Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014"

Transkript

1 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014

2 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business Intelligence Themenbereiche Über metafinanz Enterprise DWH Data Modeling & Integration & ETL Architecture: DWH & Data Marts Hadoop & Columnar DBs Data Quality & Data Masking Insurance Reporting Standard & Adhoc Reporting Dashboarding BI Office Integration Mobile BI & InMemory SAS Trainings for Business Analysts BI & Risk Customer Intelligence Customer based Analytics & Processes Churn Prediction and Management Insurance Analytics Segmentation and Clustering Predictive Models, Data Mining & Statistics Scorecarding Social Media Analytics Fraud & AML Risk Solvency II (Standard & internal Model) Regulatory Reporting Compliance Risk Management metafinanz gehört seit 23 Jahren zu den erfahrensten Software- und Beratungshäusern mit Fokus auf die Versicherungsbranche. Mit einem Jahresumsatz von 250 Mio. EUR und über Mitarbeitern entwickeln wir für unsere Kunden intelligente zukunftsorientierte Lösungen für komplexe Herausforderungen Carsten Herbe Referenten Slavomir Nagy Michael Prost mail: phone: Seite 2

3 Inhalt 1 Kernthesen Big Data 2 Herausforderungen im Projekt und Lösungen 3 Projektsetup und Vorgehensmodell 4 Fazit Seite 3

4 1 Kernthesen Big Data

5 Big Data wird durch die 4 Dimensionen Volume, Variety, Velocity und Veracity charakterisiert. Der überwiegende Teil der in Unternehmen vorliegenden Daten ist unstrukturiert Big Data ist von wirtschaftlichen Nutzen Frühzeitige Prüfung rechtlicher Aspekte und Datenschutz Kombination von neuen und konventionellen Technologien Seite 5

6 2 Herausforderungen im Projekt und Lösungen

7 Aus gewisser Flughöhe sehen Hadoop Projekte wie DWH/BI-Projekte aus. Seite 7

8 Wenn man tiefer kommt ergeben sich Unterschiede: klassisches BI ist uns vertraut und wir wissen wo es lang geht. Seite 8

9 Mit Hadoop gehen wir neue Wege durch unbekanntes Terrain, Best Practices müssen sich erst noch etablieren. Seite 9

10 Je nach Projekttyp ähneln Hadoop Projekte mehr oder weniger klassischen BI-Projekten. Hadoop Projekttypen RDBMS Offload Offload ETL-Prozesse Offload Analysen Online Archivierung von Daten DWH Extension Verdichtung von neuen Big Data Informationen Weiterleitung der Ergebnisse an das DWH Big Data Exploration Sammlung von Daten aus unterschiedlichsten Quellen Verknüpfung verschiedenster Datentypen Data Mining ( Data Scientist) Seite 10

11 Unterschiedliche Ansätze und Vorgehensweisen von DWH/BI und Big Data. Quelle: IBM Corporation Seite 11

12 Vielfalt an Datenquellen und Datenstrukturen. Seite 12

13 Das Hadoop-Ökosystem besteht aus einer Vielzahl von Tools und Frameworks und wird ständig durch neue Projekte erweitert. HCatalog Ambari Drill Cloudera Manager Parquet SequenceFiles Seite 13

14 Es sind neue Technologien und Methodiken zu lernen. Neben SQL spielt zumindest aktuell noch Java DIE zentrale Rolle Seite 14

15 Die aktuellen Stellenangebote geben ein gutes Bild über die hohen Anforderungen an die Position eines Data Scientists ab Sie sind nicht alleine auf der Suche nach Talenten Wer sucht? Mit welchen Skills? Und was bieten Sie? Hadoop, MapReduce, Hive, HBase Couch Perl, Bash, C#, Ruby, Python, Octave Java, C++ XML, JSON Matlab, R Oracle, MS SQL, MySQL, Teradata, NoSQL Cognos, SAS, Microstrategy, Business Objects, QlikView, Tableau TextMining, DataMining? mit überdurchschittlichem Hochschulabschluss, mit ausgeprägtem analytischem Bezug Seite 15

16 Neue Hardware und neue Software müssen in die bestehende Infrastruktur sowie in die Betriebsprozesse integriert werden. Seite 16

17 Datensicherheit und gegebenenfalls Mandantenfähigkeit müssen sichergestellt werden und zwar nicht nur auf HDFS-Ebene, sondern auch in allen verwendeten Tools. Seite 17

