Satz 25 A sei eine (n n)-matrix über K

Größe: px
Ab Seite anzeigen:

Download "Satz 25 A sei eine (n n)-matrix über K"

Transkript

1 Satz 25

2 Satz 25 A sei eine (n n)-matrix über K

3 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m.

4 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar,

5 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt,

6 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A =

7 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km,

8 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t)

9 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix

10 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0.

11 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =.

12 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen,

13 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar,

14 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1.

15 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t... λ m t½

16 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). λ m t... λ m t½

17 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, λ m t... λ m t½

18 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass P(A) =... λ m t½

19 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass P(A) = B P(Λ) B 1 =... λ m t½

20 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ m)½ B 1 P(λ λ m t½

21 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ... P(λ m)½ B... λ m t½ 1 = B0B 1

22 Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Dann gilt: A ist g.d. diagonalisierbar, wenn ℵ A in Linearfaktoren zerfällt, also ℵ A = (λ 1 t) k1...(λ m t) km, und das Polynom P = (λ 1 t)...(λ m t) annihiliert die Matrix A: P(A) = 0. Beweis =. Angenommen, die Matrix ist diagonalisierbar, also A = BΛB 1. Aus Satz 22 folgt, dass ℵ A in Linearfaktoren zerfällt. Wir wiederholen den Beweis. ℵ Λ = det ¼ λ 1 t... λ 1 t... λ m t = (λ 1 t) geo A(λ 1)...(λ m t) geo A(λ m). Zum aufwärmen haben wir gezeigt, dass 1) P(A) = B P(Λ) B 1 = B¼ P(λ... P(λ m)½ B... λ m t½ 1 = B0B 1 = 0.

23 Beweis =

24 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) =

25 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0,

26 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A.

27 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V:

28 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 :=

29 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 :=

30 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u)

31 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u)

32 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

33 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

34 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } =

35 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au

36 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au

37 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

38 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

39 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 :=

40 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 :=

41 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 }

42 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u)

43 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u)

44 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

45 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

46 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V }

47 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u

48 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 :=

49 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 :=

50 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u)

51 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u)

52 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

53 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

54 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } =

55 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } =

56 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.

57 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }..

58 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m :=.

59 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 :=.

60 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 := {v V s.d. v = f m(u).

61 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }. V m := Bild fm Vm 1 := {v V s.d. v = f m(u).

62 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

63 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

64 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 }

65 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V }

66 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u

67 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u

68 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

69 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

70 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }.

71 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }. dim(v 1 )

72 Beweis = Angenommen, P(A) = (λ m Id A)...(λ 1 Id A) = 0, ist also Produkt von Linearfaktoren. Sei f i : V V die lineare Abbildung mit Matrix λ i Id A. Betrachte die folgende Untervektorräume von V: V 1 := Bild f1 := {v V s.d. v = f 1 (u) für irgendeinen u V } = {λ 1 u Au für alle u V }. V 2 := Bild f2 V 1 := {v V s.d. v = f 2 (u) für irgendeinen u V 1 } = {v V s.d. v = f 2 f 1 (u) für irgendeinen u V } = {(λ 2 Id A)(λ 1 Id A)u für alle u V }. V 3 := Bild f3 V 2 := {v V s.d. v = f 3 (u) für irgendeinen u V 2 } = {v V s.d. v = f 3 f 2 f 1 (u) für irgendeinen u V } = {(λ 3 Id A)(λ 2 Id A)(λ 1 Id A)u für alle u V }.. V m := Bild fm Vm 1 := {v V s.d. v = f m(u) für irgendeinen u V m 1 } = {v V s.d. v = f m... f 1 (u) für irgendeinen u V } = {P(A)u für alle u V }. dim(v 1 ) Dimensionsformel =

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Information & Kommunikation - Zusammenfassung

Information & Kommunikation - Zusammenfassung Information & Kommunikation - Zusammenfassung Patrick Pletscher 29 September 2004 Grundlagen der Informationstheorie Entropie als Mass für Unsicherheit Definition der Entropie Die Entropie einer diskreten

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

3. Das Auslastungsspiel

3. Das Auslastungsspiel Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp. 65 67. 1973. D. S. Johnson, Chr. H. Papadimitriou,

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08 CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Endliche Körper und Codierung

Endliche Körper und Codierung Endliche Körper und Codierung Manfred Madritsch Institut für Mathematik A Technische Universität Graz Version: SS 2010 Achtung: Bitte Anregungen und Fehler per Email an die Adresse madritsch@tugraz.at

Mehr

4 Runge-Kutta-Verfahren

4 Runge-Kutta-Verfahren Numerik gewöhnlicher Differentialgleichungen 43 4 Runge-Kutta-Verfahren 4. Konstruktion Ausgangspunkt wie immer (Substitution: s = t + τh, 0 τ ) y(t + h) = y(t) + [y(t + h) y(t)] = y(t) + = y(t) + h 0

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

AWINFGN - Diplom-Wirtschaftsinformatiker/in (FH) Aufbaustudiengang

AWINFGN - Diplom-Wirtschaftsinformatiker/in (FH) Aufbaustudiengang 1. Semester EFS11 - Einführungsseminar Studienorganisation HS Leipzig Sa, 14.07.2012 08:30-12:30 07.07.2012 Sa, 01.09.2012 08:30-12:30 25.08.2012 Sa, 03.11.2012 08:30-12:30 27.10.2012 HS Pinneberg Sa,

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Microcontroller Kurs. 08.07.11 Microcontroller Kurs/Johannes Fuchs 1

Microcontroller Kurs. 08.07.11 Microcontroller Kurs/Johannes Fuchs 1 Microcontroller Kurs 08.07.11 Microcontroller Kurs/Johannes Fuchs 1 Was ist ein Microcontroller Wikipedia: A microcontroller (sometimes abbreviated µc, uc or MCU) is a small computer on a single integrated

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Besser sehen, besser hören! Fehlerkorrigierende Codes

Besser sehen, besser hören! Fehlerkorrigierende Codes Besser sehen, besser hören! Fehlerkorrigierende Codes Ringvorlesung Technische Mathematik 20. Mai 2010 Hermann Kautschitsch Institut für Mathematik Universität Klagenfurt Vorwort Der stetig zunehmende

Mehr

3.00 TYP [76.2] .75 TYP [9.1] 1.50 [38.1] Bestellbeispiel: (Zubehör bitte separat bestellen) GRUNDMODELL .63 [16.0]

3.00 TYP [76.2] .75 TYP [9.1] 1.50 [38.1] Bestellbeispiel: (Zubehör bitte separat bestellen) GRUNDMODELL .63 [16.0] AUFBAUEINHEIT DMM-25-01 5.26 DMM-25-01 - X.XX Min: 19,05 cm AUFBAUEINHEIT DMM-25-02 "Y" 15.00 [381] LC 5.27 MASS Y Min: 0,00 cm Max: 15,24 cm DMM-25-02 - X.XX - X.XX Min: 7,62 cm Max: 15,24 cm AUFBAUEINHEIT

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Codierungstheorie und Kryptographie

Codierungstheorie und Kryptographie Codierungstheorie und Kryptographie Udo Hebisch SS 2015 Dieses Skript enthält nur den roten Faden der Vorlesung. Wesentliche Inhalte werden ausschließlich in der Vorlesung vermittelt. Daher ist dieses

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Gitter und Codes. SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer

Gitter und Codes. SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer Gitter und Codes SS 2007 Prof. Dr. G. Nebe, Dr. M. Künzer In dieser Vorlesung werden Grundlagen, schöne Beispiele und Ergebnisse der kombinatorischen und geometrischen Theorie von Gittern und einige Analoga

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

CPU (Prozessor), Festplatte, Grafikkarte, Soundkarte, diverse Schnittstelle (USB, COM, SERIELL), Arbeitsspeicher (RAM), ROM, CD/DVD-Laufwerk

CPU (Prozessor), Festplatte, Grafikkarte, Soundkarte, diverse Schnittstelle (USB, COM, SERIELL), Arbeitsspeicher (RAM), ROM, CD/DVD-Laufwerk FRAGEKATALOG Informatik BAKIP HARDWARE Frage 01: Im inneren eines Computergehäuses befindet sich unter anderem das Mainboard. Welche Komponenten sind an diesem Mutterbrett angeschlossen bzw. verbaut? Nenne

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad DIPLOMARBEIT Titel der Diplomarbeit Die Golay Codes Verfasser Daniel Eiwen angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat) Wien, im Mai 2008 Studienkennzahl lt. Studienblatt:

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr