Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern."

Transkript

1 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der Plattenkondensator, der aus zwei großen parallelen leitenden Platten besteht. Wird der Plattenkondensator mit einer Spannungsquelle verbunden, so fließt Ladung auf die Kondensatorplatten, bis die Spannung zwischen den Kondensatorplatten gleich der Spannung der Quelle ist. Die geflossene Ladung Q ist proportional zur angelegten Spannung U. Die Proportionalitätskonstante ist die Kapazität des Kondensators. Q = U Einheit der Kapazität ist das Farad: 1 F = 1 /V Q Q U

2 Das Feld eines Plattenkondensators Denken wir uns zunächst das Feld einer negativ und einer positiv geladenen Platte, die unendlich ausgedehnt sein sollen. Man erkennt, dass sich das Feld in den Außenbereichen aufhebt, während es sich zwischen den Kondensatorplatten verstärkt. Wenn die Platten genau parallel stehen und unendlich groß sind, hat das Feld zwischen den Platten überall gleichen Betrag und Richtung. Man spricht dann von einem homogenen Feld.

3 Klemmt man den Plattenkondensator nach dem Ladevorgang von der Spannungsquelle ab und verändert dann den Abstand der Platten, so verändert sich auch die Spannung U. Man findet, dass die Spannung proportional zum Abstand d der Platten ist. Da die Ladung Q auf den Platten konstant bleibt, muss die Kapazität umgekehrt proportional zum Abstand sein. Für die Kapazität des Plattenkondensators gilt Q U = = ε0 A d Hier ist es praktischer, die Dielektrizitätskonstante ε 0 in anderen Einheiten anzugeben: ε 0 = 8, F/m. Beim Verändern des Plattenabstandes bei abgeklemmter Spannungsquelle (Q also konstant) ändern sich weder Zahl noch Dichte der elektrischen Feldlinien, die Feldstärke E bleibt also konstant. Es gilt folgender Zusammenhang: E = U d

4 Die Energie des Plattenkondensators Zum Aufladen eines Plattenkondensators muss Arbeit verrichtet werden. Diese steckt dann als potentielle elektrische Energie im Plattenkondensator. Befindet sich bereits die Ladung q auf dem Kondensator, so wird durch Hinzufügen einer weiteren Ladung dq die potentielle Energie um dw erhöht. Es gilt dw = Udq = q dq dq q q Die gesamte Energie des Kondensators erhält man durch Integration: Q 2 q 1 Q 1 W = dq = = QU = U 2

5 Beispiel: Vergleichen Sie die Energie des Plattenkondensators bevor und nachdem der Abstand der Platten bei abgeklemmter Spannungsquelle verdoppelt wurde. Für die Energie des Plattenkondensators gilt 1 W = QU = 2 QEd Da die Ladung nach dem Abklemmen der Spannungsquelle konstant ist, hat sich die Energie nach dem verdoppeln des Plattenabstandes ebenfalls verdoppelt. Woher kommt diese Energie? 1 2

6 16.2 Dielektrika Führt man einen Isolator in das Feld eines Plattenkondensator mit Spannung U 0, Feldstärke E 0 und Kapazität 0 ein, so polarisieren sich die Moleküle des Isolators. Dies führt dazu, dass sich das Feld im Innern des Isolators abschwächt. Man nennt den Isolator auch Dielektrikum. Für das Feld im Innern des Dielektrikums gilt: mit der Dielektrizitätszahl ε r >1 E 0 E = E 0 ε E 0 E E 0 r

7 Entsprechend folgt für die Spannung: U = Ed = E ε 0d U0 r = ε r Und damit für die Kapazität: Q Q = ε U = U / ε = Q r 0 r U0 bzw. = ε = ε ε r 0 0 r A d Die Dielektrizitätszahl ε r ist eine Materialkonstante. Sie ist im Vakuum gleich eins. Luft: ε r = 1,00059 Plexiglas: ε r = 3,4 Porzellan: ε r = 7 Durch Verwendung eines Dielektrikums lässt sich die Kapazität eines Kondensators also erheblich steigern.

