Nichtlineare Gleichungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Nichtlineare Gleichungen"

Transkript

1 Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f. Ist f(x) ein Polynom, so heißt die Gleichung () algebraisch, ansonsten transzendent. Da man nur selten eine Lösung von () in endlich vielen Schritten explizit berechnen kann, ist man im allg. auf Näherungsmethoden (Einschlußverfahren, Iterationsverfahren) angewiesen. Das Bisektionsverfahren (Intervallhalbierung) Ist f stetig auf [a, b] und haben f(a) und f(b) entgegengesetzte Vorzeichen (f(a)f(b) < ), so existiert nach dem Zwischenwertsatz mindestens ein ξ (a, b) mit f(ξ) =. Man halbiert nun das Intervall [a, b] und stellt über das Vorzeichen von f am Mittelpunkt fest, ob die gesuchte Nullstelle in der linken oder in der rechten Hälfte des Ausgangsintervalls zu finden ist. Man behält jene Hälfte, auf der das Vorzeichen von f wechselt. Dieses Verfahren wird fortgesetzt, bis eine Nullstelle im Inneren eines hinreichend kleinen Intervalls liegt:. x i+ := a i + b i : i =,,,... und a = a, b = b. falls f(a i )f(x i+ ) < : setze a i+ = a i und b i+ = x i+ andernfalls : setze a i+ = x i+ und b i+ = b i 3. falls b i+ a i+ tol : Abbruch andernfalls : gehe zu Schritt Nach n Halbierungen liegt eine Nullstelle ξ sicher in einem Intervall der Länge (b a)/ n, und man erhält die Fehlerabschätzung ɛ n := x n ξ (b a)/ n. Damit ist ɛ n+ ɛ n. Pro Iterationsschritt verkleinert sich der Fehler um einen konstanten Faktor. Es werden also stets etwa gleich viele Iterationsschritte benötigt, um den Fehler auf einen bestimmten Bruchteil zu reduzieren: Man sagt, das Verfahren sei linear konvergent. Wegen / = /4 3 gilt die Faustregel, daß man mit je Halbierungsschritten etwa 3 Dezimalstellen an Genauigkeit für die Lösung gewinnt. Vorteile : Konvergenz ist garantiert nur Funktionsauswertung pro Iteration Nachteile : relativ langsame Konvergenz funktioniert nur für D-Probleme

2 f(b) a ξ b f(a) x a b x a b x 3 a b a 3 b 3 Abbildung : Bisektionsverfahren.

3 Fixpunktiteration (Methode der sukzessiven Approximation) Hier wird das Nullstellenproblem f(x) = in ein äquivalentes Fixpunktproblem x = ϕ(x) () mit einer geeigneten Iterationsfunktion ϕ umformuliert. Jede Nullstelle ξ von f(x) ist dann ein Fixpunkt von ϕ(x), also eine Stelle ξ, welche durch ϕ auf sich selbst abgebildet wird (fix bleibt). Anschaulich beschreibt () die Schnittpunkte von y(x) = x mit ϕ(x). Bei der Wahl von ϕ hat man gewisse Freiheiten, eine kann zum Erfolg, eine andere zum Scheitern führen. Ausgehend von einem geeigneten Startwert x wird mit der Iterationsvorschrift x i+ := ϕ(x i ) (3) für i =,,,... eine Folge {x i } von Näherungswerten berechnet, von der man hofft, daß sie gegen die gesuchte Lösung ξ konvergiert. Beispiel: Ist etwa die Gleichung f(x) := x cos x = zu lösen, so liegt es nahe, die Iterationsvorschrift x i+ = cos x i, also ϕ(x) := cos x zu verwenden. Man erhält eine alternierend konvergente Folge {x i } von Näherungswerten an ξ (die Iteration verläuft in einem Käfig ). Diese Iteration läßt sich leicht auf einem Taschenrechner durch wiederholtes Drücken der cos-taste erzeugen: Egal, mit welchem Wert man beginnt, nach einigen Schritten erscheint immer die gleiche Zahl. x x 3 ξ x x π/ Abbildung : Iterationskäfig für ϕ(x) = cos x. 3

4 Bezüglich der Konvergenz des Iterationsverfahrens liefert der folgende Kontraktionssatz eine hinreichende Konvergenzbedingung: Kontraktionssatz (Fixpunktsatz von Banach) Ist ϕ : I I eine kontrahierende Selbstabbildung eines abgeschlossenen Intervalls I in sich mit ϕ(x) ϕ(y) L x y x, y I und einer Kontraktionskonstante (Lipschitz-Konstante) L <, so gilt: (a) (b) ϕ besitzt in I genau einen Fixpunkt ξ = ϕ(ξ). Die Iterationsfolge x i+ = ϕ(x i ) konvergiert für jeden Startwert x I gegen ξ. (c) (d) Es gilt die (a priori) Fehlerabschätzung x n ξ Ln L x x. Das Verfahren konvergiert zumindest linear, d.h. ɛ n+ L ɛ n. Anmerkungen: Da I sehr klein sein kann, hat der Kontraktionssatz oft nur lokalen Charakter, d.h. für eine Konvergenz des Verfahrens muß der Startwert x hinreichend nahe bei der Lösung ξ liegen. ϕ ist auf I genau dann eine Kontraktion, wenn ϕ (x) < für alle x I gilt (Mittelwertsatz der Differentialrechnung): ϕ < : {x i } konvergiert monoton (Abbildung 3). < ϕ < : {x i } konvergiert alternierend (Abbildung ). Das Iterationsverfahren kann leicht auf n-dimensionale Probleme (d.h. auf Systeme von nichtlinearen Gleichungen) verallgemeinert werden. Rundungsfehler werden beim Iterationsverfahren nicht akkumuliert. Das Verfahren vergißt die früheren Rundungsfehler, da jeder Schritt als ein erster Schritt angesehen werden kann. 4

5 3 x x x x 3 ξ.5 3 Abbildung 3: Monotone Konvergenz x x 4 x 7 Abbildung 4: Monotone Divergenz. 4 3 x 3 x 5 x ξ x x x 4 4 Abbildung 5: Alternierende Divergenz. 5

6 Das Newton-Verfahren Die Funktion f sei genügend oft stetig differenzierbar und besitze im Intervall (a, b) eine einfache Nullstelle ξ, d.h. f(ξ) = und f (ξ). Sei x i schon eine gute Näherung für eine Nullstelle ξ. Um zu einer besseren Näherung zu gelangen, ersetzt man die (nichtlineare) Funktion f durch ihre Tangente im Punkt (x i, f(x i )), t(x) := f(x i ) + f (x i )(x x i ), (4) und nimmt die Nullstelle von t(x) als neue Näherung x i+ für ξ (Abbildung 6): = f(x i ) + f (x i )(x i+ x i ). Dies führt für i =,,,... auf die Iterationsvorschrift (Newton-Raphson-Verfahren) x i+ := x i f(x i) f (x i ). (5) f(x) t(x) ξ x i+ x i Abbildung 6: Newton-Verfahren. t(x) in Gleichung (4) ist nichts anderes als der lineare Anteil der Taylor-Entwicklung von f um x i. Diese Linearisierung ist der entscheidende Schritt des Newton-Verfahrens: Die Lösung einer nichtlinearen Gleichung f(x) = wird durch eine Folge von Lösungen linearer Gleichungen ersetzt bzw. approximiert. 6

7 Formal gehört das Newton-Verfahren zur Klasse der Fixpunktiterationen mit ϕ(x) := x f(x) f (x). (6) Falls der Startwert x in (5) eine hinreichend gute Anfangsnäherung für ξ ist, so ist das Verfahren (lokal) mindestens quadratisch konvergent, d.h. ɛ n+ C ɛ n. Ist der Fehler ɛ n = x n ξ von der Größenordnung k, so ist der nächste Fehler ɛ n+ = x n+ ξ von der Größenordnung k (falls C von der Größenordnung ist). Bei jedem Iterationsschritt wird also die Anzahl der mit ξ übereinstimmenden Dezimalstellen ungefähr verdoppelt. Diese rasche Konvergenz ist der Grund für die große Beliebtheit des Newton-Verfahrens. Die Konvergenz des Verfahrens hängt jedoch empfindlich von der Wahl eines guten Startwertes x ab, insbesondere reagiert das Verfahren empfindlich auf lokale Extrema von f, da die Iterationsfunktion ϕ(x) (Gleichung (6)) dort singulär wird. Bei mehrfachen Nullstellen konvergiert das Newton-Verfahren nur noch linear. Vorteile : rasche (mind. quadratische) Konvergenz bei einfachen Nullstellen läßt sich auf Systeme nichtlinearer Gleichungen übertragen Nachteile : in jedem Schritt muß f und f berechnet werden das Verfahren muß nicht konvergieren Beispiel: Die m-te Wurzel a /m aus einer positiven reellen Zahl a > ist Lösung der Gleichung x m a =. Das Newton-Verfahren ergibt mit f(x) = x m a, f (x) = mx m die Vorschrift (i =,,,...) x i+ = x i xm i a mx m i = a + (m )xm i mx m, x i+ := m { a x m i + (m ) x i }. (7) Daraus leiten sich folgende Spezialfälle ab: (a) m = : x i+ = ( ) a + x i x i, Quadratwurzel von a. (b) m = : x i+ = ( ax i ) x i, Kehrwert von a. Die Iteration (a) ist das (schon den Babyloniern bekannte) Heron-Verfahren zur Quadratwurzelbestimmung. Die Iteration (b) ermöglichte für die ersten Computer ohne eingebaute Division die Zurückführung dieser Operation auf Multiplikationen und Subtraktionen. 7

