Theoretische Informatik 1

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik 1"

Transkript

1 Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008

2 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen

3 Turingreduktion gegeben ein Proble A (Sprache A). Es ist nicht bekannt, ob TM T A existiert. Aber: wir kennen ein zweites Proble B (Sprache B): Und wir kennen einen Algorithus, der A lösen kann, wenn er die Ergebnisse von TM T B benützen kann. Es sind also Aufrufe der For CALL T B (x) erlaubt. Es hierfür unerheblich ob TM T B tatsächlich existiert! A läßt sich reduzieren auf B: A T B

4 Beispiel Konstruktionsproble - Entscheidungsproble: MAXCLIQUE( G ): Berechne größte Clique in G CLIQUE( G, k ): Hat G eine Clique der Größe k? zeige: MAXCLIQUE T CLIQUE Beachte: MAXCLIQUE ist kein Sprachproble! (Beweisskizze siehe Teil 4)

5 Beispiel Unberechenbarkeit PCP en werden für (Un-)Berechenbarkeitsbeweise eingesetzt. Wenn A T B gezeigt ist, und A nicht berechenbar (entscheidbar) ist, dann ist auch B nicht berechenbar (entscheidbar). T A A T B = T B Beispiel: Postsches Korrespondenzproble. HALT T PCP

6 Mapping-Reduktion Definition (Mapping-Reduktion, any-one-reduction) Eine Sprache A ist apping (any-one) reduzierbar auf B A B genau dann wenn eine berechenbare Funktion f : Σ Σ existiert, sodaß w A f (w) B. Wir lassen jetzt nicht ehr beliebige Aufrufe CALL T B zu, sondern nur noch einen einzigen. Das Erbegnis von B ist zugleich das Gesatergebnis, also JUMP T B.

7 Mapping Graphik (Tafel): Probleinstanz von A wird auf Probleinstanz von B geapped. HALT PCP Jede Mapping-Reduktion ist eine!

8 beschränkte Reduktion U Reduktion sinnvoll auf Koplexitätsklassen anzuwenden, wird Zeit- oder Platzbedarf der Reduktionsfunktion eingeschränkt. Je enger die Einschränkung, uso exakter können Klassen getrennt werden. polynoiell Zeitbeschränkt f FP (= FDTIME(n k )) k N logarithisch Platzbeschränkt f FL (= FDTIME(log n)) FL FP (wäre noch zu zeigen!) poly log

9 beschränkte Reduktion f FL ist notwendig, wenn feiner abgestuft werden soll. poly : Zeitklassen ab P untersuchbar. log : Zeitklassen ab P und Platzklassen untersuchbar. Zeige: UHAMILTON poly HAMILTON (Beweis trivial) Zeige: HAMILTON poly UHAMILTON f uß also einen gerichteten Graphen in einen ungerichteten überführen, sodaß die Hailton-Eigenschaft erhalten bleibt.

10 HAMILTON poly UHAMILTON UHAMILTON geg: ungerichteter Graph G = (V, E) UHAMILTON = { G Hailtonkreis in ungerichtete G } HAMILTON geg: gerichteter Graph G = (V, E) HAMILTON = { G Hailtonkreis in gerichtete G } zeige: HAMILTON poly UHAMILTON d.h.: TMT : G HAMILTON f T (G) UHAMILTON T T (n) = O(poly(n)) Trick: 1 Knoten wird zu 3 Knoten siehe z.b. Schöning, S. 166f oder Spiser, S. 295

11 3SAT poly HAMILTON 3SAT geg: Boolsche Forel F in CNF. Genau 3 Literale pro Klausel 3SAT = { F (x 1,..., x k ) x1,..., x k {0, 1} : F (x 1,..., x k ) = 1 } zeige: 3SAT poly HAMILTON d.h.: zeige, daß zu jeder Forel F ein gerichteter Graph G konstruiert werden kann, sodaß G genau dann einen Hailtonkreis hat, wenn F erfüllbar ist; UND zeige, daß diese Konstruktion nur O(poly(n)) Zeit braucht. siehe z.b. Schöning, S. 163

12 L P : L log CVP CVP ist P-hart CVP = { C, x C(x) = 1 } Codierung z.b.: C = {T # F# { }bin(.)(, bin(.)) #} bekannt: L P = TM T L it T TL (n)o(poly(n)) Tableau für T : n N : C n : w Σ n : C( w ) = f T (w) T T (n) = O(poly(n)) C n = O(poly(n)) Konstruktion von C n in O(log(n)) Platz öglich! L P : TM T R : f TR (w) = C n, w S TR = O(log(n)) L P : L log CVP siehe z.b. Papadiitriou, S. 168

13 Definition P- NP- In jeder Koplexitätsklasse C kann an nach C-vollständigen Sprachen suchen. Definition (C-, copleteness) Eine Sprache A C heißt C-vollständig, wenn alle Sprachen L C auf A reduziert werden können. A ist C-vollständig A C L C : L log z.b. NP-vollst., P-vollst. NL-vollst., PSPACE-vollst. In L nicht sinnvoll, da alle Sprachen in L trivialerweise L-vollständig sind. A

14 Definition P- NP- P- P copleteness Das Circuit Value Proble (CVP) ist P-vollständig. Beweis: CVP ist in P. (quadratische Laufzeit) L P : L log CVP (siehe oben) = CVP PC

15 Definition P- NP- NP- Satz von Cook-Levin NP copleteness Satisfiability (SAT) ist NP-vollständig. Beweis: SAT NP: rate richtige Belegung, prüfen braucht O(n 2 ) bleibt z.z: L NP : L poly SAT

16 Definition P- NP- NP- NP hardness Satisfiability (SAT) ist NP-hart. zeige: L NP : L poly SAT L NP : NTM T L : f TL = f L it T TL (n) = O(p(n)) S TL (n) = O(p(n)) also: Konfigurationentableau it T TL (n) S TL (n) Feldern Konstruiere daraus Boolsche Forel F (w,...), sodaß: F(w,...) erfüllbar w L Konstruktion uß in O(poly(n)) Schritten öglich sein. siehe z.b. Schöning, S.149

17 Definition P- NP- NP- 3SAT 3SAT ist NP-vollständig. Zeige: SAT poly 3SAT Proble: Uwandlung einer Boolschen Forel F in eine äquivalente CNF-For braucht i.a. exponentiell viel Zeit und liefert nicht notwendigerweise nur 3 Literale pro Klausel. Konstruiere erfüllungsäquivalente F (it zus. Variablen) Beweis: Schöning S.156, bzw. Tafel Uforung ist in polynoieller Zeit öglich, qed.

18 Sprachbeziehungen Klassenbeziehungen Methoden der Koplexitätstheorie(1) geg: Sprache A, Koplexitätsklasse C A!! C (obere Schranke gesucht) Entwerfe TM A und berechne Koplexität Verwende Reduktionen: Finde A C A log A Zeige C ist abgeschlossen unter log = A C A!! / C (untere Schranke gesucht) Bottleneck nachweisen (eist nur sehr tiefe Schranken) Verwende Klassenhierarchie: C C Zeige C ist abgeschlossen unter log Finde C -vollständiges (schwerstes) Proble A Zeige A log A = A / C

19 Sprachbeziehungen Klassenbeziehungen Methoden der Koplexitätstheorie(2) geg: Koplexitätsklassen C und C Inklusion C!! C Zeit-, Platzhierarchie: O(f (n)) O(log n f (n)) Siulation: DTM vs. NTM: NP PSPACE Konfigurationsgraph NSPACE(s) DSPACE(s 2 ), NL P Klassen trennen C!! C Diagonalisierung: Hierarchiesätze Unterschiedliche Eigenschaften (Abgeschlossenheit, vollst.) Anzahlarguente

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Vollständigkeit 1 David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 20.05.2016 Übersicht Schwere Definition CIRCUIT-VALUE ist P-schwer

Mehr

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Lösungen zur Ergänzung 12

Lösungen zur Ergänzung 12 Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}.

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Helmut Veith Technische Universität München Organisatorisches Anmeldung zur Lehrveranstaltung: complexity@tiki.informatik.tu-muenchen.de

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 27. Vorlesung 08.02.2007 1 Komplexitätstheorie - Platzklassen Platzkomplexität Definition Simulation mehrerer Bänder Savitchs Theorem PSPACE

Mehr

Theoretische Informatik - Zusammenfassung!

Theoretische Informatik - Zusammenfassung! Theoretische Informatik - Zusammenfassung Foliensatz 1 Notationen und formale Werkzeuge Für die Beschreibung der Komplexität eines Programms ist die Landau-Notation wichtig. Formal beschreibbare Probleme

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 6. Dezember 2017 Abgabe 19. Dezember 2017, 11:00 Uhr

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung

1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung Einführung für das Seminar Komplexität und Kryptologie Übersicht 1 2 23 und 30 April 2008 und 3 und und Turingmaschinen als erechnungsmodell Ressourcenverbrauch von Turingmaschinen Erweiterte Church sche

Mehr

Einfache Zusammenhänge

Einfache Zusammenhänge Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Komplexitätstheorie 2

Komplexitätstheorie 2 Komplexitätstheorie 2 Montag und Donnerstag 14:15 15:45 Uhr in C - 221 1 echte Hierarchien Aus der Theorie der Formalen Sprachen ist bekannt, dass es Sprachen gibt, die entscheidbar aber nicht kontextsensitiv

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. Für kleine Platzklassen:

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. Für kleine Platzklassen: Platzklassen - Erinnerung DSPACE(f(n)) NSPACE(f(n)) L = LOG = DSPACE(logn) NL = NLOG = NSPACE(logn) PSPACE = DSPACE(n^k), k > 1 NPSPACE = NSPACE(n^k), k > 1 SPACE Complexity 3-Band Maschinen Konfigurationen

Mehr

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. SPACE Complexity. Für kleine Platzklassen:

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. SPACE Complexity. Für kleine Platzklassen: Platzklassen - Erinnerung SPACE Complexity DSPACE(f(n)) NSPACE(f(n)) L = LOG = DSPACE(logn) NL = NLOG = NSPACE(logn) PSPACE = DSPACE(n^k), k > 1 NPSPACE = NSPACE(n^k), k > 1 complexity 2003 - space & games

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p 6.3 NP-Vollständigkeit 1 Polynomielle Reduzierbarkeit p 2 NP-vollständige Probleme = härteste Probleme in NP, alle anderen Probleme in NP darauf polynomiell reduzierbar 3 Satz: SAT ist NP-vollständig Definition

Mehr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr Definition 6 3SAT ist die Menge der booleschen Formeln in konjunktiver Normalform, die in jeder Klausel höchstens drei Literale enthalten und die erfüllbar sind. Satz 7 3SAT ist N P-vollständig. Info IV

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 22.12.2011 INSTITUT FÜR THEORETISCHE 0 KIT 09.01.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?

Mehr

NP-Vollständigkeit und der Satz von Cook und Levin

NP-Vollständigkeit und der Satz von Cook und Levin NP-Vollständigkeit und der Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 17. Dezember 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Approximierbarkeit von NP Problemen

Approximierbarkeit von NP Problemen Komplexitätstheorie (6) (Wolfgang Slany) 1 Approximierbarkeit von NP Problemen Approximations-Algorithmen: in polynomieller Zeit wird ein Resultat gefunden, das garantiert höchstens einen vorgegebenen

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten log n, 2 log n,... als Platzschranke aus. Dabei überprüft man für jeden dieser Werte,

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP 4.3.

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 27.11.2018 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Die

Mehr

Wie man das Poissonsche Problem löst

Wie man das Poissonsche Problem löst Komplexitätstheorie 27.10.2004 Theorem 6 : Falls P = NP ist, dann ist auch E = NE. Padding : Technik zum übertragen von Kollapsresultaten nach oben Sei # є Σ ein neues Symbol. Für w є Σ* ist pad (w) :

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 23. Vorlesung 25.01.2007 1 NP-Vollständigkeit Definition: Eine Sprache S ist NP-vollständig, wenn: S NP S ist NP-schwierig, d.h. für alle L

Mehr

Komplexität und Komplexitätsklassen

Komplexität und Komplexitätsklassen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 23. Januar 2017 Rückblick Markus Krötzsch, 23. Januar 2017 Formale Systeme Folie 2 von 32

Mehr

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................

Mehr

Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse...

Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse... Gliederung der Vorlesung 1. Analyse von Algorithmen 1.1 Motivation 1.2 Laufzeit von Algorithmen 1.3 Asymptotische Notationen 2. Entwurf von Algorithmen 2.1 Divide & Conquer 2.2 Dynamisches Programmieren

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder Wie schwer ist SAT? Ziel: Nachweis, dass SAT eines der schwersten Probleme in NP ist: SAT ist das erste bekannte Beispiel eines NP-vollständigen Problems. Demnach kann SAT mit bisher bekannten Techniken

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 5. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 05.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25 Vorlesung: NP-Vollständigkeit Markus Krötzsch Professur für Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr