5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht.

Größe: px
Ab Seite anzeigen:

Download "5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht."

Transkript

1 Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar sein. Schreibe alle Nebenrechnungen auf dieses Blatt.. Berechne: = : 53 =. Berechne die Zahl, für die der Platzhalter steht = A: Der Platzhalter steht für.. Zeile. Zeile Formuliere eine Regel, nach der die Figur aufgebaut ist. Ergänze die fünf freien Plätze in der untersten Reihe der Figur sinnvoll.

2 Probeunterricht 00 Mathematik Seite von 4 5. Jgst.. Tag 4. Hans füllt gleiche Lutscher in ein Glas. Das leere Glas wiegt 30 g, das volle Glas wiegt kg 66 g. Acht Lutscher wiegen zusammen 56 g. Wie viele Lutscher hat Hans in das Glas gefüllt? 5. A: Hans hat Lutscher in das Glas gefüllt. Wenn du die Ziffern einer Zahl addierst, erhältst du deren Quersumme. Beispiel: 34 hat die Quersumme = 7. Gib alle zweistelligen Zahlen mit der Quersumme 9 an. Gibt es eine dreistellige Zahl mit der Quersumme 9? Begründe deine Antwort. 6. Spiegle das gegebene Dreieck an der Spiegelachse. Zeichne mit Bleistift und verwende ein Geodreieck. Spiegelachse

3 Probeunterricht 00 Mathematik Seite 3 von 4 5. Jgst.. Tag 7. Berechne und gib das Ergebnis in der angegebenen Einheit an. 75 cm + 5,3 dm + m 7 cm + 00 mm = m 8. Im Erlebnisschwimmbad Sun & Fun werden folgende Eintrittspreise verlangt: Eintrittspreise Erwachsene Kinder bis Jahre -Stunden-Karte,00 5,50 3-Stunden-Karte 4,00 7,00 4-Stunden-Karte 7,00 8,50 Tageskarte 3,00,50 Nachgebühr pro angefangene 0 min,00 0,50 Herr und Frau Regenwetter besuchen mit ihrem Sohn Stefan ( Jahre) und ihrer Tochter Sabine (5 Jahre) das Erlebnisschwimmbad. Sabine schlägt an der Kasse vor, dass für jede Person eine Tageskarte gelöst wird. Berechne den Eintrittspreis für die Familie. A: Der Eintrittspreis beträgt. Stefan schlägt vor, keine Tageskarten, sondern 4-Stunden-Karten zu nehmen. Berechne, wie viel die Familie bezahlt, wenn sie das Schwimmbad von 9:00 Uhr bis 3:30 Uhr besucht. A: Die Familie bezahlt.

4 Probeunterricht 00 Mathematik Seite 4 von 4 5. Jgst.. Tag 9. Selina muss im Mathematikunterricht ein Quadrat mit den Eckpunkten A, B, C und D zeichnen. Der Lehrer gibt die A und C im Gitternetz vor. Ermittle die Koordinaten der fehlenden B und D durch eine Zeichnung im vorgegebenen Gitternetz. y 0 C 5 A O 5 0 x 0. Hier siehst du ein Beispiel, wie man mit 3 n genau 3 Euro erhält. 50-Cent- -Euro- -Euro- Anzahl 0 Finde nun zwei Möglichkeiten, mit 7 n genau 3 Cent zu erhalten.. Möglichkeit: Anzahl -Cent- -Cent- 5-Cent- 0-Cent- 0-Cent-. Möglichkeit: Anzahl :

5 Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar sein. Schreibe alle Nebenrechnungen auf dieses Blatt.. Berechne: = : 53 = 4 3 = = K5. Berechne die Zahl, für die der Platzhalter steht = 4 9 K = : = 93 A: Der Platzhalter steht für. 93. Zeile. Zeile K6 K Formuliere eine Regel, nach der die Figur aufgebaut ist. z. B.: Am Anfang und am Ende jeder Zeile steht die Zeilennummer. Die Zahlen dazwischen erhält man, wenn man jeweils die beiden (links und rechts) darüberstehenden Zahlen zusammenzählt. Ergänze die fünf freien Plätze in der untersten Reihe der Figur sinnvoll.

6 Probeunterricht 00 Mathematik Seite von 4 5. Jgst.. Tag 4. Hans füllt gleiche Lutscher in ein Glas. Das leere Glas wiegt 30 g, das volle Glas wiegt kg 66 g. Acht Lutscher wiegen zusammen 56 g. Wie viele Lutscher hat Hans in das Glas gefüllt? 0 K 066 g 30 g = 756 g 56 g : 8 = 7 g 756 g : 7 g = A: Hans hat 08 Lutscher in das Glas gefüllt. Wenn du die Ziffern einer Zahl addierst, erhältst du deren Quersumme. Beispiel: 34 hat die Quersumme = 7. Gib alle zweistelligen Zahlen mit der Quersumme 9 an. K K Ein Punkt ab 5 richtigen 8, 7, 36, 45, 54, 63, 7, 8, 90 Zahlen. Zwei für alle richtigen Zahlen. Gibt es eine dreistellige Zahl mit der Quersumme 9? Begründe deine Antwort. z. B.: Nein, es gibt keine solche dreistellige Zahl, da die größtmögliche Quersumme = 7 ist. 6. Spiegle das gegebene Dreieck an der Spiegelachse. Zeichne mit Bleistift und verwende ein Geodreieck. K4 Spiegelachse Ein Punkt für zwei richtig gespiegelte Eckpunkte des Dreiecks. Beide für die vollständige Lösung.

7 Probeunterricht 00 Mathematik Seite 3 von 4 5. Jgst.. Tag 7. Berechne und gib das Ergebnis in der angegebenen Einheit an. 75 cm + 5,3 dm + m 7 cm + 00 mm = 4,55 m 0 K5 75 cm + 53 cm + 07 cm + 0 cm = 455 cm 3 8. Im Erlebnisschwimmbad Sun & Fun werden folgende Eintrittspreise verlangt: Eintrittspreise Erwachsene Kinder bis Jahre -Stunden-Karte,00 5,50 3-Stunden-Karte 4,00 7,00 4-Stunden-Karte 7,00 8,50 Tageskarte 3,00,50 0 K Nachgebühr pro angefangene 0 min,00 0,50 Herr und Frau Regenwetter besuchen mit ihrem Sohn Stefan ( Jahre) und ihrer Tochter Sabine (5 Jahre) das Erlebnisschwimmbad. Sabine schlägt an der Kasse vor, dass für jede Person eine Tageskarte gelöst wird. Berechne den Eintrittspreis für die Familie. 3 3 = ,50 = 80,50 A: Der Eintrittspreis beträgt 80,50. Stefan schlägt vor, keine Tageskarten, sondern 4-Stunden-Karten zu nehmen. Berechne, wie viel die Familie bezahlt, wenn sie das Schwimmbad von 9:00 Uhr bis 3:30 Uhr besucht. 4-Stunden-Karte: ,50 = 59,50 Nachgebühr: 6 + 0,50 = 7 Gesamt: 59, = 66,50 A: Die Familie bezahlt 66,50. 3

8 Probeunterricht 00 Mathematik Seite 4 von 4 5. Jgst.. Tag 9. Selina muss im Mathematikunterricht ein Quadrat mit den Eckpunkten A, B, C und D zeichnen. Der Lehrer gibt folgende vor: A ( 3 ) und C ( 8 6 ). Ermittle die Koordinaten der fehlenden B und D durch eine Zeichnung im vorgegebenen Gitternetz. K4 K5 y 0 B ( 6,5,5 ) D ( 3,5 7,5 ) D 5 C Für B und D in der Zeichnung je einen Punkt, für die richtig abgelesenen Koordinaten zusammen einen Punkt. A B O 5 0 x 3 0. Hier siehst du ein Beispiel, wie man mit 3 n genau 3 Euro erhält. 50-Cent- -Euro- -Euro- Anzahl 0 K Finde nun zwei Möglichkeiten, mit 7 n genau 3 Cent zu erhalten. -Cent- -Cent- 5-Cent- 0-Cent- 0-Cent-. Möglichkeit: Anzahl z. B.: Möglichkeit: Anzahl z. B.: : 9

9 Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar sein. Schreibe alle Nebenrechnungen auf dieses Blatt.. Ich denke mir eine natürliche Zahl x. Kreuze an, welche Gleichung jeweils zum Text passt.. Die Differenz von 573 und 89 ist der 9. Teil meiner gedachten Zahl = 9 : x = x : 9 (573 89) : 9 = x Wenn ich von meiner gedachten Zahl 48 subtrahiere und das Ergebnis versechsfache, so erhalte ich : x = (x 48) : 6 = 34 (x 48) 6 = 34 In einer Kleinstadt gibt es 00 Haushalte. In jedem Haushalt entstehen 30 Kilogramm Hausmüll pro Woche. Wie viel Kilogramm Hausmüll fallen in dieser Kleinstadt in vier Wochen an? A: In dieser Kleinstadt fallen in vier Wochen kg Hausmüll an. In einer Großstadt ergeben sich in einer Woche 840 Müllcontainer mit Hausmüll, die mit Güterwagons ins Heizkraftwerk transportiert werden. Jeder der Güterwagons ist insgesamt m lang und wird mit 0 Müllcontainern beladen. Welche Gesamtlänge ergibt sich, wenn alle beladenen Güterwagons aneinander gekoppelt werden? A: Die Gesamtlänge beträgt m. 3. Bei einem Quader wird ein Teil wie abgebildet abgeschnitten. abgeschnittener Körper Restkörper Wie viele Begrenzungsflächen hat der abgeschnittene Körper? Wie viele Kanten hat der Restkörper? Wie viele Ecken hat der Restkörper?

10 Probeunterricht 00 Mathematik Seite von 4 5. Jgst.. Tag 4. Gegeben ist der Plan eines Gartens. Bestimme den Flächeninhalt des Gartens. Zeichnung nicht maßstabsgetreu! 3 m 4 m 9 m 3 m m 8 m Die Zeichnung ist nicht maßstabsgetreu. A: Der Garten hat einen Flächeninhalt von m. Bestimme, wie viel Meter Zaun benötigt werden, wenn der Garten eingezäunt wird. 5. A: Es werden m Zaun benötigt. Der Reiterverein Galopp möchte eine rechteckige Pferdekoppel, die 40 m lang ist, einzäunen. Dazu wird Draht in zwei Reihen übereinander mit Kunststoffhaltern an Pfählen befestigt. Insgesamt werden 80 m von diesem Draht verbraucht. Berechne, wie breit die Pferdekoppel ist. A: Die Pferdekoppel ist m breit. Ein Kunststoffhalter kostet,80, ein Meter Draht kostet,50. Insgesamt mussten für den verbrauchen Draht und die Halter zusammen 940,80 bezahlt werden. Berechne, wie viele Kunststoffhalter gekauft wurden. A: Es wurden Kunststoffhalter gekauft.

11 Probeunterricht 00 Mathematik Seite 3 von 4 5. Jgst.. Tag 6. Die unten gezeigten Figuren sind aus den Buchstaben S und T zusammengesetzt. Beispiel: Male in beiden Figuren das T farbig aus: 7. Du planst mit dem Zug von Bad Kissingen nach Fürth zu fahren. Bahnhof/Haltestelle Zeit Gleis Zug Bad Kissingen ab 4:05 EB Schweinfurt Hbf an 4:9 8 Schweinfurt Hbf ab 4:4 7 RB 3477 Bamberg an 5:3 Bamberg ab 5:30 3 RE 4979 Fürth Hbf an 6:07 3 Löse mithilfe dieses Fahrplans folgende Aufgaben: Berechne, wie lange du von der Abfahrt in Bad Kissingen bis zur Ankunft in Fürth unterwegs bist. Dein Freund Daniel behauptet, dass die Fahrzeit von Bamberg nach Fürth länger ist als die Fahrzeit von Schweinfurt nach Bamberg. Begründe, ob Daniel recht hat. Gib deinen Lösungsweg an. c) A: Der volle Fahrpreis von Bad Kissingen nach Fürth beträgt 3,0. Du besitzt jedoch eine Bahncard 50 und musst daher nur den halben Fahrpreis bezahlen. Wie viel Wechselgeld erhältst du zurück, wenn du deine Fahrkarte mit einem 50- -Schein bezahlst? A: Du erhältst zurück.

12 Probeunterricht 00 Mathematik Seite 4 von 4 5. Jgst.. Tag 8. Alle Schülerinnen und Schüler einer 5. Klasse haben ein Würfelexperiment durchgeführt und ausgewertet. Insgesamt wurde 54-mal gewürfelt. Das Ergebnis des Experiments ist in einem Säulendiagramm dargestellt, nur die Säule für die Augenzahl fehlt noch. Würfelexperiment 4 0 Anzahl Augenzahl Wie oft wurde eine höhere Augenzahl als 3 gewürfelt? A: Es wurde -mal eine höhere Augenzahl als 3 gewürfelt. Timo behauptet, es wurde häufiger eine ungerade als eine gerade Augenzahl gewürfelt. Begründe, ob Timo recht hat. Gib deinen Lösungsweg an. A: c) Berechne, wie oft die Augenzahl gewürfelt wurde und zeichne sodann die fehlende Säule in das Diagramm ein. :

13 Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar sein. Schreibe alle Nebenrechnungen auf dieses Blatt.. Ich denke mir eine natürliche Zahl x. Kreuze an, welche Gleichung jeweils zum Text passt.. Die Differenz von 573 und 89 ist der 9. Teil meiner gedachten Zahl = 9 : x x = x : 9 (573 89) : 9 = x Wenn ich von meiner gedachten Zahl 48 subtrahiere und das Ergebnis versechsfache, so erhalte ich : x = (x 48) : 6 = 34 x (x 48) 6 = 34 In einer Kleinstadt gibt es 00 Haushalte. In jedem Haushalt entstehen 30 Kilogramm Hausmüll pro Woche. Wie viel Kilogramm Hausmüll fallen in dieser Kleinstadt in vier Wochen an? K3 0 K 30 kg 4 = 0 kg 00 0 kg = kg A: In dieser Kleinstadt fallen in vier Wochen kg Hausmüll an. In einer Großstadt ergeben sich in einer Woche 840 Müllcontainer mit Hausmüll, die mit Güterwagons ins Heizkraftwerk transportiert werden. Jeder der Güterwagons ist insgesamt m lang und wird mit 0 Müllcontainern beladen. Welche Gesamtlänge ergibt sich, wenn alle beladenen Güterwagons aneinander gekoppelt werden? 840 : 0 = 4 4 m = 504 m A: Die Gesamtlänge beträgt 504 m. 3. Bei einem Quader wird ein Teil wie abgebildet abgeschnitten. Wie viele Begrenzungsflächen hat der abgeschnittene Körper? 5 K4 abgeschnittener Körper Restkörper Wie viele Kanten hat der Restkörper? Wie viele Ecken hat der Restkörper? 5 0 3

14 Probeunterricht 00 Mathematik Seite von 4 5. Jgst.. Tag 4. Gegeben ist der Plan eines Gartens. Bestimme den Flächeninhalt des Gartens. Zeichnung nicht maßstabsgetreu! 3 m 0 K 9 m m 3 m Flächeninhalte aller Teilflächen richtig berechnet 4 m 8 m Die Zeichnung ist nicht maßstabsgetreu. A: Der Garten hat einen Flächeninhalt von 53 m. Bestimme, wie viel Meter Zaun benötigt werden, wenn der Garten eingezäunt wird. 9 m + 8 m + 4 m + 3 m + 3 m + 3 m + m + 8 m = 60 m A: Es werden 60 m Zaun benötigt. 5. Der Reiterverein Galopp möchte eine rechteckige Pferdekoppel, die 40 m lang ist, einzäunen. Dazu wird Draht in zwei Reihen übereinander mit Kunststoffhaltern an Pfählen befestigt. Insgesamt werden 80 m von diesem Draht verbraucht. 0 K Berechne, wie breit die Pferdekoppel ist. 80 m : = 40 m 40 m 40 m = 60 m 60 m : = 30 m A: Die Pferdekoppel ist 30 m breit. 3 Ein Kunststoffhalter kostet,80, ein Meter Draht kostet,50. Insgesamt mussten für den verbrauchten Draht und die Halter zusammen 940,80 bezahlt werden. Berechne, wie viele Kunststoffhalter gekauft wurden. 80,50 = , = 40,80 40,80 :,80 = 86 A: Es wurden 86 Kunststoffhalter gekauft. 3

15 Probeunterricht 00 Mathematik Seite 3 von 4 5. Jgst.. Tag 6. Die unten gezeigten Figuren sind aus den Buchstaben S und T zusammengesetzt. Beispiel: Male in beiden Figuren das T farbig aus: K4 7. Du planst mit dem Zug von Bad Kissingen nach Fürth zu fahren. Bahnhof/Haltestelle Zeit Gleis Zug Bad Kissingen ab 4:05 EB Schweinfurt Hbf an 4:9 8 Schweinfurt Hbf ab 4:4 7 RB 3477 Bamberg an 5:3 Bamberg ab 5:30 3 RE 4979 Fürth Hbf an 6:07 3 K5 K c) Löse mithilfe dieses Fahrplans folgende Aufgaben: Berechne, wie lange du von der Abfahrt in Bad Kissingen bis zur Ankunft in Fürth unterwegs bist. h min Dein Freund Daniel behauptet, dass die Fahrzeit von Bamberg nach Fürth länger ist als die Fahrzeit von Schweinfurt nach Bamberg. Begründe, ob Daniel recht hat. Gib deinen Lösungsweg an. von Bamberg nach Fürth: 37 min von Schweinfurt nach Bamberg: 4 min A: Daniel hat nicht recht. Der volle Fahrpreis von Bad Kissingen nach Fürth beträgt 3,0. Du besitzt jedoch eine Bahncard 50 und musst daher nur den halben Fahrpreis bezahlen. Wie viel Wechselgeld erhältst du zurück, wenn du deine Fahrkarte mit einem 50- -Schein bezahlst? 3 0 K 3,0 : =,55 50,55 = 38,45 A: Du erhältst 38, 45 zurück.

16 Probeunterricht 00 Mathematik Seite 4 von 4 5. Jgst.. Tag 8. Alle Schülerinnen und Schüler einer 4. Klasse haben ein Würfelexperiment durchgeführt und ausgewertet. Insgesamt wurde 54-mal gewürfelt. Das Ergebnis des Experiments ist in einem Säulendiagramm dargestellt, nur die Säule für die Augenzahl fehlt noch. K K K4 Würfelexperiment Anzahl Augenzahl Wie oft wurde eine höhere Augenzahl als 3 gewürfelt? A: Es wurde 3 -mal eine höhere Augenzahl als 3 gewürfelt. Timo behauptet, es wurde häufiger eine ungerade als eine gerade Augenzahl gewürfelt. Begründe, ob Timo recht hat. Gib deinen Lösungsweg an. ungerade Augenzahl: = 6 gerade Augenzahl: 54 6 = 8 A: Timo hat nicht recht. c) Berechne, wie oft die Augenzahl gewürfelt wurde und zeichne sodann die fehlende Säule in das Diagramm ein = 0 : 3

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2008 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2004/2005 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

Hauptschule G-Kurs. Testform B

Hauptschule G-Kurs. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

Eingangstest lineare Gleichungssysteme

Eingangstest lineare Gleichungssysteme Eingangstest lineare Gleichungsssteme Lineare Gleichung mit einer Variablen Löse die Gleichung. 7 + = 0 ( + 9) = 5 8 c) ( 7) = ( + 8) = = = 5 Stelle zu den Sachproblemen geeignete Gleichungen auf und löse

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2014/2015 Datum der Durchführung 4. September 2014 ORIENTIERUNGSARBEIT Primarschule Mathematik Lösungen und

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 010 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.06.01 O Teil A: 8.0 Uhr bis 9.00 Uhr (Teil B: 9.10 Uhr bis 10.0 Uhr) MATHEMATIK Teil A Bei Teil A der besonderen Leistungsfeststellung

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Liebe Schülerin, lieber Schüler, bitte trage zuerst deinen Namen und deine Klasse ein. Für die Aufgaben, die du gleich

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Arbeitsbeginn: Bearbeitungszeit: 11:00 Uhr 120 Minuten

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2007 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du darfst in

Mehr

Download. Führerscheine Funktionen. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Funktionen. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hard Seifert Führerscheine Funktionen Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Funktionen Schnell-Tests zur Lernstandserfassung Dieser

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1997/98 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender

Mehr

Teil A Arbeitsblatt. Teil B Pflichtaufgaben

Teil A Arbeitsblatt. Teil B Pflichtaufgaben Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender

Mehr

Mathematik Aufgabenheft A1 für Schülerinnen und Schüler

Mathematik Aufgabenheft A1 für Schülerinnen und Schüler A1 Mathematik Aufgabenheft A1 für Schülerinnen und Schüler Name: Klasse/Kurs: Kennnummer: Zentrale Lernstandserhebungen in der Jahrgangsstufe 9 Nordrhein-Westfalen 2004 2004 Herausgeber: Ministerium für

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 0 sind.. Schreib als Zahl: Deutschland hat 8 Millionen Einwohner. China hat Milliarde

Mehr

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006 , Jahrgang 8, Kurs I 9. März 006 Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen enthalten: I II III Allgemeine Hinweise zur Arbeit Aufgabenblätter in den Versionen A und B Lösungsskizzen, Punkteverteilung

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Angewandte Aufgaben für lineare Gleichungen

Angewandte Aufgaben für lineare Gleichungen Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/5 Angewandte Aufgaben für lineare Gleichungen Gleichungen sind ein Hilfsmittel, mit dem schwierige Probleme systematisch in lösbare Teilprobleme

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen!

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! 1. Teil Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! Teil 1 Kurzform Kreuze die richtigen Lösungen an bzw. schreibe dein Ergebnis in den Antwortbereich. Für Nebenrechnungen

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

Übung 15. Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit:

Übung 15. Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit: Übung 15 Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit: Pflichtaufgabe 1 Im Getränkemarkt kostet eine 0,7 l Flasche Mineralwasser 0,34. Dazu kommen pro Flasche 15 Cent Pfand. a) Ermittle durch einen

Mehr

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner. KANTON AARGAU Abschlussprüfung der Bezirksschule Aargau 2013 Mathematik 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 120 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Bilderrahmen und Bilderhalter Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Haltevorrichtung für Bilder Zeitaufwand:

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

In Tabellen hoch- und runterrechnen

In Tabellen hoch- und runterrechnen Vertiefen 1 In Tabellen hoch- und runterrechnen zu Aufgabe 1 Schulbuch, Seite 240 1 Übersicht durch Tabellen Pia, Till und Merve haben unterschiedliche Tabellen angelegt, um drei Hostels in Barcelona zu

Mehr

Lehrberuf Tischlerei und Tischlereitechnik

Lehrberuf Tischlerei und Tischlereitechnik EIGNUNGSTEST Lehrberuf Tischlerei und Tischlereitechnik Firmenstempel Jänner 2005 Allgemeine Informationen: Der vorliegende Eignungstest enthält diverse Aufgaben, ein Auswertungsblatt und die dazugehörigen

Mehr

Qualifizierender Hauptschulabschluss Schuljahr 2003/2004. Mathematik

Qualifizierender Hauptschulabschluss Schuljahr 2003/2004. Mathematik Prüfungstag: Dienstag, 8. Juni 2004 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2003/2004 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Anwendungen in Sachzusammenhängen

Anwendungen in Sachzusammenhängen Anwendungen in Sachzusammenhängen 1. Vor drei Jahren war Hans viermal so alt als Eva vor drei Jahren alt war. In fünf Jahren ist Hans doppelt so alt als Eva in fünf Jahren alt sein wird. Wie alt sind die

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE AUFGABENGRUPPE A 06.03.2014 Hinweis: Von jeder Schülerin/jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet,

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 2012/13 Jahrgangsstufe 7 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 Name: Note: Klasse: Punkte: 1 Aufgabe 1 In einer Umfrage wurden 640 Schüler befragt: "Für welche

Mehr

D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt.

D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt. D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt. Schätzen Sie auf eine halbe Stunde genau, wie lange es dauert, den Tank zu füllen. A. 4 Stunden B. 3 1

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel Inhalt A Lösungsstrategien 1 Lösungsstrategien für Text- und Sachaufgaben 6 2 Lösungsstrategie für geometrische Sachaufgaben 11 3 Lösungsstrategie für einfache Gleichungen, lineare Gleichungssysteme und

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2015 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Aufnahmeprüfung 2013 Für Kandidatinnen und Kandidaten mit herkömmlichem Lehrmittel Mathematik Name:... Nummer:... Dauer der Prüfung:

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Fördermaterialienordner Mathematik 5/6

Fördermaterialienordner Mathematik 5/6 Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen

Mehr

Erstellen Sie eine Wertetabelle für die Graphen der Funktionen, und zeichnen Sie den Graphen.

Erstellen Sie eine Wertetabelle für die Graphen der Funktionen, und zeichnen Sie den Graphen. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Funktionen 1. Erstellen Sie

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Ergebnisse des Tests zur Selbsteinschätzung

Ergebnisse des Tests zur Selbsteinschätzung Ergebnisse des Tests zur Selbsteinschätzung durchgeführt in der Vorlesung Einführung in die Mathematikdidaktik In der Vorlesung Einführung in die Mathematikdidaktik wurde ein mittlerer Schulabschlusstest

Mehr

Informationen und Tests Informationen zum Test 149 Teste dich! Ähnlichkeit 153

Informationen und Tests Informationen zum Test 149 Teste dich! Ähnlichkeit 153 2 Geometrie 2.2 Informationen und Tests Informationen zum Test 149 Teste dich! 153 Arbeitsblätter in zwei Niveaustufen Ähnliche Figuren erkennen 165 Mit dem Maßstab rechnen und zeichnen 169 Streckungen

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Saarland Ministerium für Bildung, Kultur und Wissenschaft

Saarland Ministerium für Bildung, Kultur und Wissenschaft Abschlussprüfung 2004 2003/2004 2001 Saarland Ministerium für Bildung, Kultur und Wissenschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Mathematik. Aufgabenheft. Testteil. für Schülerinnen und Schüler. Name: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005

Mathematik. Aufgabenheft. Testteil. für Schülerinnen und Schüler. Name: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005 A Mathematik Aufgabenheft Testteil A1 für Schülerinnen und Schüler Name: Klasse/Kurs: Kennnummer: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005 Lernstandserhebung 2005 Mathematik Aufgabenheft

Mehr

Aufgabenblatt. Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9. 4cm 8cm 4cm KM B.-W.

Aufgabenblatt. Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9. 4cm 8cm 4cm KM B.-W. Fach: M.th.maük - Grundauigab.n Hauottermin'1998 Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9 Aufgabenblatt Arbalt z.ft: ttg Mhuron Jede tichtig gelöste

Mehr

DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel: DOWNLOAD Karin Schwacha Arbeiten im Baumarkt Mathe-Aufgaben aus dem Berufsalltag: Pools, Pumpen, Wassermengen Mathe-Aufgaben aus dem Berufsalltag Klasse 8 10 auszug aus dem Originaltitel: Aus vielen Berufen

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen

Mehr

Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen

Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen Prüfungsfach: Mathematik Prüfungstag: Donnerstag, 1. Juli 2010 Arbeitszeit: 180 Minuten Zugelassene Hilfsmittel: Elektronischer,

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Sortiere die folgenden Zahlen der Größe nach, beginne mit der kleinsten Zahl: 4 0 ;,499; ; 0,8; ( ) ;,; ; 0. Berechne: a) ( 7) + ( ) b) 8 ( ) + ( 7) +, c) ( 7) 8+ ( 6+ ) :( )

Mehr

Schienenersatzverkehr (SEV) Schweinfurt Schweinfurt Stadt Haßfurt

Schienenersatzverkehr (SEV) Schweinfurt Schweinfurt Stadt Haßfurt Würzburg Hbf Schweinfurt Hbf Bamberg Kursbuchstrecke 810 Gültig am 8. November 2015 (bis 14.30 Uhr) Schienenersatzverkehr (SEV) Schweinfurt Schweinfurt Stadt Haßfurt Mainfrankenbahn Erläuterungen zum SEV-Symbol

Mehr

Musteraufgaben für die schriftliche Abschlussarbeit in Mathematik

Musteraufgaben für die schriftliche Abschlussarbeit in Mathematik Musteraufgaben für die schriftliche Abschlussarbeit in Mathematik Förderschule Schwerpunkt Lernen, 9. Schuljahrgang Schuljahr 2007 / 08 1 Die hier vorliegende Musteraufgabensammlung soll eine Orientierung

Mehr

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der

Mehr

Römische Zahlen I V X L C D M 1 5 10 50 100 500 1000. Der kleinere Wert vor dem größeren wird subtrahiert. a) DCCXIX b) CCXC c) CCCXCIV d) DCXCI

Römische Zahlen I V X L C D M 1 5 10 50 100 500 1000. Der kleinere Wert vor dem größeren wird subtrahiert. a) DCCXIX b) CCXC c) CCCXCIV d) DCXCI Römische Zahlen Römische Zahlzeichen I V X L C D M 1 5 10 50 100 500 1000 L erinnert an ein halbes C. XVIII = 10 + 5 + 3 = 18 LIX = 50+10 1 = 59 Dasselbe Zeichen steht höchstens dreimal hintereinander.

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

VCD Service 2015/2016. Das Preissystem. Deutschen Bahn AG

VCD Service 2015/2016. Das Preissystem. Deutschen Bahn AG VCD Service 2015/2016 Das Preissystem der Deutschen Bahn AG Die wichtigsten Regeln zum 13. Dezember 2015 Die Deutsche Bahn AG (DB AG) verzichtet zum Fahrplanwechsel am 13. Dezember 2015 auf die Anhebung

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

Terme und Formeln Umgang mit Termen

Terme und Formeln Umgang mit Termen Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% =

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% = Prozentrechnung Aufgabe: In einer Klasse 7 mit 32 Schülern haben sich 25% für das Fach Latein entschieden. Wie viele Schüler sind das? Prozent bedeutet: von hundert; bezogen auf die Anzahl 25% = 25 Man

Mehr