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration -

Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration - Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration - Gernot Lorenz März 2006 Zusammenfassung Das Lösen von Gleichungen der Form f(x) = 0 auf algebraische Art, d.h. durch Auflösung

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Kap. 6: Iterative Lösung von Gleichungssystemen

Kap. 6: Iterative Lösung von Gleichungssystemen Kap. 6: Iterative Lösung von Gleichungssystemen 6.1 Einleitung In vielen Anwendungen sind Gleichungssysteme zu lösen, in denen die Unbekannten nichtlinear auftreten. Beispiel: Der Betrag der Gravitationskraft

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

8 Allgemeine Iterationsverfahren

8 Allgemeine Iterationsverfahren Numerik I. Version: 24.06.08 215 8 Allgemeine Iterationsverfahren Vor der Diskussion der konkreten Verfahren für lineare Gleichungssysteme, präsentieren wir die Grundidee der Iterationsverfahren. 8.1 Die

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Eine Vorlesung für das Lehramtsstudium Franz Hofbauer I. Rundungsfehler Beim Rechnen mit reellen Zahlen muss man auf eine gewisse Anzahl von Dezimalstellen runden, da man nicht beliebig

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

8 Iterationsverfahren zur Lösung von Gleichungssystemen

8 Iterationsverfahren zur Lösung von Gleichungssystemen Numerische Mathematik 378 8 Iterationsverfahren zur Lösung von Gleichungssystemen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst

Mehr

numerische Berechnungen von Wurzeln

numerische Berechnungen von Wurzeln numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Das Verfahren von Heron

Das Verfahren von Heron Das Verfahren von Heron Hans Bäckel Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Das Verfahren von Heron ist ein iteratives Verfahren

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

4. Nichtlineare Gleichungssysteme

4. Nichtlineare Gleichungssysteme 4. Nichtlineare Gleichungssysteme (4.) Gegeben : F : D Õ Ñ n ô Ñ n oder G : D Õ Ñ n ô Ñ n Gesucht : x èè Œ D mit F Hx èè L = 0 (Nullstellenproblem) oder èè èè èè x Œ D mit G (x) = x (Fixpunktproblem) Beispiele:

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

Newtonverfahren Die folgende Abbildung beschreibt das Newtonverfahren zur näherungsweisen Berechnung von Nullstellen:

Newtonverfahren Die folgende Abbildung beschreibt das Newtonverfahren zur näherungsweisen Berechnung von Nullstellen: BspNr: J0011 Themenbereich Näherungsverfahren zur Nullstellenberechnung (Newtonverfahren) Ziele Probleme, die bei der näherungsweisen Nullstellenberechnung auftreten können, erkennen. Analoge Aufgabenstellungen

Mehr

2 Nullstellenbestimmung

2 Nullstellenbestimmung 2.1 Motivation und Einordnung Das Lösen von nichtlinearen Gleichungen spielt eine grundlegende Rolle in der Mathematik. Oft werden solche Aufgabenstellungen als Nullstellenproblem formuliert. Die Nullstellenbestimmung

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

d) Berechnen Sie eine Stammfunktion mithilfe der Partialbruchzerlegung und des Horner-Schemas: x x 3 4 x x dx

d) Berechnen Sie eine Stammfunktion mithilfe der Partialbruchzerlegung und des Horner-Schemas: x x 3 4 x x dx MATHEMATIK Beispiel für eine schriftliche Prüfung. Grundlagen in Analysis (6 Punkte): a) Die Folge (a n ) n N ist rekursiv definiert durch a n+ := a n +, a = Zeigen Sie, dass a n für alle n N gilt und

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 25. Februar 2016 Organisatorisches Die Termine der Übungsgruppen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme Nichtlineare Gleichungen oder Gleichungssysteme müssen in vielen Anwendungen der Mathematik gelöst werden. Typischerweise werden die Lösungen nichtlinearer Gleichungen

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Iterationen im Mathematikunterricht

Iterationen im Mathematikunterricht Iterationen im Mathematikunterricht der Klassenstufen 9, und Mario Spengler 22. November 2 Zusammenfassung Angeregt wurde ich durch den in der Zeitschrift MNU, Heft 6, 2, erschienenen Artikel des Autors

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt 11, Aufgabe 1 I Aufgabenstellung Es sei I =[a, b] ein kompaktes Intervall. (a) Zeigen Sie, daß eine stetige Funktion f : I R genau dann injektiv ist, wenn sie strikt monoton ist.

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

NICHTLINEARE GLEICHUNGSSYSTEME

NICHTLINEARE GLEICHUNGSSYSTEME NICHTLINEARE GLEICHUNGSSYSTEME Christian Kanzow Julius Maximilians Universität Würzburg Institut für Mathematik Am Hubland 97074 Würzburg e-mail: kanzow@mathematik.uni-wuerzburg.de URL: http://www.mathematik.uni-wuerzburg.de/

Mehr

Numerik I. Universität Siegen Wintersemester 2004/05 Prof. Dr. Franz-Jürgen Delvos Prof. Dr. Hans-Jürgen Reinhardt

Numerik I. Universität Siegen Wintersemester 2004/05 Prof. Dr. Franz-Jürgen Delvos Prof. Dr. Hans-Jürgen Reinhardt Numerik I Universität Siegen Wintersemester 4/5 Prof Dr Franz-Jürgen Delvos Prof Dr Hans-Jürgen Reinhardt Überarbeitet, ergänzt und in L A TEX gesetzt von Uwe Nowak und Christian Schneider Version: Juli

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln H.R. Schneebeli, T.P. Wihler Version vom 1. Juli 201 Zusammenfassung Zur näherungsweisen numerischen Lösung von nichtlinearen Gleichungen,

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x 18 Stetigkeit Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt und er hat uns stets begleitet. In der Analysis untersucht man reelle Funktionen f : D R mit Definitionsbereich

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Der Bisektionsalgorithmus

Der Bisektionsalgorithmus 13 Der Bisektionsalgorithmus Wir wenden uns nun der Entwicklung einer allgemeinen Methode zu, um mathematische Modelle zu lösen Es stellt sich heraus, dass der Bisektionsalgorithmus, den wir benutzt haben,

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Iterative Division, Quadratwurzelberechnung

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Iterative Division, Quadratwurzelberechnung Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Iterative Division, Quadratwurzelberechnung Eberhard Zehendner (FSU Jena) Rechnerarithmetik Iterative Division, Quadratwurzel

Mehr

Gruppenleiter: Humboldt-Universität zu Berlin Mitglied im DFG-Forschungszentrum Matheon Mathematik für Schlüsseltechnologien

Gruppenleiter: Humboldt-Universität zu Berlin Mitglied im DFG-Forschungszentrum Matheon Mathematik für Schlüsseltechnologien Newton-Fraktale Teilnehmer: Ugo Finnendahl Janik Gätjen Daniel Krupa Cong Minh Nguyen Gergana Peeva Fabian Ulbricht Herder-Oberschule, Berlin Immanuel-Kant-Gymnasium, Berlin Herder-Oberschule, Berlin Andreas-Gymnasium,

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Radizieren mit dem Heron-Verfahren

Radizieren mit dem Heron-Verfahren Mathematik mit Python und OpenOffice Calc Radizieren mit dem Heron-Verfahren Matthias Richter. März 011 1 Idee Das Heron-Verfahren ist ein Algorithmus um die Quadratwurzel einer Zahl x R näherungsweise

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding

Mehr