8 Beispiel: Welche Ladung fließt beim Einführen des Dielektrikums (ε r = 3), wenn der Kondensator an der Spannungsquelle U = 12 V angeschlossen bleibt? Es seien A = 10 2 m 2, d = 0,01 m.

9 16.3 Zusammenschaltung mehrerer Kondensatoren Für einen Kondensator in einem Schaltkreis verwendet man folgendes Symbol: Bei der Parallelschaltung von Kondensatoren addieren sich die Kapazitäten: ges = 1 2 K 1 2 Bei der Reihenschaltung addieren sich die Kehrwerte der Kapazitäten zum Kehrwert der Gesamtkapazität: 1 ges = K 1 2 Dies ist aus geometrischen Argumenten plausibel: Bei der Parallelschaltung addieren sich die Flächen, bei der Reihenschaltung die Abstände.

10 Beispiel: Welche Gesamtkapazitäten ergeben sich bei der Reihen bzw Parallelschaltung zweier Kondensatoren mit Kapazitäten 20 μf und 30 μf?

11 16.4 R Kreise Entladen Wir betrachten einen R Kreis, der einen Kondensator und einen Widerstand enthält. R Wurde der Kondensator vorher geladen, so liegt an ihm die Spannung U 0 = Q 0 / an. Durch Schließen des Schalters wird der Kondensator über den Widerstand entladen. Zum Zeitpunkt t = 0 liegt dann am Widerstand die Spannung U 0 an, und es fließt ein Strom I 0 = U 0 /R = Q 0 /R. Dieser Strom wird jedoch nicht zeitlich konstant sein, da die Ladung und damit die Spannung am Kondensator abnimmt. Die Maschenregel besagt, dass zu jedem Zeitpunkt gelten muss: Q( t) I( t) R = 0

12 Setzen wir dq( t) I( t) = dt so erhalten wir folgende Differentialgleichung Q( t) R dq( t) dt = 0 dq( t) dt = 1 R Q( t) Diese DGL lässt sich einfach lösen und wir erhalten für das zeitliche Verhalten der Ladung am Kondensator: Q( t) = Q t / R t /τ 0 e = Q0 e Die Ladung auf dem Kondensator nimmt also exponentiell ab. Das Produkt aus R und ist die charakteristische Zeitkonstante τ des RKreises.

13 Durch Ableiten nach der Zeit erhält man für die Stromstärke: I( t) = Q R 0 t / R e t /τ e = I0 Auch die Stromstärke nimmt demnach exponentiell mit der Zeit ab. Q(t) Q 0 I(t) I 0 = Q 0 /R t t

14 Aufladen Durch Schließen des Schalters wird der ursprünglich ungeladene Kondensator aufgeladen. Wie der Entladestrom ist auch der Ladestrom nicht zeitlich konstant. Für den Ladestrom I(t) und die Ladung Q(t) am Kondensator erhält man: U R I( t) = U R e t / R = I 0 e t /τ Q( t) = U ( 1 e ) = Q ( 1 e t / R t / τ e ) I(t) I 0 = U/R Q(t) Q e t t

15 17. Magnetismus Das Phänomen des Magnetismus ist seit der Antike bekannt. So genannte Permanentmagnete üben eine anziehende Kraft auf bestimmte Materialien aus, z.b. Eisen. Permanentmagnete besitzen einen Nordund einen Südpol, an denen die magnetische Kraft am größten ist. Betrachtet man zwei Permanentmagnete, so findet man, dass sich ungleichnamige Pole anziehen, während sich gleichnamige Pole abstoßen. Hier ist allerdings ein wichtiger Unterschied zur elektrischen Ladung festzuhalten: elektrische Ladungen können isoliert vorliegen, während magnetische Pole immer paarweise auftreten. Es ist bis heute nicht gelungen, magnetische Monopole nachzuweisen. Für die Quellen der elektrischen und magnetischen Kraft gilt folgendes: die Quellen der elektrischen Kraft sind elektrische Ladungen. die Quellen der magnetischen Kraft sind elektrische Ströme.

16 17.1 Das magnetische Feld In Analogie zum elektrischen Feld E wollen wir das magnetische Feld B einführen, das die Stärke der magnetischen Kraft charakterisiert. Die magnetische Kraft F L auf eine mit der Geschwindigkeit v bewegte Ladung ist gegeben durch F = qv B Dies ist die so genannte LorentzKraft. Wir halten fest: Die LorentzKraft auf eine bewegte Ladung wirkt senkrecht zu der von v und B aufgespannten Ebene (RechteHandRegel!). Der Betrag der LorentzKraft ist proportional zur Geschwindigkeit der Ladung, sie ist null, wenn die Ladung in Ruhe ist. Die SIEinheit für das Magnetfeld B ist das Tesla (T). Es gilt L 1T = 1 N/ m/s N = 1 A m Üblich ist auch das Gauss (G): 1 T = 10 4 G

17 Beispiel: LorentzKraft auf geladene Elementarteilchen im Magnetfeld Nehmen wir an, das Magnetfeld steht senkrecht zur Bildebene. Dann bewegen sich die Teilchen in der Projektion auf Kreisbahnen, weil die Lorentzkraft stets senkrecht zur Bewegungsrichtung wirkt. Die Lorentzkraft ist gleichzusetzen mit der Zentripetalkraft: F = qvb = v m r 2 mv = qbr bei gegebenen q und B ist der Radius proportional zum Impuls.

18 17.2 Kraft auf einen stromdurchflossenen Leiter Wir können die Definition der Lorentzkraft benutzen, um die Kraft zu berechnen, die auf einen stromdurchflossenen Leiter im Magnetfeld wirkt. Im stromdurchflossenen Leiter bewegt sich die Ladungsmenge dq im Zeitintervall dt ein Stück dl entlang des Leiters. Das Verhältnis dl/dt ist also die Geschwindigkeit v der Ladungsträger im Leiter. Man erhält somit für die Kraft auf den Leiter: dl d F = dq B = I dl B dt Dies ist die Kraft df, die auf ein stromdurchflossenes Leiterstück der Länge dl im Magnetfeld B wirkt. Um die Gesamtkraft F zu erhalten, die auf einen Leiter der Länge l wirkt, muss man die Gleichung integrieren, wenn sich die Orientierung des Leiters zum Magnetfeld entlang l ändert. Ist die Orientierung dagegen konstant, ergibt sich F = I l B

19 17.3 Magnetische Feldlinien Ähnlich wie das elektrische Feld kann man auch das magnetische Feld B anhand von Feldlinien veranschaulichen. Auch für das Magnetfeld gilt: Die Richtung des Feldes ist durch die Richtung der Feldlinien gegeben. Die Dichte der Feldlinien zeigt die Stärke des Magnetfeldes an. Es gibt aber wichtige Unterschiede zum elektrischen Feld: Elektrische Feldlinien beginnen und enden auf elektrischen Ladungen. Da es keine magnetischen Monopole gibt, sind magnetische Feldlinien immer geschlossen. Elektrische Feldlinien zeigen in Richtung der wirkenden Kraft. Die Kraft eines Magnetfeldes wirkt hingegen senkrecht zur Ebene, die von Feld und Bewegungsrichtung der Ladung aufgespannt wird.

20 17.4 Das Amperesche Gesetz Wie bereits erwähnt sind elektrische Ströme die Quellen des Magnetfeldes. Ein unendlich langer gerader Leiter erzeugt ein Magnetfeld, dessen Feldlinien konzentrische Kreise um den Leitermittelpunkt bilden. Für das Magnetfeld gilt das Amperesche Gesetz: B d l = μ I 0 B μ 0 ist die magnetische Feldkonstante des Vakuums. Ihr Zahlenwert ist: I 7 μ0 = 4π 10 Tm/A = 4π N/A Die Aussage des Ampereschen Gesetzes ist folgende: Das Integral über das Magnetfeld B entlang einer geschlossenen Kurve ist proportional zum elektrischen Strom, der durch diese Kurve tritt.

21 Das Amperesche Gesetz hat allgemeine Gültigkeit, gilt also für beliebige Stromverteilungen und Magnetfelder. Für einfache Geometrien kann es benutzt werden, um die Magnetfeldstärke zu berechnen. Ein solcher einfacher Fall ist ein unendlich langer gerader Leiter. Wir wollen das Magnetfeld im Abstand r vom Leitermittelpunkt berechnen. Dazu wählen wir als Integrationsweg zweckmäßigerweise einen Kreis um den Leitermittelpunkt, da das Magnetfeld entlang dieses Kreises einen konstanten Betrag hat und stets tangential zum Kreis orientiert ist. Deshalb kann man es vor das Integral ziehen. B dl = B dl = μ0i B dl Die Auswertung des Integrals ergibt den Kreisumfang 2πr, so dass wir für das Magnetfeld eines unendlich langen, geraden stromdurchflossenen Leiter erhalten: B μ0 I = 2π r I r

22 17.5 Magnetfeld einer Spule Eine Spule ist ein Draht, der zu einer Helix aufgewickelt wurde. Wird die Spule von Strom durchflossenen, so überlagern sich die Magnetfelder der einzelnen Wicklungen zu einem resultierenden Feld, das im Innern der Spule weitgehend homogen ist. Daher haben Spulen große technische Bedeutung bei der Erzeugung von Magnetfeldern. Das Magnetfeld im Innern einer vom Strom I durchflossenen Spule mit n Wicklungen und Länge l beträgt n B = μ I 0 l

23 Beispiel: Berechnen Sie das Magnetfeld einer Spule mit l = 20 cm, und 600 Windungen, die von einem Strom I = 4 A durchflossen wird.

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst. I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Elektrische und Magnetische Felder

Elektrische und Magnetische Felder Q1 LK Physik s6dea Themen für Kursarbeit Nr.2 am 6.12.2016 Elektrische und Magnetische Felder Statische elektrische Felder, Kondensatoren Zusammenhang zwischen Ladung und Stromstärke elektrische Energie

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

2. Elektrisches Feld 2.2 Elektrostatisches Feld

2. Elektrisches Feld 2.2 Elektrostatisches Feld Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld?

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld? Elektrisches Feld 1. a) Was versteht man unter einem elektrischen Feld? b) Zwei Metallplatten, die mit der Ladung + Q bzw. Q aufgeladen sind, stehen sich parallel gegenüber. Zeichne das Feldlinienbild

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Aufgabensammlung zu Kapitel 2

Aufgabensammlung zu Kapitel 2 Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Inhaltsverzeichnis Elektrostatik

Inhaltsverzeichnis Elektrostatik Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Physikalische Anwendungen Elektrotechnik

Physikalische Anwendungen Elektrotechnik Physikalische Anwendungen Elektrotechnik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Experimentalphysik II Strom und Magnetismus

Experimentalphysik II Strom und Magnetismus Experimentalphysik II Strom und Magnetismus Ferienkurs Sommersemester 2009 Martina Stadlmeier 08.09.2009 Inhaltsverzeichnis 1 Der elektrische Strom 2 1.1 Stromdichte................................. 2

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Marlene Marinescu. Elektrische und magnetische Felder

Marlene Marinescu. Elektrische und magnetische Felder Marlene Marinescu Zusätzliche Aufgaben mit ausführlichen Lösungen zu dem Buch Elektrische und magnetische Felder Eine praxisorientierte Einführung 2., bearbeitete Auflage Inhaltsverzeichnis 1 Elektrostatische

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr