang der Stichprobe yi Mittelwert des Merkmals in der Stichprobe s 2 := 1 n 1 n i=1 (y i ȳ) 2 Varianz des Merkmals in der Stichprobe 3. Einfache Zufallsstichprobenverfahren 18

19 Bias, Varianz, MSE Definition 7 Gegeben sei ein Schätzer Ŷ für den Mittelwert Ȳ. Der Bias ist der systematische Fehler des Schätzers Bias(Ŷ) := E(Ŷ) Ȳ. Ein Schätzer heißt unverzerrt oder erwartungstreu, falls Bias(Ŷ) = 0. Der zufällige Fehler des Schätzers ist die Varianz die Standardabweichung Var(Ŷ) := E(Ŷ E(Ŷ))2, STD(Ŷ) := Var(Ŷ), die mittlere quadratische Abweichung MSE := E(Ŷ Ȳ) Einfache Zufallsstichprobenverfahren 19

20 Lemma 1 Für eine einfach Zufallsstichprobe (mz oder oz) gilt: a) E(y i ) = E(y 1 ) = Ȳ für alle i = 1,...,N b) Var(y i ) = Var(y 1 ) = N 1 N S2 für alle i = 1,...,N 3. Einfache Zufallsstichprobenverfahren 20

21 Beweis: 3. Einfache Zufallsstichprobenverfahren 21

22 Satz 3 Für eine einfach Zufallsstichprobe ohne Zurücklegen gilt: a) ȳ ist ein erwartungstreuer Schätzer für Ȳ b) Var(ȳ) = 1 n c) Var(ȳ) = 1 n Var(ȳ). ( ) 1 n N S 2 ( 1 n N) s 2 ist ein erwartungstreuer Schätzer für 3. Einfache Zufallsstichprobenverfahren 22

23 Beweis: 3. Einfache Zufallsstichprobenverfahren 23

24 Beweis: 3. Einfache Zufallsstichprobenverfahren 24

25 Satz 4 Für eine einfach Zufallsstichprobe mit Zurücklegen gilt: a) ȳ ist ein erwartungstreuer Schätzer für Ȳ ( ) b) Var(ȳ) = 1 n 1 1 N S 2 c) Var(ȳ) = 1 n s2 ist ein erwartungstreuer Schätzer für Var(ȳ). 3. Einfache Zufallsstichprobenverfahren 25

26 Vergleich der Varianz mit und ohne Zurücklegen: 3. Einfache Zufallsstichprobenverfahren 26

27 Beispiel: Population mit N = 5. Y hat folgende Ausprägungen: Y 1 = 9, Y 2 = 10, Y 3 = 11, Y 4 = 18, Y 5 = 22 Wir ziehen Stichproben vom Umfang n = 3 mit und ohne Zurücklegen und berechnen Varianz und Mittelwert. Wie viele mögliche Stichproben gibt es in beiden Fällen? Was ist Ȳ? 3. Einfache Zufallsstichprobenverfahren 27

28 Beispiel: Mögliche Stichproben ohne Zurücklegen 3. Einfache Zufallsstichprobenverfahren 28

29 Beispiel: Mögliche Stichproben mit Zurücklegen 3. Einfache Zufallsstichprobenverfahren 29

30 Beispiel: Erwartungswerte und Varianz 3. Einfache Zufallsstichprobenverfahren 30

31 Beispiel: Verteilung der Mittelwertschätzer 3. Einfache Zufallsstichprobenverfahren 31

32 Schätzung von Anteilen Wir betrachten nun den homograden Fall, sprich Y i kann nur die Werte 1 und 0 annehmen. M der N Untersuchungseinheiten haben die interessierende Eigenschaft: In der Stichprobe: Ȳ = 1 N ȳ = 1 n N Y i = M N := P i=1 n Y i = m n := p i=1 3. Einfache Zufallsstichprobenverfahren 32

33 Verteilung der Stichprobensummen Im Falle ohne Zurücklegen gilt: n y i H(N,n,P). i=1 Im Falle mit Zurücklegen gilt: n y i B(n,P). i=1 3. Einfache Zufallsstichprobenverfahren 33

34 Schätzung von Anteilen Satz 5 Es gilt bei Auswahl ohne Zurücklegen: 1. p ist ein erwartungsstreuer Schätzer für P ( ) 2. Var(p) = 1 N n n N 1 P(1 P) 3. Var(p) = (1 n N ) 1 n 1p(1 p) ist ein erwartungstreuer Schätzer für 2. Bei Auswahl mit Zurücklegen: 1. p ist ein Erwartungsstreuer Schätzer für P 2. Var(p) = 1 n P(1 P) 3. Var(p) = 1 n 1p(1 p) ist ein erwartungstreuer Schätzer für Einfache Zufallsstichprobenverfahren 34

35 Bemerkung Für Var(p) gilt: Var(p) = Faktor P(1 P) Also ist Var(p) am größten für P = 0.5 und fällt gegen 0 für P 0 oder P 1. Für den Varianzkoeffizienten gilt jedoch: CV(p) = Var(p) E(p) = Faktor P(1 P) p = Faktor 1 P P monoton fallend in P. Die relative Streuung ist also größer für kleinere Anteile e.g. Wahlprognosen. 3. Einfache Zufallsstichprobenverfahren 35

36 Varianz und Varianzkoeffizient 3. Einfache Zufallsstichprobenverfahren 36

37 Zentraler Grenzwertsatz für die einfache Zufallsauswahl Das Auswahlmodell der ezoz führt zu dem statistischen Modell y 1,...,y n sind identisch verteilt. E(y 1 ) = Ȳ Var(y 1 ) = N 1 N S2 y 1,...,y n sind stochastisch abhängig. Cov(y 1,y 2 ) = 1 N S2 keine Anwendung des (normalen) Zentralen Grenzwertsatzes, da y i stochastisch abhängig. 3. Einfache Zufallsstichprobenverfahren 37

38 Zentraler Grenzwertsatz für die einfache Zufallsauswahl Dennoch kann ein Grenzwertsatz angegeben werden: Hájek, J. (1960). Limiting distributions in simple random sampling from a finite population. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, Sind n und N ausreichend groß, so gilt ȳ appr. N(Ȳ, 1 n ( 1 n N ) S 2. Faustregel: n > 50 und f = 1 n N Approximation. < 0.05 für die Anwendbarkeit der 3. Einfache Zufallsstichprobenverfahren 38

39 Konfidenzintervalle Daraus folgt: ] [ȳ u 1 α/2 Var(ȳ) ; ȳ +u 1 α/2 Var(ȳ) ist approximativ ein (1 α)-konfidenzintervall für ( Var(ȳ) = 1 n 1 n N) s 2. Ȳ Hierbei ist 3. Einfache Zufallsstichprobenverfahren 39

40 Konfidenzintervalle: Beispiel Wir betrachten eine Population von N = 100 Elementen mit folgenden Werten: Y 1 = 1, Y 2 = 2,..., Y 99 = 99, Y 100 = 100 Wir wählen Stichproben vom Umfang n = 5,10,20. Basierend auf 20,000 Stichproben betrachten wir die empirische Verteilung des Stichprobenmittels Wir wiederholen die Übung für N = 25 und Y 1 = 1, Y 2 = 2,..., Y 24 = 24, Y 25 = 25. In diesem Fall ist der Auswahlsatz wesentlich geringer! 3. Einfache Zufallsstichprobenverfahren 40

41 Konfidenzintervalle 3. Einfache Zufallsstichprobenverfahren 41

42 Konfidenzintervalle 3. Einfache Zufallsstichprobenverfahren 42

43 Konfidenzintervalle für Anteilswerte: Approximativ Ein approximatives Konfidenzintervall für den Anteil P in der Stichprobe ist: [ p u 1 α/2 p(1 p) n 1 ( 1 n N ) ; p+u 1 α/2 p(1 p) n 1 ( 1 n N ) ] 3. Einfache Zufallsstichprobenverfahren 43

44 Konfidenzintervalle für Anteilswerte: Exakt Man kann jedoch basierend auf der Hypergeometrischen Verteilung in diesem Fall exakte Konfidenzintervalle berechnen: [ ] U N ; O, N für mit m r=0 m r=0 ( O N O ) r)( n r ( N = α 1, n) ( U N U ) r)( n r ( N = α 2, n) α 1 +α 2 α. 3. Einfache Zufallsstichprobenverfahren 44

45 Konfidenzintervalle für Anteilswerte: Beispiel In einem Betrieb mit N = 300 Mitarbeitern werden n = 100 gefragt, ob sie sich flexiblere Arbeitszeiten und einen Betriebskindergarten wünschen. Die Fragen werden von 45, bzw. 2 Personen mit Ja beantwortet. Die approximativen Konfidenzintervalle sind: und [0,370 ; 0,530] [ 0,003 ; 0,043]. Die exakten Konfidenzintervalle sind: [0,366 ; 0,537] und [0,006 ; 0,064]. 3. Einfache Zufallsstichprobenverfahren 45

46 Wahl des Stichprobenumfangs Wir möchten den notwendigen Stichprobenumfang wählen, so dass das (1 α) Konfidenzintervall für Ȳ. höchstens ein Länge von 2d hat: 3. Einfache Zufallsstichprobenverfahren 46

47 Wahl des Stichprobenumfangs n Praktisches Problem? n 0 1+n 0 /N, wobei n 0 = ( u1 α/2 s ) y Einfache Zufallsstichprobenverfahren 47 d

48 Wahl des Stichprobenumfangs für Anteilswerte n bwz. im Fall mz oder für große N P(1 P) d 2 /u 2 1 α/2 +P(1 P)/N, n u 2 1 α/2 P(1 P) d 2, 3. Einfache Zufallsstichprobenverfahren 48

49 Numerische Illustration für Anteilswerte 3. Einfache Zufallsstichprobenverfahren 49

50 Wahl des Stichprobenumfangs Eine weitere Methode zur Bestimmung des Stichprobenumfangs betrachtet eine Kostenfunktion C(n) C(n) ist streng monoton wachsend Man minimiere C(n) unter der Nebenbedingung, dass die Varianz des Schätzers einen gewissen Wert nicht unterschreite Weitere Möglichkeit: Man setzt jede Einheit der Varianz einem Geldwert d gleich Man minimiert C(n)+dVar(n) 3. Einfache Zufallsstichprobenverfahren 50

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Grundbegriffe der Wahrscheinlichkeitsrechnung Notation: Y y Zufallsvariable Merkmalswert Definition 1 Eine Zufallsvariable Y heißt a) diskret, falls sie nur endlich oder abzählbar unendlich viele Werte

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar 2009 Klausur zur Veranstaltung Erhebungstechniken im Wintersemester 2008 / 2009 Name, Vorname: Studiengang (Bachelor/Diplom):

Mehr

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127 Teil II Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten StatSoz 127 6 Zufallsstichprobe und Parameter 6.1 Parameter einer Grundgesamtheit 6.2 Zufallsstichprobe und Bias 6.3 Stichprobenfehler

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare 17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Was machen wir in der Vorlesung? Testen und Lineares Modell Was machen wir zu Beginn: Wir wiederholen und vertiefen einige Teile aus der Statistik I: Konvergenzarten

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

o o o o o o o o o o o o

o o o o o o o o o o o o Klumpen-Stichproben = Cluster Sampling Obs.: Bei einer uneingeschränkten Zufallsauswahl wird pro Randomisierungs- Schritt genau eine Beobachtung gemacht. Ein ganz wesentlicher Punkt : Jedes zufällig ausgewählte

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Experimentelle und quasiexperimentelle

Experimentelle und quasiexperimentelle Experimentelle und quasiexperimentelle Designs Experimentelle Designs Quasi- experimenttel Designs Ex- post- facto- Desingns Experimentelle Designs 1. Es werden mindestens zwei experimentelle Gruppen gebildet.

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Bachelorarbeit: Schätzen der Verteilungsfunktion und Quantilen bei einer PPS-Stichprobe

Bachelorarbeit: Schätzen der Verteilungsfunktion und Quantilen bei einer PPS-Stichprobe Bachelorarbeit: Schätzen der Verteilungsfunktion und Quantilen bei einer PPS-Stichprobe Autor: Felix Loewe Matrkelnummer: xxxxxxxxx Betreuer: Prof. Dr. Göran Kauermann 17. Oktober 2013 Inhaltsverzeichnis

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik

Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik Empirische Fragestellung Datenanalyse: Schätzung, Test, Konfidenzintervall Grundbegriffe der Wahrscheinlichkeitsrechnung und Statistik

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

3.2 Stichprobenauswahl (Sampling)

3.2 Stichprobenauswahl (Sampling) 3.2 Stichprobenauswahl (Sampling) Stichprobe = als Stichprobe bezeichnet man eine Teilmenge einer Grundgesamtheit, die unter bestimmten Gesichtspunkten ausgewählt wurde. Der Stichprobenentnahme vorgelagert

Mehr

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Auswahlverfahren Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Definition der Grundgesamtheit Untersuchungseinheit: Objekt an dem Messungen vorgenommen werden Grundgesamtheit

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik)

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik) Selbstkontrollarbeit 1 Vertiefung der Wirtschaftsmathematik und Statistik (Teil Statistik) 18. Januar 2011 Aufgaben Aufgabe 1 Gegeben sei eine binomialverteilte Zufallsvariablen X mit den Parametern N

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Kapitel 2 Einfache Stichprobenverfahren

Kapitel 2 Einfache Stichprobenverfahren Kapitel 2 Einfache Stichprobenverfahren 2.1 Grundbegriffe Bei der Durchführung einer statistischen Erhebung besteht die Absicht, Informationen über eine (üblicherweise große Menge von Individuen zu erhalten.

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner /

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner / VU mathematische methoden in der ökologie: räumliche verteilungsmuster / h.lettner / Analyse räumlicher Muster und Verteilungen Die Analyse räumlicher Verteilungen ist ein zentrales Gebiet der ökologischen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

11. Nichtparametrische Tests

11. Nichtparametrische Tests 11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010:

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle

Mehr