18 Herausforderungen bei Hadoop gegenüber dem klassischen BI. Kategorie Hadoop Classic Bi Datenquellen diverse RDBMs, Applikationen Use Case wird im Projekt entwickelt ist Motivation des Projektes Technologien People & Skill Infrastruktur & Betrieb Security / Multitenancy neue Methoden, dynamischer Open Source Stack neue Anforderungen, schwer am Markt verfügbar Integration in die Infrastruktur (Hardware, Software, Prozesse) User Authentifizierung, Mandantenfähigkeit bewährt, langsam verändernd vorhanden, am Markt verfügbar meist vorhanden Standard Seite 18

19 3 Projektsetup und Vorgehensmodell

20 Unser iteratives Vorgehensmodell umfasst vier Kernphasen für die Einführung von Big- Data-Projekten. Phasenmodell Phase 0 Ausrichtung Entwicklung Strategie, Identifikation Business-Value und Beispiel Use Case Erstellung Roadmap (Prozesse, Daten, Technologien, Kompetenzen) Phase 1 Initiierung Aufbau Infrastruktur Prototyp, Durchstich Phase 2 Umsetzung Einfacher kostengünstiger Use Case für Quickwin Stufenweiser Ausbau (Daten) und Integration (Prozesse, Organisation) Phase 3 Optimierung Unternehmensweite Integration von Big Data Advanced Analytics Seite 20

21 Phase 0 Ausrichtung - Big Data Strategie Phase 0 Ausrichtung Erarbeitung der Ziele und Potentiale von Big Data im Unternehmen ausgehend von den geschäftlichen Anforderungen/Nutzen Umfeld- und Machbarbarkeitsanalyse (Standortbestimmung) Daten, Systeme, Infrastruktur, Organisation, Sicherheit, Skills und Knowhow Zielbild und Lösungsdesign Roadmap (Prozesse, Daten, Technologien, Kompetenzen) Erarbeitung erster Use Cases Betriebs-/Wartungskonzept, Kosten-/Nutzenbetrachtung, Nutzungskonzept Vorüberlegungen zu künftigen Betriebs-/Sourcing-/Lizenzmodellen Sicherheitsstrategien und Konzepte Notwendige Kompetenzen Ergebnis: Belastbarer Business Case, Verständnis für die Nutzung von Big Data, klarer Projektauftrag und Commitment der Stakeholder Seite 21

22 Phase 1 Projektinitiierung Phase 1 Initiierung Aufbau Infrastruktur Hardware (Netzwerk, Server), Software, Zugang zu externen Datenquellen Infrastruktur zur Datenspeicherung, Identifizierung von Tools und Frameworks, die es sinnvoll und bedarfsweise zu integrieren gilt IT-Organisation Auswirkungen IT Betrieb Rollen- und Servicemodell /-management Bildung interdisziplinärer Teams (Data Scientist, Business-/Datenanalysten, Entwickler, Nutzer, Entscheider) Klare Verantwortlichkeiten festlegen (Business/IT) Datenschutz und Securityaspekte konkretisieren Erste Gehversuche (Tests, Skills, Technologien), Setup einfacher und kostengünstiger Use Cases, vertraut werden mit Technologie, Tools, Daten z.b. durch Upload klassischer RDBM-Systeme und Analyse in Hadoop Logfiles für Security Auswertungen Archivierung und Validierung von Daten unterschiedlicher, aber bekannter Quellen Ergebnis: Project-Readyness, Technische Funktionsfähigkeit sicherstellen, Teambuilding Seite 22

23 Phase 2 Umsetzung (Reifegradmodell) Phase 2 Umsetzung Iteration 1 Quick Wins Beginn der Implementierung des ersten Use Cases zur Erzielung von Quickwins Arbeiten mit bekannten Datenquellen und Informationen Neue Erkenntnisse finden und validieren/interpretieren Iteration 2 n Ausweitung der Use Cases (Datenmenge, -quellen, -volumen, externe Daten) Erarbeitung IT-Service-/Betriebsmodell und Anpassung IT-Prozesse Integration der Big Data Lösung in bestehende BI-Lösungen Advanced Analytics (Musterkennung, Statistik, Datamining, Forecast arbeiten mit den Daten) Stabilisierung der Wertschöpfungsprozesse (Datenbewirtschaftung, Sicherheit, Performance, ) Fitmachen der Organisation für den Einsatz von Big Data Ergebnis: Analytische Fähigkeiten und Datenqualität sicherstellen, Big Data schrittweise in die Organisation (Daten, Prozesse, Infrastruktur, Nutzer, Management) einführen Seite 23

24 Phase 3 Optimierung Phase 3 Optimierung Rollout und Einbindung weiterer Unternehmensbereiche Ausbau Knowhow Unternehmensweite Verfügbarkeit Ergebnisse nutzbar machen Big Data Potentiale voll ausschöpfen und wirtschaftlichen Nutzen realisieren Ergebnis: Stabiler Betrieb und breit realisierter Nutzen Seite 24

25 4 Fazit

26 Auch wenn Hadoop Projekte vom Vorgehen recht ähnlich zu DWH/BI-Projekten sind, gibt es in den konkreten Schritten doch erhebliche Unterschiede. Seite 26

27 Wir bieten offene Trainings an sowie maßgeschneiderte Trainings für individuelle Kunden. metafinanz training Einführung Hadoop (1 Tag) Hadoop Intensiv-Entwickler Training (3 Tage) Einführung Oracle in-memory Datenbank TimesTen Data Warehousing & Dimensionale Modellierung Oracle Warehousebuilder 11.2 New Features OWB Skripting mit OMB*Plus Oracle SQL Tuning Einführung in Oracle: Architektur, SQL und PL/SQL Mehr Information unter All trainings are also available in English on request. Seite 27

28 Hadoop Projekte Besonderheiten und Vorgehensweise Fragen? Jetzt oder später? Carsten Herbe Head of Data Warehousing Downloads unter dwh.metafinanz.de mail phone Seite 29

29 Vielen Dank für Ihre Aufmerksamkeit! metafinanz Informationssysteme GmbH Leopoldstraße 146 D München Phone: Fax: DWH & Hadoop Expertise Besuchen Sie uns auch auf:

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014 Hadoop in a Nutshell Einführung HDFS und MapReduce Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics In einer Welt wachsender Datenmengen sind Informationen schneller verfügbar und Auswertungen auf Big Data möglich Motivation

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015 Hadoop & Spark Carsten Herbe 8. CC-Partner Fachtagung 2015 29.04.2015 Daten & Fakten 25 Jahre Erfahrung, Qualität & Serviceorientierung garantieren zufriedene Kunden & konstantes Wachstum 25 Jahre am Markt

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Master-Thesis (m/w) für unseren Standort Stuttgart

Master-Thesis (m/w) für unseren Standort Stuttgart Master-Thesis (m/w) für unseren Standort Abschlussarbeit im Bereich Business Process Management (BPM) Effizienzsteigerung von Enterprise Architecture Management durch Einsatz von Kennzahlen Braincourt

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit!

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Unser Angebot Praktikant/Werkstudent (m/w) im Bereich CRM-Client-Entwicklung Praktikant/Werkstudent

Mehr

Hadoop Ecosystem Vorstellung der Komponenten. Oracle/metafinanz Roadshow Februar 2014

Hadoop Ecosystem Vorstellung der Komponenten. Oracle/metafinanz Roadshow Februar 2014 Hadoop Ecosystem Vorstellung der Komponenten Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die Herausforderungen

Mehr

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Hadoop & IT-Strategie Ein Spagat zwischen Innovation und Kosten Geht das überhaupt? DOAG 2014

Hadoop & IT-Strategie Ein Spagat zwischen Innovation und Kosten Geht das überhaupt? DOAG 2014 Hadoop & IT-Strategie Ein Spagat zwischen Innovation und Kosten Geht das überhaupt? DOAG 2014 Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

DWH-Metadaten Wie und wozu. Clemens Albrecht metafinanz Informationssysteme GmbH

DWH-Metadaten Wie und wozu. Clemens Albrecht metafinanz Informationssysteme GmbH DWH-Metadaten Wie und wozu Clemens Albrecht metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business Intelligence

Mehr

mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com

mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com mayato Unternehmenspräsentation mayato GmbH Am Borsigturm 9 13507 Berlin Germany www.mayato.com Wer sind wir? Wir sind ein unabhängiges Beratungs- und Analystenhaus für Business Intelligence Beratungs-

Mehr

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH USER CASE: 2. Scout User Group Meeting eclipsecon Unconference 2015 LUDWIGSBURG, 2. NOVEMBER 2015» DAVID KLEIN, ENRION GMBH Content 1. Kurzvorstellung Enrion 2. Die Suche nach einem passenden Framework

Mehr

8 Juli 2015. Transparenz durch Governance Data Governance als kritischer Erfolgsfaktor für Predictive Analytics

8 Juli 2015. Transparenz durch Governance Data Governance als kritischer Erfolgsfaktor für Predictive Analytics Transparenz durch Governance Data Governance als kritischer Erfolgsfaktor für Predictive Analytics Contents Predictive Analytics Erwartungen erfüllt? Einfach denken worauf achten, bevor gestartet wird?

Mehr

Business Intelligence. Bereit für bessere Entscheidungen

Business Intelligence. Bereit für bessere Entscheidungen Business Intelligence Bereit für bessere Entscheidungen Business Intelligence Besserer Einblick in Geschäftsabläufe Business Intelligence ist die Integration von Strategien, Prozessen und Technologien,

Mehr

Intelligente Prozesse für das Kundenbeziehungsmanagement. Rainer Wendt, in der IHK Aachen, 23.02.2011

Intelligente Prozesse für das Kundenbeziehungsmanagement. Rainer Wendt, in der IHK Aachen, 23.02.2011 CRM Process Performance Intelligence Intelligente Prozesse für das Kundenbeziehungsmanagement Rainer Wendt, in der IHK Aachen, 23.02.2011 masventa Business GmbH Von-Blanckart-Str. 9 52477 Alsdorf Tel.

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Jochen Heßler, 16.03.2015 2002 Gegründet in Freiburg, Deutschland 2002 Heute Büros in Freiburg, Frankfurt, Düsseldorf, Paris, Boston

Mehr

Solvency II. Komplexität bewältigen

Solvency II. Komplexität bewältigen Solvency II Komplexität bewältigen Der Service Solvency II schafft die Voraussetzung für wertorientiertes Risikomanagement. Die regulatorischen Anforderungen im Bereich Risikomanagement provozieren einen

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN «DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN UNSERE EINFACHE FORMEL FÜR AGILE BUSINESS INTELLIGENCE LÖSUNGEN

Mehr

Historisierung mit Flashback Database Archive (FDA)

Historisierung mit Flashback Database Archive (FDA) Historisierung mit Flashback Database Archive (FDA) DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Wolfgang Tanzer metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen

Mehr

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05.

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05. Vom Single Point of Truth zur Single Version of the Facts Data Warehousing zu Beginn des BigData-Zeitalters inspire IT - Frankfurt 11. 12.05.2015 Fahmi Ouled-Ali Kabel Deutschland Marian Strüby OPITZ CONSULTING

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Mission TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Der Weg zu einem datengesteuerten Unternehmen # Datenquellen x Größe der Daten Basic BI & Analytics Aufbau eines

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

BITMARCK VERNETZT DER KUNDENTAG

BITMARCK VERNETZT DER KUNDENTAG BITMARCK VERNETZT DER KUNDENTAG BI@BITMARCK neue Wege, neue Möglichkeiten Michael Heutmann und René Wilms, BITMARCK Thomas Linke, Terranet Essen, 03. November 2015 Rückblick Was bisher geschah KT 2013:

Mehr

Neue Funktionen in Innovator 11 R5

Neue Funktionen in Innovator 11 R5 Neue Funktionen in Innovator 11 R5 Innovator for Enterprise Architects, Java Harvester und Prüfassistent 12.11.2013 Agenda 1 2 3 Einführung Was ist neu in Innovator 11 R5? Szenario Enterprise Architektur

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Infografik Business Intelligence

Infografik Business Intelligence Infografik Business Intelligence Top 5 Ziele 1 Top 5 Probleme 3 Im Geschäft bleiben 77% Komplexität 28,6% Vertrauen in Zahlen sicherstellen 76% Anforderungsdefinitionen 24,9% Wirtschaflicher Ressourceneinsatz

Mehr

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?!

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! Oliver Steinhauer Sascha Köhler.mobile PROFI Mobile Business Agenda MACHEN SIE IHRE ANWENDUNGEN MOBIL?! HERAUSFORDERUNG Prozesse und Anwendungen A B

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

"Hier kann ich mich weiterentwickeln!"

Hier kann ich mich weiterentwickeln! "Hier kann ich mich weiterentwickeln!" Zur Verstärkung suchen wir für die Standorte München und Dresden einen Reporting Specialist (m/w) Leistungsspektrum der BBF BBF ist ein mittelständisches Unternehmen

Mehr

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Software AG Innovation Day 2014 Bonn, 2.7.2014 Dr. Carsten Bange, Geschäftsführer Business Application Research Center

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014 Datenintegration, -qualität und Data Governance Hannover, 14.03.2014 Business Application Research Center Führendes europäisches Analystenhaus für Business Software mit Le CXP (F) objektiv und unabhängig

Mehr

Solvency II Komplexität bewältigen

Solvency II Komplexität bewältigen Solvency II Komplexität bewältigen Der Service Solvency II schafft die Voraussetzung für wertorientiertes Risikomanagement Motivation Die regulatorischen Anforderungen im Bereich Risikomanagement provozieren

Mehr

Best Practice: On-demand Lösungen bei der Software AG. Dr. Dirk Ventur CIO and Head of Global Support

Best Practice: On-demand Lösungen bei der Software AG. Dr. Dirk Ventur CIO and Head of Global Support Best Practice: On-demand Lösungen bei der Software AG Dr. Dirk Ventur CIO and Head of Global Support Software AG ist der weltweit größte unabhängige Anbieter von Infrastruktursoftware für Geschäftsprozesse

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Innovation gestalten - von ABAP zur SAP HANA Cloud Platform

Innovation gestalten - von ABAP zur SAP HANA Cloud Platform Innovation gestalten - von ABAP zur SAP HANA Cloud Platform Lars Erdmann, Leiter Technologie und Innovation SAP Forum 2014, Basel, 21. Mai 2014 www.q-perior.com Agenda 1. Ein Blick auf die Welt, wie wir

Mehr

Hannover, 20.03.2015 Halle 5 Stand A36

Hannover, 20.03.2015 Halle 5 Stand A36 Integrierte Unternehmensinformationen als Fundament für die digitale Transformation vor allem eine betriebswirtschaftliche Aufgabe Hannover, 20.03.2015 Halle 5 Stand A36 Business Application Research Center

Mehr

Moderne Benutzeroberflächen für SAP Anwendungen

Moderne Benutzeroberflächen für SAP Anwendungen Seite 1 objective partner für SAP Erfahrungen mit dem UI-Development Kit für HTML5 (SAPUI5) - 19.06.2012 Seite 2 Quick Facts objective partner AG Die objective partner AG 1995 gegründet mit Hauptsitz in

Mehr

Vorgehensmodelle für Big Data Initiativen. DOAG 2014 Nürnberg

Vorgehensmodelle für Big Data Initiativen. DOAG 2014 Nürnberg Vorgehensmodelle für Big Data Initiativen DOAG 2014 Nürnberg Agenda Was ist die Aufgabe von Big Data Projekten? Vergleich klassischer und agiler Vorgehensweisen Exemplarisches Vorgehen für Big Data Projekte

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren

Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren BI, Big Data, CRM Forum @ CeBIT 2015, Hannover, 19.03.2015 Patrick Keller, Senior Analyst Status Quo Business Intelligence

Mehr

Customer Intelligence. Die 360 - Sicht auf den Kunden

Customer Intelligence. Die 360 - Sicht auf den Kunden Customer Intelligence Die 360 - Sicht auf den Kunden Customer Intelligence unterstützt Versicherungen bei der Steuerung ihres Kundenportfolios. Der Wettbewerb um die Versicherungskunden wird härter und

Mehr

Operational Intelligence

Operational Intelligence Operational Intelligence Eric Müller Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt

Mehr

SharePoint, Liferay & Co.: Social Business Integration in der Praxis. Dr. Christoph Tempich Webinar, 04.07.2013

SharePoint, Liferay & Co.: Social Business Integration in der Praxis. Dr. Christoph Tempich Webinar, 04.07.2013 SharePoint, Liferay & Co.: Social Business Integration in der Praxis Dr. Christoph Tempich Webinar, 04.07.2013 Social Business bei inovex Unser Experte: Dr. Christoph Tempich (Head of Consulting) Dr. Christoph

Mehr

Business Partner Profil

Business Partner Profil Business Partner Profil Christian Ketterer Merowingerstraße 28, 85609 Aschheim Email: C.Ketterer@yahoo.de Tel: +49 89 90 77 36 34 Mobil: +49 1522 95 99 259 Homepage: www.http://christianketterer.eu Tätigkeitsschwerpunkte

Mehr

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch WANN REDEN WIR VON BIG DATA SCIENCE? Big Data ist der technische Teil von Big Data Science. Mehr Daten! Mehr Datenquellen(-änderungen)!

Mehr

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH Referent: Ilona Tag Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG DATA MANAGEMENT

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG DATA MANAGEMENT HERZLICH WILLKOMMEN ZUR VERANSTALTUNG DATA MANAGEMENT AGENDA DATA MANAGEMENT 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: für IT und Fachbereiche

Mehr

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Hochschulstudium (Wirtschaftsinformatik oder ein vergleichbarer Studiengang) Fachliche und technische Kenntnisse im Bereich Business

Mehr

DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION

DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION Dr. Daniel Jeffrey Koch Fraunhofer IAIS 19. Oktober 2015 1 Die Fraunhofer-Gesellschaft Forschen für die

Mehr

DER CONFIGURATION MANAGEMENT PROZESS

DER CONFIGURATION MANAGEMENT PROZESS Mit matrix ist IT einfach! DER CONFIGURATION MANAGEMENT PROZESS als Voraussetzung für aktuelle Daten in der CMDB Christian Stilz, Project Manager PROJEKTERGEBNISSE CMDB? PROJEKTERGEBNISSE CMDB? Daten unvollständig

Mehr

Kundenmanagement im Multi-Channel-Zeitalter

Kundenmanagement im Multi-Channel-Zeitalter Kundenmanagement im Multi-Channel-Zeitalter Wie gut kennen Sie Ihre Kunden? München, 24. März 2015 Muna Hassaballah Senior Consultant Muna.Hassaballah@SHS-VIVEON.com 30.03.2015 Kurzvorstellung Senior Consultant

Mehr

BEST PRACTICE: VOM GIEßKANNEN-PRINZIP ZUR EFFEKTIVEN DATA GOVERNANCE HAGEN TITTES

BEST PRACTICE: VOM GIEßKANNEN-PRINZIP ZUR EFFEKTIVEN DATA GOVERNANCE HAGEN TITTES BEST PRACTICE: VOM GIEßKANNEN-PRINZIP ZUR EFFEKTIVEN DATA GOVERNANCE HAGEN TITTES Das Unternehmen Das Unternehmen Vorwerk: seit seiner Gründung 1883 ein Familienunternehmen Geschäftsvolumen 2013: 3,1 Milliarden

Mehr

Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr.

Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr. v Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr. Gerhard Satzger Agenda 1. Wie sieht die erfolgreiche Finanzfunktion von morgen aus?

Mehr

Oktober 2014 PRODUKTENTWICKLUNG. Dr. Ralf Lauterbach

Oktober 2014 PRODUKTENTWICKLUNG. Dr. Ralf Lauterbach PRODUKTENTWICKLUNG Dr. Ralf Lauterbach Produktentwicklung digitaler Produkte - was ist zu tun? - Generelle Aufgaben bei jeder digitalen Produktentwicklung Produktmanagement Marktanalysen Markteingangsstrategie

Mehr

Agilität selbst erfahren. Agile Softwareentwicklung in der Praxis: Jetzt bewerben für das erste Agile Code Camp 2013!

Agilität selbst erfahren. Agile Softwareentwicklung in der Praxis: Jetzt bewerben für das erste Agile Code Camp 2013! Agilität selbst erfahren. Agile Softwareentwicklung in der Praxis: Jetzt bewerben für das erste Agile Code Camp 2013! Sie wollen alles über agile Softwareentwicklung wissen? Wie können Sie agile Methoden

Mehr

BI - Der strategische Erfolgsfaktor im Unternehmen

BI - Der strategische Erfolgsfaktor im Unternehmen BI - Der strategische Erfolgsfaktor im Unternehmen Kunde: Universität Oldenburg, Department für Informatik Ort: Oldenburg, 26.09.2008 Referent: Dirk Vahlkamp Gedruckt: 28.09.2008, [Version 0.1] 2007-2008

Mehr

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community Bei den Seminaren der Oracle Data Warehouse Gruppe steht die Wissenvermittlung im Vordergrund. Die Themen werden anhand

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage

big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage Verlag Franz Vahlen München 2014 Verlag Franz Vahlen im Internet: www.vahlen.de ISBN

Mehr

PROZESSCONTROLLING MIT MICROSOFT TOOLS

PROZESSCONTROLLING MIT MICROSOFT TOOLS PROZESSCONTROLLING MIT MICROSOFT TOOLS AGENDA In eigener Sache Processcontrolling mit Office Demo Excel Maps Processcontrolling mit SQL Server Rolle von SharePoint 2013 Demo Praxisbeispiel Einkaufsprozess

Mehr

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers.

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers. Business und IT. Ein Team. Aus Sicht eines Retailers. Hier steht ein Bild randabfallend. Wenn kein Bild vorhanden ist, bitte Folie 2 benutzen. IT-Services Club of Excellence. Das CIO Forum der IBM vom

Mehr

BOARD Deutschland GmbH

BOARD Deutschland GmbH BOARD Deutschland GmbH Roger Schymik Senior PreSales Consultant BOARD Deutschland GmbH Better decisions. Better business. Der Wendepunkt WETTBEWERBSFÄHIGKEIT BI & CPM WENDEPUNKT Entscheidungs -effektivität

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Inhalt 1. Unternehmensportrait 2. Ausgangssituation 3. Aufgabenstellung 4.

Mehr

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm Open Source BI Trends 11. Dezember 2009 Wien Konstantin Böhm Profil Folie 2 JAX 2009 11.12.2009 Gründung 2002, Nürnberg 50 Mitarbeiter Innovative Kunden Spezialisiert auf Open Source Integration Open Source

Mehr

Produktionscontrolling auf dem Weg zur Industrie 4.0

Produktionscontrolling auf dem Weg zur Industrie 4.0 Produktionscontrolling auf dem Weg zur Industrie 4.0 Intelligente Produktion durch Real-Time-Big-Data-Analyse von Sensordaten & Bern, 27.05.2016 Jörg Rieth Jedox vereinfacht Planung, Reporting & Analyse

Mehr

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP)

MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) MOBILE ENTERPRISE APPLICATION PLATFORM (MEAP) Oliver Steinhauer.mobile PROFI Mobile Business Agenda MOBILE ENTERPRISE APPLICATION PLATFORM AGENDA 01 Mobile Enterprise Application Platform 02 PROFI News

Mehr

Leistungssteuerung beim BASPO

Leistungssteuerung beim BASPO Leistungssteuerung beim BASPO Organisationsstruktur Advellence die Gruppe. Advellence Consulting Advellence Solutions Advellence Products Advellence Services HR-Migrator & albislex powered byadvellence

Mehr

SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management. Anke Noßmann Syncwork AG

SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management. Anke Noßmann Syncwork AG SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management Anke Noßmann Syncwork AG SAP HERUG Partnertag, Berlin 06. November 2009 Inhalt 1. Ausgangssituation 2. Alternative

Mehr

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition BI für Jedermann Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition Wolfgang Rütter Bereichsleiter Informationssysteme OPITZ CONSULTING Gummersbach GmbH 1 Warum BI für Jedermann? 1. Historie

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

1 + 1 = mehr als 2! Geschwindigkeit, Transparenz und Sicherheit

1 + 1 = mehr als 2! Geschwindigkeit, Transparenz und Sicherheit Seite 1 objective partner 1 + 1 = mehr als 2! Sicherheit Effiziente Prozesse mit SAP Seite 2 objective partner AG Gründung: 1995 Mitarbeiterzahl: 52 Hauptsitz: Weinheim an der Bergstraße Niederlassungen:

Mehr

Bessere Daten durch Stammdatenmanagement

Bessere Daten durch Stammdatenmanagement make connections share ideas be inspired Bessere Daten durch Stammdatenmanagement Mit SAS MDM, bessere Stammdaten für operativen Systeme make connections share ideas be inspired Overview Mit SAS MDM bessere

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

IT mit klarer Linie. C R M - M i g r a t i o n. informatik ag. www.ilume.de. ilum:e informatik ag. Customer Relationship Management Migration

IT mit klarer Linie. C R M - M i g r a t i o n. informatik ag. www.ilume.de. ilum:e informatik ag. Customer Relationship Management Migration informatik ag IT mit klarer Linie C R M - M i g r a t i o n www.ilume.de ilum:e informatik ag Customer Relationship Management Migration Vertrieb & Vertriebssteuerung Business Intelligence Siebel Beratung

Mehr