Satz 25 A sei eine (n n)-matrix über K

Größe: px
Ab Seite anzeigen:

Download "Satz 25 A sei eine (n n)-matrix über K"

Transkript

1 Satz 25

2 Satz 25 A sei eine (n n)-matrix über K

3 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m.

4 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar,

5 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt,

6 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A =

7 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km,

8 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t)

9 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix

10 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0.

11 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =.

12 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen,

13 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar,

14 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1.

15 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t... λ m t½

16 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). λ m t... λ m t½

17 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, λ m t... λ m t½

18 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass P(A) =... λ m t½

19 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass P(A) = B P(Λ) B 1 =... λ m t½

20 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ m)½ B 1 P(λ λ m t½

21 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ... P(λ m)½ B... λ m t½ 1 = B0B 1

22 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ... P(λ m)½ B... λ m t½ 1 = B0B 1 = 0.

23 Beweis =

24 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) =

25 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0,

26 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A.

27 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V:

28 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 :=

29 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 :=

30 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u)

31 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u)

32 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

33 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

34 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

35 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au

36 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au

37 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

38 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

39 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

40 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 :=

41 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 }

42 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u)

43 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u)

44 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

45 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

46 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

47 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u

48 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 :=

49 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 :=

50 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u)

51 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u)

52 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

53 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

54 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

55 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } =

56 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.

57 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }..

58 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m :=.

59 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 :=.

60 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 := {v V s.d. v = f m(u).

61 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 := {v V s.d. v = f m(u).

62 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

63 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

64 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

65 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V }

66 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u

67 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u

68 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

69 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

70 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

71 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }. dim(v 1 )

72 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }. dim(v 1 ) Dimensionsformel =

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

2 Durchschnitt und Verbindungsraum

2 Durchschnitt und Verbindungsraum 2 Durchschnitt und Verbindungsraum Seien X und Y nicht leere affine Unterräume des R n (21) Satz: a) Ist X Y, so ist T(X) T(Y ) b) Ist X Y φ so ist X Y ein affiner Raum mit Richtungsvektorraum T(X) T(Y

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

1 Wiederholung LA. 1.1 Vektorräume

1 Wiederholung LA. 1.1 Vektorräume 1 Wiederholung LA 1.1 Vektorräume Definition der Vektorräume über einem Körper K (siehe Fischer). Beispiele für Vektorräume sind: Der Vektorraum der Parallelverschiebungen des Anschauungsraumes. M(m n,

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

2 Lösungen "Peptide de novo Sequencing"

2 Lösungen Peptide de novo Sequencing Lösungen "Peptide de novo Sequencing". Algorithm : PeptideSequencingOnlySux Input: a spectrum M with array of masses M = {m, m,, m n }, Σ, µ : Σ R >0 Output: the peptide string of the spectrum begin peptide

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Literatur zu geometrischen Konstruktionen

Literatur zu geometrischen Konstruktionen Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK) TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Urbild Angriff auf Inkrementelle Hashfunktionen

Urbild Angriff auf Inkrementelle Hashfunktionen Urbild Angriff auf Inkrementelle Hashfunktionen AdHash Konstruktion: (Bellare, Micciancio 1997) Hashe Nachricht x = (x 1,..., x k ) als H(x) = k i=1 h(i, x i) mod M. Inkrementell: Block x i kann leicht

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr