3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli Aufgabe 1: Der Quader liefert noch für weitere 8 Tage Pulver.

Größe: px
Ab Seite anzeigen:

Download "3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli Aufgabe 1: Der Quader liefert noch für weitere 8 Tage Pulver."

Transkript

1 3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli 2008 Klassenstufen 7 und 8 Bitte jeweils in Teams von 3 bis 5 Schülern bearbeiten. Die Bewertung hängt neben der Korrektheit auch von der Qualität der Begründungen und der Beschreibung der Lösungswege ab. Auch Ansätze werden belohnt. Aufgabe 1: Der Quader liefert noch für weitere 8 Tage Pulver. Begründung: Zunächst betrachten wir das Volumen V 0 des Quaders vor dessen Erstbenutzung, sowie das Volumen V 1 des verbleibenden Quaders nach 19 Tagen Gebrauch. Dazu bezeichnen wir die Länge, Breite und Höhe eines neuen Quaders mit l, b, bzw. h und erhalten somit V 0 = l b h. Da die Länge, Breite und Höhe des Quaders nach 19 Tagen Gebrauch jeweils um genau ein Drittel abnehmen, gilt V 1 = 2 3 l 2 3 b 2 3 h = 8 27 l b h = 8 27 V 0. Da wir davon ausgehen, dass sich das Volumen des Quaders jeden Tag um den gleichen Betrag vermindert, können wir mit Hilfe von V 0 und V 1 die tägliche Quaderabnutzung berechnen. Diese beträgt (V 0 V 1 ) : 19 = (V V 0) : 19 = V 0 : 19 = 1 27 V 0. Mit dem verbleibenden Quader kann also noch genau für weitere 8 27 V 0 : Tage Pulver zur Verfügung gestellt werden V 0 = 8 Aufgabe 2: Der Einfachheit halber bezeichnen wir die fünf Mitglieder der Expedition mit M 1, M 3, M 6, M 8, M 12, wobei die Indizes 1, 3, 6, 8 bzw. 12 die Minutenanzahl angeben, welche die jeweiligen Mitglieder für die Überquerung der Hängebrücke benötigen. Im Folgenden geben wir eine mögliche Reihenfolge der Überquerungen an, so dass die Mitglieder der Expedition innerhalb einer halben Stunde über die Schlucht gelangen: 1. M 1, M 3 überqueren die Brücke. 2. M 1 läuft zurück. 3. M 8, M 12 überqueren die Brücke. 4. M 3 läuft zurück. 5. M 1, M 6 überqueren die Brücke. 6. M 1 läuft zurück. 7. M 1, M 3 überqueren die Brücke.

2 Summiert man die Dauer der jeweiligen Überquerungen, d.h. die Maxima der Indices in den Schritten 1 bis 7, so ergibt sich = 29. Damit beträgt die Zeit der Überquerung 29 Minuten, also weniger als eine halbe Stunde. Aufgabe 3: In der oberen Abbildung sind alle im Text eindeutigen Aussagen vermerkt. Diese werden dann sukzessiv ergänzt bis man zum Ergebnis in der unteren Abbildung gelangt. Abbildung 1 und 2 Arthur Bert Carmen Daniela Emil Muenchen Politik Familie x Fernsehen x Musik Sport x München x Hamburg Berlin Köln Bayreuth x Hamburg Berlin Koeln Bayreuth Arthur Bert Carmen Daniela Emil Muenchen Politik x x x Familie x x x Fernsehen x x x Musik x x x Sport x x x München x x Hamburg x x Berlin x x Köln x x Bayreuth x x 13 x 14 x 15 x 16 x 17 x Hamburg Berlin Koeln Bayreuth Seite 1

3 1. Emil ist nicht 17, da der Brief über Familie von einer Person geschrieben wurde, die nicht 17 ist. 2. Carmen und Daniela sind jünger als 17, da ein Mädchen jünger als der Junge aus Berlin ist und das andere Mädchen über Politik schrieb und der Brief über Politik von einer Person geschrieben wurde, die nicht 17 Jahre alt ist. Bert ist 17, kommt aus Münchnen und schrieb über Sport. 3. Arthur schrieb nicht über Politik, da Arthur ein Junge ist. 4. Die Autorin des politischen Briefes ist nicht 16, da Arthur 16 ist. Weil Emil keine 16 ist, ist der Brief über Familie nicht von einer 16-jährigen Person geschrieben worden. 5. Der Brief über Musik, wurde ebenfalls nicht von einer 16-jährigen Person geschrieben, da die Person, die über Musik schrieb, 2 Jahre älter ist als die Person aus Köln. Arthur ist 16, kommt aus Hamburg und schrieb übers Fernsehen. 6. Die Person aus Köln ist 2 Jahre älter... die Person aus Köln ist 15 Jahre alt. 7. Eines der Mädchen ist ein Jahr jünger als der Junge aus Berlin. die Person aus Berlin ist älter als 13 und deshalb ist die Person aus Berlin 14 und die aus Bayreuth Junge aus Berlin Emil kommt aus Berlin, ist 14 Jahre alt und schrieb über Familie. 9. Carmen schrieb nicht aus Köln. Carmen kommt aus Bayreuth und Daniela aus Köln. Carmen ist 13 und Daniela Eines der Mädchen ist ein Jahr jünger als der Junge aus Berlin, das andere Mädchen schrieb über Politik. Das Mädchen, das über Politik schrieb, ist 15 und das andere Mädchen ist 13. Die Person, die über Politik schrieb, kommt aus Köln und die, die über Musik schrieb, aus Bayreuth. Daniela schrieb über Politik und Carmen über Musik. Aufgabe 4: Es gibt eine Eins mehr als Zweien. Begründung: Wir denken uns die Zahlen 1 bis 1000 wie folgt in eine Tabelle geschrieben ,

4 und zeigen, dass eine fortlaufende Quersummenbildung (wie sie in der Aufgabenstellung beschrieben wurde) jeder Zahl innerhalb einer Zeile der obigen Tabelle dasselbe Ergebnis liefert, nämlich gerade den Anfangswert der jeweiligen Zeile. Um sich dies klar zu machen, betrachten wir zunächst eine einzelne Zeile der obigen Tabelle etwa die erste. Wir erhalten die Zahlenfolge 1, 10, 19, 28, 37, 46, 55, 64, 53, 62,..., Was ist nun die Quersumme der jeweiligen Folgeglieder? Wir wissen, dass die Differenz zweier aufeinander folgender Glieder stets 9 beträgt. Betrachtet man wie sich die Quersumme einer Zahl verändert, sobald man 9 hinzuzählt, so stellt man fest, dass genau einer der folgenden Fälle auftritt. Fall 1 Die Quersumme erhöht sich um 9. Dies tritt genau dann ein, wenn die Einerstelle der ursprünglichen Zahl 0 beträgt. In diesem Fall erhöht sich die Einerstelle um 9. (Zum Beispiel ist die Quersumme von 200 gleich 2, die von = 209 gleich 11.) Fall 2 Die Quersumme bleibt gleich. Dies tritt genau dann ein, wenn die Einerstelle der ursprünglichen Zahl ungleich 0 und die Zehnerstelle ungleich 9 ist. In diesem Fall verringert sich die Einerstelle um 1 und die Zehnerstelle erhöht sich um 1. (Zum Beispiel ist die Quersumme von 43 gleich der Quersumme von = 52.) Fall 3 Die Quersumme erniedrigt sich um 9. Dies tritt genau dann ein, wenn die Einerstelle der ursprünglichen Zahl ungleich 0, die Zehnerstelle gleich 9 und die Hunderterstelle ungleich 9 ist. In diesem Fall verringert sich die Einerstelle um 1, die Zehnerstelle verringert sich um 9 und die Hunderterstelle erhöht sich um 1. (Zum Beispiel ist die Quersumme von 692 gleich 17, die Quersumme von = 701 gleicht 8.) Fall 4 Die Quersumme erniedrigt sich um 18. Die tritt genau dann ein, wenn die Einerstelle der ursprünglichen Zahl ungleich 0 ist und die Zehner- sowie die Hunderterstelle jeweils 9 betragen. In diesem Fall verringert sich die Einerstelle um 1, die Zehner- und Hunderterstelle verringern sich um 9 und die Tausenderstelle erhöht sich um 1. (Zum Beispiel ist die Quersumme von 991 gleich 19, die von = 1000 gleich 1.) In jedem der vier Fälle verändert die Addition mit 9 die Quersumme entweder gar nicht oder nur um ein Vielfaches von 9. Das bedeutet, dass jedes Glied dieser Zahlenfolge als Quersumme eine Zahl besitzt, die ebenfalls in derselben Zahlenfolge enthalten ist. Da die Quersumme jeder natürlichen Zahl ungleich 1 kleiner ist als die Zahl selbst, erhalten wir nach ausreichend häufigem Ersetzen der Folgeglieder durch ihre Quersummen eine Zahlenfolge, deren Glieder allesamt aus dem Anfangsglied der ursprünglichen Folge bestehen. In unserem Beispiel ergibt sich = = = Ersetzen wir nun alle Einträge der ersten Tabelle, d.h. alle Zahlen von 1 bis 1000 durch ihre Quersumme und wiederholen dies solange, bis sich kein Eintrag der Tabelle mehr ändert, so ergibt sich

5 Damit ist klar, dass es im Vergleich mit der Anzahl der Zweien genau eine Eins mehr gibt.

10. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1970/1971 Aufgaben und Lösungen

10. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1970/1971 Aufgaben und Lösungen 10. Mathematik Olympiade Saison 1970/1971 Aufgaben und Lösungen 1 OJM 10. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade Saison 988/989 Aufgaben und Lösungen OJM 28. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben 45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 11 1. Juni 2010 Rechenregeln für Determinanten Satz 62. (Determinanten von Dreiecksmatrizen) Es sei A eine obere oder untere n n-dreiecksmatrix.

Mehr

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW Lösungsvorschläge der dritten Runde 2017/2018 Aufgabe 1: Flugreisen Anton, Denis, Lukas, Max und Tom fliegen von fünf

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass6 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580621

Mehr

25+(2 3)+(2 3)+(2 3)+(2 3) = 21. Pfannkuchen übrig. Auch die Antwort 7 Pfannkuchen je für die Mutter, Max und Moritz wurde anerkannt.

25+(2 3)+(2 3)+(2 3)+(2 3) = 21. Pfannkuchen übrig. Auch die Antwort 7 Pfannkuchen je für die Mutter, Max und Moritz wurde anerkannt. Universität Bayreuth Mathematikwettbewerb 10. Tag der Mathematik 11. Juli 2015 Klassenstufe 5-6 / Lösungsvorschläge Bitte jeweils in Teams von 3-5 Schülern bearbeiten. Die Bewertung hängt neben der Korrektheit

Mehr

Probeunterricht 2008 an Wirtschaftsschulen in Bayern

Probeunterricht 2008 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen): Arbeitszeit Teil II (Textrechnen): 45 Minuten 45 Minuten Name.. Vorname.. Bewertung (Erstkorrektor) Bewertung

Mehr

13. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 6 Saison 1973/1974 Aufgaben und Lösungen

13. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 6 Saison 1973/1974 Aufgaben und Lösungen 13. Mathematik Olympiade Saison 1973/1974 Aufgaben und Lösungen 1 OJM 13. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Probeunterricht 2008 an Wirtschaftsschulen in Bayern

Probeunterricht 2008 an Wirtschaftsschulen in Bayern Probeunterricht 2008 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen): Arbeitszeit Teil II (Textrechnen): 45 Minuten 45 Minuten Name.. Vorname.. Bewertung

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5. ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 3 Punkte Beispiele Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 1. Der gegebene Stern hat 9 Strahlen. Nur ein Ausschnitt weist diese Anzahl an Strahlen auf: (D) 2. Damit die

Mehr

Lösungen zum Arbeitsblatt. Aufgabe 1 - Definition, Darstellung von Folgen

Lösungen zum Arbeitsblatt. Aufgabe 1 - Definition, Darstellung von Folgen zum Aufgabe 1 - Definition, Darstellung von Folgen (a) Was ist eine Folge? Eine Folge ist eine Funktion mit dem Definitionsbereich der natürlichen Zahlen ab der 1. Das Bild der Folge (sprich die a n )

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses 2011 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen /2 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE, OE2, OE3 Aufgaben OG, OG2, OG3, OG4 Aufgaben OS, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Dr. Dominik

Mehr

Freigegebene Items M4 2013

Freigegebene Items M4 2013 BIST-Ü M4 (2013)/Freigegebene Items 1 Freigegebene Items M4 2013 Beispielitems aus der Standardüberprüfung Mathematik 2013 für die 4. Schulstufe Die folgenden Beispielitems stammen aus der Standardüberprüfung

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

LOGO Runde 1: Wanderfreuden (Teil A)

LOGO Runde 1: Wanderfreuden (Teil A) Vergleiche deine Lösungen mit den folgenden Hinweisen! LOGO Runde 1: Wanderfreuden (Teil A) Aufgabe 1. Antwortsatz. Familie Geometrie wanderte am 1. Tag 10 km. Probe: Tag 1: 10 km, Tag 2: (10 + 3 =) 13

Mehr

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 Aufgaben der ersten Runde Klasse 3 Hinweis: Lies den Text der einzelnen Aufgaben. Du musst nicht unbedingt mit der ersten Aufgabe anfangen, sondern

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 13 10. Juni 2010 Kapitel 10. Lineare Gleichungssysteme In diesem Abschnitt untersuchen wir, welche Struktur die Gesamtheit aller Lösungen eines linearen

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Bei einer Folge a 1, a 2, a 3,... ist a 1 = 7 2 = 49. Für das nächste Glied der Folge nimmt man die Quersumme der Zahl, addiert 1 und quadriert diese Zahl, also a 2 = (4 + 9 + 1)

Mehr

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Merksatz Begriff der Funktion

Merksatz Begriff der Funktion Der Begriff Funktion Um uns klar zu machen, was eine Funktion (lateinisch functio) ist, betrachten wir uns die Gegenüberstellung nachfolgender Situationen. Die Temperatur eines Gewässers wird in verschiedenen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 2. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 2. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN Zur Wiederholung nehmen Sie bitte die Unterlagen des 1. Semesters zur Hand. Beispiel: Berechne x: x

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Einführung I Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 007 (Stand: 007, 4:9 Uhr) Wie viel Kilogramm Salzsäure der Konzentration % muss

Mehr

Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen

Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen Aufgaben Für alle mit einem Stern * bezeichneten Aufgaben sind in den Lösungen ausführliche Lösungswege angeführt! Für die restlichen

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $

$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $ $Id: gruppen.tex,v 1.12 2012/04/19 12:20:27 hk Exp $ 2 Gruppen 2.1 Isomorphe Gruppen In der letzten Sitzung hatten unter anderen den Begriff einer Gruppe eingeführt und auch schon einige Beispiele von

Mehr

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Wachstum mit oberer Schranke

Wachstum mit oberer Schranke 1 1.1 exponentielles Wir haben das eines Kontos mit festem Zinssatz untersucht. Der jährliche Zuwachs (hier die Zinsen) sind proportional zum Bestand (hier dem jeweiligen Kontostand). Die Annahme, daß

Mehr

Mathematik (A) Hauptschule

Mathematik (A) Hauptschule Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 2008 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung dürfen benutzt werden. Name: Klasse: Datum:

Mehr

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 1 OJM 14. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematisches Begründen

Mathematisches Begründen Mathematisches Begründen Daniel Daniel besucht die 6. Klasse, und seine Vorgehensweise zur Lösung der Aufgabe sieht folgendermaßen aus: Daniels Vorgehensweise: Daniels Systematik war aufgrund der konsequenten

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Probeunterricht 2015 an Wirtschaftsschulen in Bayern

Probeunterricht 2015 an Wirtschaftsschulen in Bayern Probeunterricht 2015 - Haupttermin Probeunterricht 2015 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 6: 45 Minuten Arbeitszeit Teil II (Textrechnen)

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 5. Semester ARBEITSBLATT 2 ABTRAGEN UND TEILEN VON STRECKEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 5. Semester ARBEITSBLATT 2 ABTRAGEN UND TEILEN VON STRECKEN Mathematik: Mag. Schmid Wolfgang rbeitsblatt 5. Semester REITSLTT TRGEN UND TEILEN VON STRECKEN 3 eispiel: Der Punkt (3/-1) soll um 10 Einheiten in Richtung des Vektors s = 4 verschoben werden. erechnen

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Lösungsblatt Aufgabe 1.32

Lösungsblatt Aufgabe 1.32 Aufgabenstellung: Die Geschwindigkeit eines Körpers ist für t 1 durch v t = 10 10 gegeben. t 1. Schätze die Länge des im Zeitintervall [1 4] zurückgelegten Weges durch Ober- und Untersumme ab, wobei das

Mehr

ANNA und LILI entdecken besondere Zahlen! Zahlenmuster erkennen, nutzen und erklären

ANNA und LILI entdecken besondere Zahlen! Zahlenmuster erkennen, nutzen und erklären I Zahlen und Größen Beitrag 51 ANNA- und LILI-Zahlen entdecken 1 von 36 ANNA und LILI entdecken besondere Zahlen! Zahlenmuster erkennen, nutzen und erklären Von Michaela Müller-Heinze, Bruchsal, und Joachim

Mehr

muss jeweils 33 ergeben. Es gibt immer mindestens 4 und höchstens 7 Plusglieder.

muss jeweils 33 ergeben. Es gibt immer mindestens 4 und höchstens 7 Plusglieder. Dossenberger Gymnasium Günzburg 5d 1. Auf einer Uhr finden sich die zwölf Zahlen von Eins bis Zwölf. (a) Bilde aus allen zwölf Zahlen einen Rechenausdruck, der Null ergibt. Versuche, mehrere Lösungen zu

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 200 LÖSUNGEN GRUPPE BENJAMIN ) Josef hat 7 Stücke Schnur. Er schneidet eines entzwei. Wie viele Stücke hat er jetzt? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 6 Stücke Schnur bleiben unversehrt,

Mehr

Orientieren im Zahlenraum bis 1 Million

Orientieren im Zahlenraum bis 1 Million Inhalt A Orientieren im Zahlenraum bis 1 Million 1 Stellentafel und Zahlenstrahl 6 2 Nachbarzahlen und Runden 8 3 Anordnen 10 B Addieren und Subtrahieren 1 Mündliches Addieren und Subtrahieren 12 2 Schriftliches

Mehr

Teil 1. Bruchrechnen in Kurzform DEMO. Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10

Teil 1. Bruchrechnen in Kurzform DEMO. Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10 Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Zentrale Abschlussprüfung Sekundarstufe I

Zentrale Abschlussprüfung Sekundarstufe I Die Senatorin für Kinder und Bildung Freie Hansestadt Bremen Zentrale Abschlussprüfung Sekundarstufe I Grundlegendes Anforderungsniveau 2016 Mathematik (B) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

Download. Hausaufgaben Mathematik Klasse 7. Hausaufgaben Mathematik. Hausaufgaben Ganze Zahlen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Mathematik Klasse 7. Hausaufgaben Mathematik. Hausaufgaben Ganze Zahlen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben Mathematik Klasse 7 Hausaufgaben Ganze Zahlen Sekundarstufe I Otto Mayr Downloadauszug aus dem Originaltitel: Hausaufgaben Mathematik Abwechslungsreich üben in drei Differenzierungsstufen

Mehr

Lösungsskizzen zur Präsenzübung 11

Lösungsskizzen zur Präsenzübung 11 Lösungsskizzen zur Präsenzübung Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 05/06 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 06 von: Mirko

Mehr

Beispiel. Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung

Beispiel. Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung Beispiel Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung Teil 2: Klausur Schreibe deinen Namen und deine Schule auf alle

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.

Mehr

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1/1 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 6

Erste schriftliche Wettbewerbsrunde. Klasse 6 Erste schriftliche Wettbewerbsrunde Die hinter den Lösungen stehenden Prozentzahlen zeigen, wie viel Prozent der Wettbewerbsteilnehmer die gegebene Lösung angekreuzt haben. Die richtigen Lösungen werden

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-7 WIEDERHOLUNG VON GLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-7 WIEDERHOLUNG VON GLEICHUNGEN ARBEITSBLATT -7 WIEDERHOLUNG VON GLEICHUNGEN Zur Wiederholung nehmen Sie bitte die Unterlagen des 1. Semesters zur Hand. Beispiel: Berechne : + 8 5 3 + 3 8 3 4 Lösung: + 8 5 3 3 Wir bringen alle Brüche

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen. 1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder. Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik

Mehr

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mathematik Olympiade Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560331 Lösung 10

Mehr

Sachinformation Umkehrzahlen

Sachinformation Umkehrzahlen Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet

Mehr

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum:

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum: Lösungen Lösungen Name: Klasse: Datum: 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Nachtermin Arbeitszeit Teil I (Zahlenrechnen) Seiten bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 8: 45 Minuten 45 Minuten Name:....

Mehr

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr.

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr. Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 23 Bergische Universität Wuppertal Autor: Prof. Dr. Roland Pulch Aufgabe: Konstruiere Zufallszahlen aus der Menge {,, 2, 3, 4, 5, 6, 7,

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 8 18. Mai 2010 Kapitel 8. Vektoren (Fortsetzung) Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 80. (Lineare (Un-)Abhängigkeit)

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Probeunterricht 2008 an Wirtschaftsschulen in Bayern

Probeunterricht 2008 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen): Arbeitszeit Teil II (Textrechnen): 45 Minuten 45 Minuten Name.. Vorname.. Bewertung (Erstkorrektor) Bewertung

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 15 In dieser Vorlesung besprechen wir, wie sich im Dezimalsystem der Nachfolger, die Größergleichrelation und die Addition darstellen.

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt 10 Prof. Dr. J. Csirik 7. Januar 00 randt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am 16.

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Wie man das Problem des Patensohns von Deutschland löst

Wie man das Problem des Patensohns von Deutschland löst 1. Mathematik Olympiade. Stufe (Regionalrunde) Klasse 5 Saison 1991/199 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr