Computational Biology: Bioelektromagnetismus und Biomechanik

Größe: px
Ab Seite anzeigen:

Download "Computational Biology: Bioelektromagnetismus und Biomechanik"

Transkript

1 Computational Biology: Bioelektromagnetismus und Biomechanik EKG-Simulation Universität Karlsruhe

2 Gliederung Wiederholung Anatomische Modelle Physikalische Modelle EKG-Simulation Überblick Berechnung der Erregungsausbreitung im Herzen Bidomain Modell Diskretisierung der generalisierten Poisson-Gleichung mit homogenen, isotropen Leitfähigkeiten inhomogenen, isotropen Leitfähigkeiten inhomogenen, anisotropen Leitfähigkeiten Zusammenfassung Seite 2

3 Ventrikuläre Myozyte Zylinderförmig mit einer Länge von µm und einem Durchmesser von 8-15 µm (Hoyt et al. 89) Seite 3

4 Myozyten Myozyten im imzellverband: Zellverband:Kopplung Kopplungdurch durch gap gapjunctions junctions (Saffitz et al. 99) Seite 4

5 Ströme im im Herzen/Ausbreitung der elektrischen Erregung Mikroskopisch Makroskopisch x Zelle Elektrische Kopplung über Intra-/Extrazellulärraum t=1 2 3 y Elektrische Kopplung über gap-junctions und Extrazellulärraum Erregungsausbreitung bei anisotroper Geschwindigkeit im homogenen Gewebe Seite 5

6 Überblick über EKG-Simulation mit zellulärem Automaten Bestimmung elektrischer Quellen im Herzen Makroskopisch, Bidomain Modell Quellstromdichte Vorwärtsrechnung Poisson-Gleichung für stationäre Strömungsfelder Transmembranpotential Visualisierung Einzelbilder/Bildsequenz Elektrisches Potential Elektrophysiologisches Modell Makro-/mikroskopisch, regel-/funktionenbasiert Elektrokardiographie Body Surface Potential Map, Standard-EKG Seite 6

7 Elektrophysiologische ElektrophysiologischeModelle Modelleerregbarer erregbarerstrukturen Strukturen Elektrophysiologisches Modell Zellulärer Automat basierend auf Membranmodell Anatomisches Modell Um / mv T / ms 0-80 Elektrophysiologische Messungen Transmembranpotential farbcodiert auf Herzoberfläche bei physiologischer Erregungsausbreitung Seite 7

8 Regelbasierte Erregungsausbreitung 1 2 Passives Element Aktives Element 3 4 Initiale Erregung 5 6 Erregung Seite 8

9 Parameter Zellulärer Automaten: Aktionspotentialform Numerische Experimente mit funktionsbasierten Zellmodellen bei Variation der Stimulationsfrequenz Ventrikel: Noble et al. Atrium: Earm-Hilgemann-Noble Seite 9

10 Bidomain Modell: Motivation Zellstruktur Ausschnitt aus Myocard Kenntnis über intra- und extrazelluläre Stromverteilung erforderlich für Berechnung der Erregungsausbreitung Bestimmung der Körperoberflächenpotentiale (BSPM) Berechnung des EKGs Problem Diskrete Modellierung der zellulären Struktur von Zellen numerisch aufwändig wegen komplexe Geometrie Anzahl der Zellen Idee Bidomain Modell Unterteilen des Raumbereichs in zwei Domänen getrennte Berechnung für Domänen Seite 10

11 Bidomain Modell: Grundlagen Kontinuum 1: Interstitium (Zwischenraum) Zellstruktur Kontinuum 2: Intrazellulärer Raum Seite 11

12 Bidomain Modell: Grundlagen f e V m = f i - f e V m :Transmembranpotential [ V] [ ] f i/ e : intrazelluläres / interstitielles Potential V f i J e J = J i + J e J: Gesamtstromdiche [ A/ m 2 ] [ ] J i/ e : intrazelluläre / interstitielle Stromdiche A / m 2 J i Seite 12

13 Bidomain Modell: Intrazellulärer Raum ( ) = ( s r i f ) i = bi m - I si - r s i J i I si f i : Intrazelluläres Potential [ V] r s : Intrazellulärer Leitfähigkeitstensor È S i Î Í m f i r s i I si I m : Stromdichte der Membran È Î Í A m 2 bi m È I si : Quellstromdichte Î Í A m 3 b: Verhältnis Zelloberfläche zu Volumen m -1 [ ] Seite 13

14 ( ) = ( s r e f ) e = -bi m -I se - r s e J e Bidomain Modell: Interstitium f e : Interstitielles Potential [ V] r s :Interstitieller Leitfähigkeitstensor È S e Î Í m È I m : Stromdichte der Membran Î Í È I se : Quellstromdichte Î Í A m 3 A m 2 [ ] b: Verhältnis Zelloberfläche zu Volumen m -1 f e r s e bi m I se I se Seite 14

15 Bidomain Modell: Zusammenhang der Spannungen J = J i + J e = - r s i f i - r s e f e mit f m = f i - f e J = -s r i f i - s r e f e = - r s i f m - r s i f e - r s e f e mit r s H = r s i + r s e J = - r s i f m - r s H f e mit Quellenfreiheit J = 0 s r i f m s H f e ( ) = - ( r ) generalisierte Poisson-Gleichung Seite 15

16 Bidomain Modell für gleiche Anisotropie der Leitfähigkeit $k: r s i = k s r e fi s r e + r ( ) = bi m - I s ( s ) i V m V m : Transmembranpotential [ V] r s :Interstitieller / Intrazellulärer Leitfähigkeitstensor È S e/ i Î Í m I m : I s : È Stromdichte der Membran Î Í È Quellstromdichte Î Í A m 3 A m 2 [ ] b: Verhältnis Oberfläche zu Volumen m -1 ( s r e f e ) = -bi -I m se ( s r i f i ) = bi m - I si Seite 16

17 Bidomain Modell mit elektrophysiologischen Modellen I m = C m f m t + I ion fi r s e f e Ê f ( ) = -b C m Á m Ë t ˆ + I ion -I se s r i f i Ê f ( ) = b C m Á m Ë t ˆ + I ion -I si È I ion : Ionenstromdichte der Membran Î Í f m : Transmembranpotential [ V] A m 2 È A I se : Extrazelluläre Quellstromdichte Î Í È A I si : Intrazelluläre Quellstromdichte Î Í m 3 m 3 b: Verhältnis Oberfläche zu Volumen m -1 [ ] C m : Kapazität der Membran F [ ] Elektrophysiologisches Modell Externe Stimuli Seite 17

18 Bidomain Modell mit elektrophysiologischen Modellen: Numerik unbekannt I im = r s i f m ( ) ( ) = I im - r s H f e ( ) + s r Ê f ( i f e ) = -b C m Á m r s i f m unbekannt Ë t unbekannt ˆ + I ion - I si elliptische PDE (generalisierte Poisson-Gleichung) parabolische PDE (nichtlinear) I ion ist nicht linear abhängig von Zustand des Membranmodells Problem: Wahl der zeitlichen Auflösung! Seite 18

19 Bidomain Modell: Randbedingungen Muskelgewebe gegen angrenzendes Gewebe / Bad n n T r s e f e = n T r s o f o n T r s i f i = 0 n T :Normale auf Oberfläche r s o :Leitfähigkeitstensor des angrenzenden Gewebes r [ ] [ ] s i : Intrazellulärer Leitfähigkeitstensor Sm -1 r s e : Leitfähigkeitstensor des Interstituums S m -1 f o : Potential im angrenzenden Gewebe V [ ] [ ] f i : Intrazelluläres Potential V f e : Potential im Interstituum V [ ] [ Sm -1 ] Seite 19

20 Bidomain Modell: Randbedingungen Muskelgewebe/Gewebe/Bad gegen Luft n T r s i f i = 0 n T r s e f e = 0 n Tr s o f o = 0 n n T :Normale auf Oberfläche r s o :Leitfähigkeitstensor des angrenzenden Gewebes r [ ] [ ] s i : Intrazellulärer Leitfähigkeitstensor Sm -1 r s e : Leitfähigkeitstensor des Interstituums S m -1 f o : Potential im angrenzenden Gewebe V [ ] [ ] f i : Intrazelluläres Potential V f e : Potential im Interstituum V [ ] [ Sm -1 ] Seite 20

21 Diskretisierung einer partiellen Differentialgleichung Werkzeuge zur Diskretisierung Standard-Programmierumgebungen (C, C++, Fortran, Basic, Pascal...) Mathematica Matlab... Beispiele für Mathematica Programmierung Seite 21

22 Varianten der Poisson-Gleichung ( s v f) = f [ ] f( x, y, z): Potential V f( x,y,z): Quellstromdichte gesucht È Î Í Bidomain A m 3 v s x, y,z ( ): Leitfähigkeitstensor Anatomie È S Î Í m Vereinfachungen: Isotrope Leitfähigkeit: s v x, y,z ( ) fi s( x, y, z) Homogene, isotrope Leitfähigkeit: s v ( x,y,z) fi s Seite 22

23 Diskretisierung der Poisson-Gleichung homogen/isotrop Ausgangsgleichung mit ortsabhängiger Potential- f und Quellestromdichtefunktion f Leitfähigkeit s ist isotrop und ortsunabhängig Kurzform für nachfolgende Substitutionen Wechsel in lokales, diskretes Koordinatensystem und Approximation Finite Differenzen Approximationen der 2. räumlichen Ableitung des Potentials Seite 23

24 Lokales diskretes Koordinatensystem fm00 s f000 s f000 f001 s f010 s f100 s Bezug Interne Repräsentationsform der Datenstruktur für Potentiale und Quellstromdichte! h f0m0 s f00m s Homogene Leitfähigkeit, Quellstromdichte und Nachbarknoten-Potentiale sind zu berücksichtigen! 6-er Nachbarschaft Seite 24

25 Diskretisierung der Poisson-Gleichung homogen/isotrop Finite Differenzen Approximation der Poisson-Gleichung Auflösen der Finite Differenzen Approximation nach f000 Iterationsformel für Gauß-Seidelund Jacobi-Verfahren Seite 25

26 Diskretisierung der Poisson-Gleichung inhomogen/isotrop Ausgangsgleichung mit ortsabhängiger Potential- f und Leitfähigkeitsfunktion s Vernachlässigung von Quellstromdichte f Kurzform für nachfolgende Substitutionen Finite Differenzen Approximation der 1. räumlichen Ableitung Finite Differenzen Approximation der 2. räumlichen Ableitung Seite 26

27 Lokales diskretes Koordinatensystem fm00 sm00 f000 s000 f000 f001 s001 f010 s010 f100 s100 h f0m0 s0m0 f00m s00m Leitfähigkeiten und Potentiale der Nachbarknoten sowie Quellstromdichte sind zu berücksichtigen! 6-er Nachbarschaft Seite 27

28 Wechsel in in lokales, diskretes Koordinatensystem Finite Differenzen Approximationen der 2. räumlichen Ableitung des Potentials Finite Differenzen Approximationen der 1. räumlichen Ableitung des Potentials Finite Differenzen Approximationen der 1. räumlichen Ableitung der Leitfähigkeit Seite 28

29 Diskretisierung der Poisson-Gleichung inhomogen/isotrop Finite Differenzen Approximation der Poisson-Gleichung Auflösen der Finite Differenzen Approximation nach f000 Iterationsformel für Gauß-Seidelund Jacobi-Verfahren Seite 29

30 Diskretisierung der Poisson-Gleichung inhomogen/anisotrop Definition der Leitfähigkeit als ortsabhängiger Tensor s der Ordnung 2 Symmetrische 3 x 3 Matrix Definition der Stromdichte J als Produkt von Leitfähigkeitstensor s und Feldstärke E J = s E Seite 30

31 Diskretisierung der Poisson-Gleichung inhomogen/anisotrop Ausgangsgleichung mit ortsabhängiger Potential- f und Leitfähigkeitsfunktion s Vernachlässigung von Quellstromdichte f Kurzform für nachfolgende Substitutionen 1. räumliche Ableitung 2. räumliche Ableitung gemischte 2. Ableitung Seite 31

32 Lokales diskretes Koordinatensystem Leitfähigkeiten und Potentiale der Nachbarknoten sind zu berücksichtigen! 18-er Nachbarschaft Seite 32

33 Wechsel in in lokales, diskretes Koordinatensystem 2. räumliche Ableitung des Potentials Gemischte 2. Ableitung des Potentials 1. räumliche Ableitung des Potentials 1. räumliche Ableitung der Leitfähigkeiten Seite 33

34 Diskretisierung der Poisson-Gleichung inhomogen/anisotrop Finite Differenzen Approximation der Poisson-Gleichung Seite 34

35 Auflösen der Finite Differenzen Approximation nach f000 Iterationsformel für Gauß-Seidelund Jacobi-Verfahren Seite 35

36 Speicherabschätzung für Lösung der Poisson-Gleichung Pro Voxel: sizeof(potential)+sizeof(stromdichte)+sizeof(leitfähigkeit) Modell mit 10 Mio. Voxeln Verwendeter Datentyp für skalare Werte: Lösungsverfahren: Potentialwerte Stromdichtewerte Fliesskomma, double (8 Bytes) Gauß-Seidel 80 MByte 80 MByte Leitfähigkeit Homogen Inhomogen Anisotrop 8 Byte 80 MByte 480 MByte Summe in MB 160 MByte 240 MByte 640 MByte Seite 36

37 Zusammenfassung Wiederholung Anatomische Modelle Physikalische Modelle EKG-Simulation Überblick Berechnung der Erregungsausbreitung im Herzen Bidomain Modell Diskretisierung der generalisierten Poisson-Gleichung mit homogenen, isotropen Leitfähigkeiten inhomogenen, isotropen Leitfähigkeiten inhomogenen, anisotropen Leitfähigkeiten Seite 37

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellierung in der Kardiologie Elektrophysiologie Erregungsausbreitung Gliederung Wiederholung Zelluläre Elektrophysiologie Grundlagen Hodgkin-Huxley Modell Beeler-Reuter Modell Luo-Rudy

Mehr

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellierung in der Kardiologie Elektrophysiologie EKG-Messung EKG-Simulation Gliederung Wiederholung EKG: Diagnostik und Messung Motiation Ableiterfahren Pathologien Messerstärker EKG:

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Biomechanik III Gliederung Wiederholung: Biomechanik II Spannungsanalyse Materialgleichungen Bewegungsgleichungen Biomechanik III Statische

Mehr

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellierung in der Kardiologie Biomechanik Kraftentwicklung im Myokard Gliederung Wiederholung EKG: Simulation Übersicht Zellulärer Automat Quellenberechnung EKG-Berechnung Beispiele Biomechanik

Mehr

Elektrische und ^magnetische Felder

Elektrische und ^magnetische Felder Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen

Mehr

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellierung in der Kardiologie Elektrophysiologie EKG-Diagnostik und Messung Gliederung Wiederholung Erregungsausbreitung Zellulärer Automat Mono-/Bidomain-Modell Unidirektionaler Block

Mehr

Das Geheimnis. der Kaffeetasse

Das Geheimnis. der Kaffeetasse Das Geheimnis der Kaffeetasse Uttendorf 2005 Lutz Justen Überblick Der Kaffeetasseneffekt was ist das? Einige (nicht-numerische!) Experimente Modellierung: Lineare Elastizitätsgleichung Numerik: FEM Testrechnungen

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Elektrische und magnetische Felder Eine praxisorientierte Einführung Bearbeitet von Marlene Marinescu 1. Auflage 2012. Buch. xiv, 343 S. Hardcover ISBN 978 3 642 24219 9 Format (B x L): 15,5 x 23,5 cm

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Inhalt, Ablauf, Organisation, Prüfung,...

Inhalt, Ablauf, Organisation, Prüfung,... Inhalt, Ablauf, Organisation, Prüfung,... Vorlesung Einführung in das Wissenschaftliche Rechnen Sommersemester 2016 Einführung in das Wissenschaftliche Rechnen Sommersemester 2016, Simon Baumstark, Patrick

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer Helmut Haase Heyno Garbe Elektrotechnik Theorie und Grundlagen Mit 206 Abbildungen Springer Inhaltsverzeichnis Vorwort Symbole und Hinweise V VII 1 Grundbegriffe 3 1.1 Ladung als elektrisches Grundphänomen

Mehr

Definition Elektrisches Strömungsfeld in einem Zylinder eines Punktes einer Linie Elektrische Spannung und Widerstand Grenzbedingungen

Definition Elektrisches Strömungsfeld in einem Zylinder eines Punktes einer Linie Elektrische Spannung und Widerstand Grenzbedingungen Definition Elektrisches Strömungsfeld in einem Zylinder eines Punktes einer Linie Elektrische Spannung und Widerstand Grenzbedingungen 1 Feldbegriff Feld räumliche Verteilung einer physikalischen Größe

Mehr

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis

Mehr

Ingenieurmathematik mit Computeralgebra-Systemen

Ingenieurmathematik mit Computeralgebra-Systemen Hans Benker Ingenieurmathematik mit Computeralgebra-Systemen AXIOM, DERIVE, MACSYMA, MAPLE, MATHCAD, MATHEMATICA, MATLAB und MuPAD in der Anwendung vieweg X Inhaltsverzeichnis 1 Einleitung 1 1.1 Ingenieurmathematik

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Elektromagnetische Felder

Elektromagnetische Felder К. Meetz W L Engl Elektromagnetische Felder Mathematische und physikalische Grundlagen Anwendungen in Physik und Technik Mit 192 Abbildungen Springer-Verlag Berlin Heidelberg New York 1980 Inhaltsverzeichnis

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler geisler@lmu.de April 18, 2018 Elektrische Ersatzschaltkreise und Messmethoden Wiederholung: Membranpotential Exkursion in die

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Helmut Haase Heyno Garbe Hendrik Gerth Grundlagen der Elektrotechnik Mit 228 Abbildungen Inhaltsverzeichnis Symbole und Hinweise VII 1 Grundbegriffe 1 1.1 Ladung als elektrisches Grundphänomen 1 1.2 Elektrische

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen 4.4 Anfangsrandwertprobleme Die Diskretisierung von zeitabhängigen partiellen Differentialgleichungen mit der Linienmethode führt auf Systeme gewöhnlicher Dgl

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu (einige Bilder sind aus urheberrechtlichen Gründen

Mehr

Finite Elemente I Wintersemester 2010/11

Finite Elemente I Wintersemester 2010/11 Institut für Numerische Mathematik und Optimierung Finite Elemente I Wintersemester 2010/11 Erste von zwei Vorlesungen im Modul Finite-Element Methoden für Mathematiker Hörerkreis: 5. Mm, 7. Mm, 9. Mm,

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik, Wirtschaftsmathematik

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 17: Woche vom Übungsaufgaben 3. Übung SS 17: Woche vom 18.4-21. 4. 2017 Heft Ü 3: 4.1.2 (Auswahl); 4.1.4; 4.1.7; 4.1.10 (Auswahl); 4.2.3 (Auswahl); 2 Aufgaben zur Schmidt-Orthogonalisierung (s. PDF - homepage von Dr.

Mehr

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Präsentation der Ergebnisse der Aversumsprojekte 2009 Steffen ink a Wolfgang G. Bessler, b A. Masroor, b Emil Roduner a a Universität

Mehr

1. Übung Modellierung von Hydrosystemen: Einleitung 1

1. Übung Modellierung von Hydrosystemen: Einleitung 1 1. Übung Modellierung von Hydrosystemen: Einleitung 1 Informationen und Werkzeuge, die für eine numerische Simulation benötigt werden: Konzeptionelles Modell: Geometrie des Gebiets, Längenabmessungen,

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept home/lehre/vl-mhs--e/deckblatt.tex. p./ Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente. Finite-Element-Typen. Geometrie. Interpolations-Ansatzfunktion

Mehr

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellierung in der Kardiologie Bildgebende Systeme Visible Human Project Gliederung Wiederholung Anatomie des Herzens makroskopisch mikroskopisch Bildgebende Verfahren Visible Human Project

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

4.8.1 Shortley Weller-Approximation Interpolation in randnahen Punkten... 81

4.8.1 Shortley Weller-Approximation Interpolation in randnahen Punkten... 81 Inhaltsverzeichnis 1 Partielle Differentialgleichungen und ihre Typeneinteilung... 1 1.1 Beispiele... 1 1.2 Typeneinteilungen bei Gleichungen zweiter Ordnung.................. 5 1.3 Typeneinteilungen bei

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

DER GLEICHSTROMMAGNET

DER GLEICHSTROMMAGNET DER GLEICHSTROMMAGNET VON DR.-ING. EBERHARD KALLENBACH STÜTZERBACH/THÜRINGEN MIT 169 BILDERN UND 17 TABELLEN $ LEIPZIG1969 AKADEMISCHE VERLAGSGESELLSCHAFT GEEST&PORTIG K.-G. Inhalt 1. Das magnetische Feld

Mehr

Ableitung thermischer Randbedingungen für lineare Antriebseinheiten

Ableitung thermischer Randbedingungen für lineare Antriebseinheiten Ableitung thermischer Randbedingungen für lineare Antriebseinheiten Dipl.-Ing. Matthias Ulmer, Prof. Dr.-Ing. Wolfgang Schinköthe Universität Stuttgart, Institut für Konstruktion und Fertigung in der Feinwerktechnik

Mehr

Geometrie und Mathematische Physik Differentialgeometrie I 10 m Diskrete Geometrie I 10 m Geometrie I 10 m Geometrische Grundlagen der linearen

Geometrie und Mathematische Physik Differentialgeometrie I 10 m Diskrete Geometrie I 10 m Geometrie I 10 m Geometrische Grundlagen der linearen Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Sommersemester 2017 Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik,

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Elektrodynamische Modellierung epithelialer Gewebe

Elektrodynamische Modellierung epithelialer Gewebe Skripte (15. 11. 2001) Elektrodynamische Modellierung epithelialer Gewebe Alfred H. Gitter 1 Bioelektrische Gewebeanalyse Theorie Experiment Biologisches System (Epithelgewebe) fl Physikalisches Modell

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Strömungssimulation in Li-Dualinsertationszellen

Strömungssimulation in Li-Dualinsertationszellen Strömungssimulation in Li-Dualinsertationszellen Julius Sewing, Nikolaus Krause, Dennis Dieterle j.sewing@gmx.net nikokrause@gmx.de dennis.dieterle@uni-muenster.de 22. Juni 2010 Sewing, Krause, Dieterle

Mehr

Humanoide Roboter. Shuji Kajita. Theorie und Technik des Künstlichen Menschen AKA. Herausgeber

Humanoide Roboter. Shuji Kajita. Theorie und Technik des Künstlichen Menschen AKA. Herausgeber Humanoide Roboter Theorie und Technik des Künstlichen Menschen Herausgeber Shuji Kajita AKA Inhaltsverzeichnis Vorwort Thomas Christaller ix Shuji Kajita Kapitel 1. Überblick Humanoide Roboter 1 Kapitel

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Klassische Elektrodynamik Pascal Peter 13.01.09 Pascal Peter () Klassische Elektrodynamik 13.01.09 1 / 35 Gliederung 1 Klassische Elektrodynamik Einführung Die maxwellschen Gleichungen Vektornotation 2

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Einfluss mikrostruktureller Inhomogenitäten auf das mechanische Verhalten von thermoplastischem CFK

Einfluss mikrostruktureller Inhomogenitäten auf das mechanische Verhalten von thermoplastischem CFK DLR.de Folie 1 Werkstoff-Kolloquium 2014 Hybride Werkstoffe und Strukturen für die Luftfahrt 2. Dezember 2014, DLR Köln Einfluss mikrostruktureller Inhomogenitäten auf das mechanische Verhalten von thermoplastischem

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Coputational Biology: Bioeletroagnetisus und Bioechani Finite Eleente Methode I Gliederung Wiederholung Gewöhnliche Differentialgleichungen Finite Eleente Methode Direte Methode Extrealprinzipien Methode

Mehr

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Praktikum Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Block 1 jeder Anfang ist eindimensional Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

3.7 Das magnetische Feld in Materie

3.7 Das magnetische Feld in Materie 15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,

Mehr

Heat Flow. Daniel Raß. 12. Juli

Heat Flow. Daniel Raß. 12. Juli d-rass@web.de 12. Juli 2007 Übersicht Einleitung Zuerst einige theoretische Grundlagen zur Diskretisierung der Wärmeleitungsgleichung und der Poissongleichung. Ausgangsgleichung Ausgehend von Masse-, Impuls-

Mehr

Darstellungsarten für 3D-Körper. Boundary Representation (BRep):

Darstellungsarten für 3D-Körper. Boundary Representation (BRep): Darstellungsarten für 3D-Körper Boundary Representation (BRep): Darstellung eines (verallgemeinerten) Polyeders durch das System seiner Ecken, Kanten und Facetten Abspeichern durch (Teilgraphen des) vef-graphen

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Elektrotechnik für Ingenieure - Formelsammlung

Elektrotechnik für Ingenieure - Formelsammlung Wilfried Weißgerber Elektrotechnik für Ingenieure - Formelsammlung Elektrotechnik kompakt 3., überarbeitete und erweiterte Auflage STUDIUM VIEWEG+ TEUBNER VII Inhaltsverzeichnis Vorwort Schreibweisen,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 6. Teil Die Berechnung des Geschwindigkeitsfeldes

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27 Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...

Mehr

Seite 2. Modelle des menschlichen Körpers. Berechnung von Oberflächenpotentialen. Erregungsausbreitung im Herzen. Makroskopische Simulation

Seite 2. Modelle des menschlichen Körpers. Berechnung von Oberflächenpotentialen. Erregungsausbreitung im Herzen. Makroskopische Simulation Anatomische, physikalische und funktionelle Modelle des menschlichen Köpes Eegungsausbeitung im Hezen Beechnung von Obeflächenpotentialen Motivation Kenntnisse übe Zusammenhang zwischen Eegungsausbeitung

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

Numerik für Ingenieure II

Numerik für Ingenieure II Numerik für Ingenieure II Prof. Dr. Dimitri Kuzmin Lehrstuhl für Angewandte Mathematik III Universität Erlangen-Nürnberg kuzmin@am.uni-erlangen.de http://www.mathematik.uni-dortmund.de/ kuzmin/numingii.html

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Numerische Modellierung von Grundwasserströmungen

Numerische Modellierung von Grundwasserströmungen Numerische Modellierung von Grundwasserströmungen Heiko Berninger Berlin, 23. Juni 2004 Elbe Hochwasser August 2002 Ökosystem Untere Havel Unteres Havelland als natürliches Überschwemmungsgebiet Hydrologische

Mehr

Koaxialleiter E-Feldstärke, H-Feldstärke

Koaxialleiter E-Feldstärke, H-Feldstärke Koaxialleiter E-Feldstärke, H-Feldstärke blog.zahlenpresse.de 4. April 3 R 3 Abbildung : uerschnitt vom Koaxialleiter Für alle Berechnungen in diesem Dokument wird ein Koaxialleiter folgender Konstruktion

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE 2.5 ANFANGSRANDWERTPROBLEM DER ELASTOMECHANIK Charakterisierung Die Zusammenfassung der in den vorangehenden Folien entwickelten Grundgleichungen des dreidimensionalen Kontinuums bildet das Anfangsrandwertproblem

Mehr

Aufgabensammlung Elektrotechnik

Aufgabensammlung Elektrotechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hermann Wellers Aufgabensammlung Elektrotechnik 3., erweiterte und

Mehr

Elektrotechnik und Elektronik für Informatiker

Elektrotechnik und Elektronik für Informatiker Elektrotechnik und Elektronik für Informatiker Band 1 Grundgebiete der Elektrotechnik Von Prof. Dr.-Ing. Reinhold Paul Technische Universität Hamburg-Harburg 2., durchgesehene Auflage Mit 282 Bildern und

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Bezeichnungen, Abkürzungen, Vereinbarungen

Bezeichnungen, Abkürzungen, Vereinbarungen Bezeichnungen, Abkürzungen, Vereinbarungen Vereinbarungen In dieser Arbeit wird überwiegend die symbolische Schreibweise verwendet Bei Verwendung der Tensorschreibweise durchlaufen griechische Buchstaben

Mehr

Optimierung von Strahldüsen durch Simulation

Optimierung von Strahldüsen durch Simulation 7. Tagung Industriearbeitskreis Trockeneisstrahlen Optimierung von Strahldüsen durch Simulation Produktionstechnisches Zentrum Berlin 25. November 2005 Michael Kretzschmar Gliederung Seite 2 Computational

Mehr