Hochbegabungsförderung in der Praxis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hochbegabungsförderung in der Praxis"

Transkript

1 Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik

2 Übersicht Was ist Hochbegabung? Mathematische Hochbegabung Beispiele aus Mathematik Integration im Unterricht Sommerakademien und Pull-Out-Kurse Fragen 2

3 Was ist Hochbegabung? Hochbegabung ist die D i s p o s i t i o n für herausragende Leistungen nicht die Hochleistung selbst Hochbegabung setzt sich zusammen aus sehr guter Motivation sehr guter Kreativität überdurchschnittlichen Fähigkeiten Hochbegabung führt nicht automatisch zu außerordentlichen Leistungen kommt ohne Unterstützung nur selten zur Entfaltung 3

4 Begabungsfaktoren (nach HELLER) Intellektuelle Fähigkeiten sprachliche, mathematische, technisch-konstruktive, abstrakte, begrifflich-logische, etc. Fähigkeiten Sozial-emotionale Fähigkeiten Musisch-künstlerische Fähigkeiten Musikalische Fähigkeiten Kreativität sprachliche, mathematische, technische, gestalterische, etc. Kreativität Psychomotorische Fähigkeiten (Sport, Tanz, etc.) Praktische Intelligenz 4

5 Mathematisch hochbegabte Kinder Hohes Detailwissen Außergewöhnlich gute Merkfähigkeit Schnelle Erfassung von Ursache-Wirkungs-Beziehungen Hohe Abstraktionsfähigkeit Gute Beobachtungsgabe Streben nach Perfektion Hohes Maß an Selbstkritik Hohes Maß an Ausdauer und Eigenverantwortlichkeit Hohe intellektuelle Denkfähigkeiten Langeweile bei Routineaufgaben 5

6 Umgang mit Hochbegabung? 6

7 Adäquate Förderung und Aufmerksamkeit Begabte Schüler erkennen Vielfalt von unterrichtlichen Methoden und Unterrichtsformen Underachiever erkennen unterschiedliche Problemkreise Aufmerksamkeit und Wertschätzung der Persönlichkeit Akzeptieren eigenständiger Denkansätze und Lösungswege Vermeiden von vielen Übungs- und Wiederholungsaufgaben Raum für eigenes Lerntempo Möglichkeit, flow im Unterricht zu erleben 7

8 Figurierte Zahlen 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 Auf dem Weg zur Formel Wie groß ist die Summe aller geraden Zahlen von 2 bis 1000? =? Carl Friedrich Gauß = 1002 mal 250 =

17 Was ist ein Beweis? Annahme: a > c a c c a Ziffernsumme = a c c a = 18 17

18 Algorithmen anwenden Think of a number Add 3 Multiply by 5 Subtract 7 Double Add 4 Divide by 10 Subtract the original number Why does everybody get 2? 18

19 Algorithmen mit Formeln beschreiben {[({[(x+3). 5]-7}. 2) + 4 ]: 10} x = 2 5. x x x x x x + 2 x = 2 19

20 Abstraktion und Selbstkontrolle 20

21 Entdeckendes Lernen Zusammenhänge erfahren 21

22 Selbstständiges Üben und Wiederholen 22

23 Gesetzmäßigkeiten finden 23

24 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 1 Schreibe eine dreistellige Zahl auf (Hunderterziffer ungleich Einerziffer). Bilde die Umkehrzahl / Spiegelzahl und subtrahiere die kleinere von der größeren Zahl und sage mir die erste Ziffer. Ich sage dir, wie das Ergebnis lautet. Aufgabe 2 (1) Nimm eine 3-stellige Zahl (Hunderterziffer ungleich Einerziffer), bilde die Umkehrzahl / Spiegelzahl und subtrahiere die kleinere von der größeren Zahl. (2) Addiere zum Ergebnis die Umkehrzahl des Ergebnisses. Führe die Rechenoperationen (1) und (2) mit fünf verschiedenen Zahlen durch. Was stellst du fest? 24

25 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 3 Schreibe eine beliebige Zahl auf, sie kann vierstellig, achtstellig oder zehnstellig sein. Schüttle diese Zahl gut durcheinander, d. h. schreibe dieselben Ziffern in einer anderen Reihenfolge. Subtrahiere die kleinere Zahl von der größeren und streiche irgendeine Ziffer aus dem Ergebnis, aber bitte keine NULL, falls eine darin vorkommt. Schreibe das Ergebnis ohne die gestrichene Zahl auf. Aufgabe 4 Multipliziere die Zahl mit Was stellst du fest? Hast du eine Erklärung? Aufgabe 5 Multipliziere die Zahlen 11, 111, 1111, 11111,, mit sich selbst. Welche Eigenschaft haben die Produkte? Hast du eine Erklärung dafür? 25

26 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 6 Multipliziere die Zahl der Reihe nach mit 1, 2, 3, 4, 5 und 6. Was stellst du fest? Hast du eine Erklärung? Aufgabe 7 Denke dir eine Zahl Multipliziere sie mit 3 Addiere 6 Dividiere durch 3 Sage mir das Ergebnis ich sage dir die Zahl, die du dir gedacht hast Aufgabe 8 Magische Quadrate a) Schreibe die Zahlen 1 bis 9 so in ein 3 x 3- Quadrat, dass die Summe aller Zeilen, aller Spalten und der beiden Diagonalen gleich ist. Es gibt 8 Möglichkeiten. b) Führe die Aufgabe a) für die Zahlen 1 bis 16 in einem 4 x 4- Quadrat aus. Hier gibt es schon 880 Möglichkeiten. Du musst jetzt nicht mehr alle aufschreiben 26

27 Kreativität und Abstraktion r = 21 27

28 Systematisch Daten sammeln und auswerten i = 31 r A = 1+ 2 i A = 40,5 cm² 28

29 Aufgaben SoAk 2009 / Volksschule Zahlenmauern Mehr als nur zum Üben des Addierens? 1. Kannst du das Ergebnis im grünen Kästchen ohne Berechnung der Zwischenergebnisse in der zweiten Zeile ermitteln? 2. Findest du eine allgemeine Formel? 3. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 4. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 5. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 6. Kannst du eine allgemeine Formel für n Ausgangszahlen angeben? 29

30 Aufgaben SoAk 2009 / Volksschule Würfeltrick Kannst du Zahlen schneller als jeder Taschenrechner zusammenzählen? 1. Bastle fünf Würfel aus Papier (Kantenlänge = 3 bis 4 cm). 2. Auf jede Seite des Würfels schreibst du eine dreistellige Zahl; aber nicht beliebig, sondern nach folgendem Schema: a) Alle Zahlen auf einem Würfel haben dieselbe Zehnerziffer die Summe der fünf Zehnerziffern beträgt 30. b) Alle Zahlen eines Würfels müssen dieselbe Quersumme haben die Summe der Quersummen muss 70 betragen. 30

31 Aufgaben SoAk 2009 / Volksschule Die Diagonalen eines Rechtecks Für diese Aufgabe verwendest du kariertes Papier. 1. Zeichne verschieden große Rechtecke, bei denen sich die Länge (l) und die Breite (b) immer über eine ganze Zahl von Quadraten erstrecken. 2. Ziehe nun durch jedes Rechteck eine Diagonale und notiere die Anzahl der Quadrate (d), die von der Diagonale durchkreuzt werden. Erstelle eine Tabelle. Es gibt einen interessanten Zusammenhang zwischen l, b und d. Versuche, diesen Zusammenhang herauszufinden. 31

32 Strategien entwickeln 32

33 Erklärungen und Begründungen finden 33

34 Beweisbedürfnis wecken 34

35 Zum experimentellen Arbeiten anregen 35

36 Systematisch an eine Aufgabe herangehen 36

37 Besondere Begabungen erkennen und fördern 37

38 Anreize zum selbstständigen Lernen geben 38

39 Verschiedene Lösungswege / abh. von der Schulstufe Aufgabe 2 - Wie alt sind die Kinder? In einer Familie mit drei "Kindern", die alle innerhalb einer Dekade geboren sind, gibt es Zwillinge. Das Produkt der Alter der drei "Kinder" (im Jahr 2002) beträgt Wie alt sind die "Kinder"? 39

40 Welche Voraussetzungen brauchen Schüler/innen? 40

41 Wie gehen Schüler/innen an die Bearbeitung heran? 41

42 Was wird durch diese Aufgabe gefördert? 42

43 Danke für Ihre Aufmerksamkeit! 43

Wir entdecken Rechenvorteile

Wir entdecken Rechenvorteile Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!

Mehr

Zentrale Abschlussprüfung Sekundarstufe I

Zentrale Abschlussprüfung Sekundarstufe I Die Senatorin für Kinder und Bildung Freie Hansestadt Bremen Zentrale Abschlussprüfung Sekundarstufe I Erweitertes Anforderungsniveau 2017 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind nicht

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Schulinterner Lehrplan Mathematik Klasse 5

Schulinterner Lehrplan Mathematik Klasse 5 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Gleichungen und Formeln Umkehraufgaben bei Rechtecken

Gleichungen und Formeln Umkehraufgaben bei Rechtecken Gleichungen und Formeln Umkehraufgaben bei Rechtecken Stand: 20.11.2017 Jahrgangsstufe 5 Fach Übergreifende Bildungsund Erziehungsziele Zeitrahmen Mathematik Lernbereich 7: Gleichungen und Formeln Sprachliche

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Lösungen - 4. Klasse / 4. Schulstufe

Lösungen - 4. Klasse / 4. Schulstufe Lösungen - 4. Klasse / 4. Schulstufe 4. Klasse / 4. Schulstufe 1. Peter ist 2 Jahre älter als Jonas. Wenn Peter dreimal so alt sein wird wie er heute ist, wird Jonas viermal so alt wie er heute ist. Wie

Mehr

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5. ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

Mögliche inhaltliche Ergänzungen zur Teilbarkeit

Mögliche inhaltliche Ergänzungen zur Teilbarkeit Vorbemerkungen: Mögliche inhaltliche Ergänzungen zur Teilbarkeit nach U.Wagner, OHG Tuttlingen Es ist keineswegs an alle Inhalte gedacht eine sehr beschränkte Auswahl ist sinnvoll. Insbesondere das Thema

Mehr

100 Aufgaben für die Hundertertafel

100 Aufgaben für die Hundertertafel 100 Aufgaben für die Hundertertafel Die Schwierigkeitsgrade der Aufgaben sind unterschiedlich und eignen sich für die ersten drei Schuljahre. Wenn die Aufgaben auf Spielkarten geschrieben werden, können

Mehr

Österreich. Schülerfragebogen. Projektzentrum für Vergleichende Bildungsforschung Universität Salzburg Akademiestr.

Österreich. Schülerfragebogen. Projektzentrum für Vergleichende Bildungsforschung Universität Salzburg Akademiestr. Österreich International Association for the Evaluation of Educational Achievement Copyright IEA, 2007 Projektzentrum für Vergleichende Bildungsforschung Universität Salzburg Akademiestr. 26 5010 Salzburg

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September 1. Die natürlichen Zahlen Kenntnisse und Fähigkeiten im Umgang mit natürlichen Zahlen vertiefen Vorstellungen mit natürlichen Zahlen verbinden natürliche Zahlen am Zahlenstrahl darstellen und

Mehr

In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln.

In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. Die Schülerinnen und Schüler können Zahl- und Operationsbeziehungen sowie arithmetische

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million 1. Addieren (Zusammenzählen), 3 Seiten Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 2.1. Subtrahieren (Abziehen) Abziehverfahren 1 *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 2.2. Subtrahieren

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 02.11.2016 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien eigene Vorgehensweisen beschreiben Problemlösen

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen

Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen Aufgaben Für alle mit einem Stern * bezeichneten Aufgaben sind in den Lösungen ausführliche Lösungswege angeführt! Für die restlichen

Mehr

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Monat Lehrstoff Lehrplan Inhaltsbereich Handlungsbereiche September Ein neuer Anfang 1 Natürliche Zahlen 1.1 Zählen und Zahlen 1.2

Mehr

Addieren und Subtrahieren ganzer Zahlen

Addieren und Subtrahieren ganzer Zahlen Addieren und Subtrahieren ganzer Zahlen Jahrgangsstufe 5 Fach/Fächer Zeitrahmen Benötigtes Material Mathematik 1 2 Unterrichtsstunden Laminierte Kärtchen oder Kopie aller Aufgabenblätter mit allen Aufgaben

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben 45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Zentrale Abschlussprüfung 10. Mathematik (A)

Zentrale Abschlussprüfung 10. Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen)

Mehr

Mathematik. Mathematische Leitidee: Zahlen und Operationen. Aufgabe Nr./Jahr: 22/2008. Kompetenzstufen: Bezug zu den Bildungsstandards:

Mathematik. Mathematische Leitidee: Zahlen und Operationen. Aufgabe Nr./Jahr: 22/2008. Kompetenzstufen: Bezug zu den Bildungsstandards: Mathematik Mathematische Leitidee: Zahlen und Operationen Aufgabe Nr./Jahr: 22/2008 Kompetenzstufen: Niveau III: Erkennen und Nutzen von Zusammenhängen in einem vertrauten (mathematischen und sachbezogenen)

Mehr

Geheimnisvolle Zahlentafeln Lösungen

Geheimnisvolle Zahlentafeln Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Geheimnisvolle Zahlentafeln Lösungen Aufgabe 1 (3-mal-3-Zahlentafel (nur für die Klassen 7/8) [4 Punkte]). Finde je eine geheimnisvolle

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 2. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 2. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6. Semester ARBEITSBLATT 6 WIEDERHOLUNG VON GLEICHUNGEN Zur Wiederholung nehmen Sie bitte die Unterlagen des 1. Semesters zur Hand. Beispiel: Berechne x: x

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Operieren mit Brüchen 17

Operieren mit Brüchen 17 Operieren mit Brüchen -0 mathbuch LU rbeitsheft + weitere ufgaben «Grundanforderungen» Brüche multiplizieren und dividieren 0 Berechne die Produkte. Ergänze die Tabelle. Wann kann man kürzen? Begründe.

Mehr

von Markus Wurster Titelseite und Buchrücken für Ringbuch

von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen DREIECK ZAHLEN von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen von Markus Wurster 1. Quadratzahlen Was Quadratzahlen sind, weißt du bestimmt: Man kann Perlen auf

Mehr

Zentrale Abschlussprüfung Mathematik (A) Hauptschule

Zentrale Abschlussprüfung Mathematik (A) Hauptschule Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 2008 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind nicht zugelassen. Name: Klasse: Datum:

Mehr

Schulprogramm der Städtischen Katholischen Grundschule an der Bergstraße - Leistungsbewertung im Fach Mathematik -

Schulprogramm der Städtischen Katholischen Grundschule an der Bergstraße - Leistungsbewertung im Fach Mathematik - 1 Schulprogramm der Städtischen Katholischen Grundschule an der Bergstraße - Leistungsbewertung im Fach Mathematik - 2 15.2 Leistungsbewertung im Fach Mathematik 15.2.1 Zusammensetzung der Endnote Die

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten:

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: 1 Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: Beweise, die eine Behauptung nicht nur bestätigen, sondern auch erklären,

Mehr

Kompetenzbereich. Kompetenz

Kompetenzbereich. Kompetenz Null problemo Probleme können mit verschiedenen «Verfahren» gelöst werden. Du erfährst dazu ein paar «Tipps und Tricks». Allerdings brauchst du für den erwünschten Erfolg auch Geduld und Ausdauer, denn

Mehr

5. Jgst. 1. Tag. Name Vorname Note:

5. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 5. Jgst.. Tag. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut

Mehr

Mathematik für Berufsintegrationsklassen

Mathematik für Berufsintegrationsklassen Mathematik für Berufsintegrationsklassen Lerngebiet Kompetenz(en) aus den Lernbereichen Mathematik Titel 2.4 Grundkenntnisse der Geometrie Die Schülerinnen und Schüler - bestimmen Flächeninhalte von Rechtecken,

Mehr

Grundlagen der Mathemagie

Grundlagen der Mathemagie Übungen zur Vorlesung Grundlagen der Mathemagie Helmut Glas und Martin Kreuzer ASG Passau und Universität Passau Lehrerfortbildung Bezaubernde Mathematik Universität Passau, 16.12.2014 1 Die vier Asse

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Mein großes Trainingsbuch Mathematik 4. Klasse

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Mein großes Trainingsbuch Mathematik 4. Klasse Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Mein großes Trainingsbuch Mathematik 4. Klasse Das komplette Material finden Sie hier: School-Scout.de Inhalt Die kleinen Lerndrachen

Mehr

Tag der Mathematik 2010

Tag der Mathematik 2010 Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt

Mehr

Ihr Kind kann die Lernziele im angemessenen Zeitraum erreichen.

Ihr Kind kann die Lernziele im angemessenen Zeitraum erreichen. Liebe Eltern, jedes Schuljahr wird ein beratendes Elterngespräch angeboten. Um dieses möglichst effektiv zu gestalten, notieren wir unsere Beobachtungen zu Ihrem Kind im folgenden schriftlichen Protokoll

Mehr

Ihr Kind kann die Lernziele im angemessenen Zeitraum erreichen.

Ihr Kind kann die Lernziele im angemessenen Zeitraum erreichen. Liebe Eltern, jedes Schuljahr wird ein beratendes Elterngespräch angeboten. Um dieses möglichst effektiv zu gestalten, notieren wir unsere Beobachtungen zu Ihrem Kind im folgenden schriftlichen Protokoll

Mehr

Schulinterner Lehrplan Mathematik Klasse 8

Schulinterner Lehrplan Mathematik Klasse 8 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 8 Als Lehrwerk wird das Buch Mathematik real 8, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-7 WIEDERHOLUNG VON GLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-7 WIEDERHOLUNG VON GLEICHUNGEN ARBEITSBLATT -7 WIEDERHOLUNG VON GLEICHUNGEN Zur Wiederholung nehmen Sie bitte die Unterlagen des 1. Semesters zur Hand. Beispiel: Berechne : + 8 5 3 + 3 8 3 4 Lösung: + 8 5 3 3 Wir bringen alle Brüche

Mehr

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT S 1 Gedankenlesen mit Termen und Gleichungen Rätsel lösen Wolfgang Göbels, Bergisch Gladbach M 1 Mit Termen und Gleichungen umgehen Zur Erinnerung: Die wichtigsten Gesetze auf einen Blick Für alle rationalen

Mehr

Jahresplanung für Zahlen-Zug 3

Jahresplanung für Zahlen-Zug 3 Teil A 100 3 18 11 12 18 31 13 - Im bis 100 addieren, subtrahieren und ergänzen - Unterschiede zweier Zahlen berechnen - Gesetzmäßigkeiten beim Rechnen sinnvoll nutzen - Umkehraufgaben bilden - Wiederholen

Mehr

Schulinterner Lehrplan Mathematik Klasse 7

Schulinterner Lehrplan Mathematik Klasse 7 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 7 Als Lehrwerk wird das Buch Mathematik real 7, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und Einführung Schon immer haben sich die Menschen gern mit Rätseln und Zauberei beschäftigt. Oft beruhen solche magischen Spielereien auf physikalischen oder chemischen Phänomenen oder resultieren aus der

Mehr

Rechnen und Sachaufgaben. Mathe. Rechnen und Sachaufgaben. in 15 Minuten. 5. Klasse

Rechnen und Sachaufgaben. Mathe. Rechnen und Sachaufgaben. in 15 Minuten. 5. Klasse Rechnen und Sachaufgaben 5. Klasse Mathe Rechnen und Sachaufgaben in 15 Minuten Klasse Mathe Duden in 15 Minuten Rechnen und Sachaufgaben 5. Klasse 2., aktualisierte Auflage Dudenverlag Mannheim Zürich

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

fad E Workshop E1.1 thematisch reichhaltige Aufgaben r Förderung thematisch begabter Primarschulkinder

fad E Workshop E1.1 thematisch reichhaltige Aufgaben r Förderung thematisch begabter Primarschulkinder gress Begabungs- und Begabtenförderung, 14.-16.09.2017, Campus Brugg-Windisch fad E Workshop E1.1 thematisch reichhaltige Aufgaben r Förderung thematisch begabter Primarschulkinder Peter Flury ǀ peter.flury@

Mehr

Rost, D. H. & Schilling. S. (1999). Was ist Begabung? In Hessisches Kultusministerium (Hrsg.), Hilfe, mein Kind ist hochbegabt!

Rost, D. H. & Schilling. S. (1999). Was ist Begabung? In Hessisches Kultusministerium (Hrsg.), Hilfe, mein Kind ist hochbegabt! Rost, D. H. & Schilling. S. (1999). Was ist Begabung? In Hessisches Kultusministerium (Hrsg.), Hilfe, mein Kind ist hochbegabt! Förderung von besonderen Begabungen in Hessen. Heft 1: Grundlagen (S. 6 9).

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 1. Addieren (Zusammenzählen), 3 Seiten 2. Subtrahieren (Abziehen) Abziehverfahren *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 3. Subtrahieren (Abziehen)

Mehr

Kategorie Seite Kapitel Titel im E-Book+ Bild/Text Info Üben 11 A Interaktive Übung Übungen zum Wiederholen des Wissens aus der Volksschule (einfach)

Kategorie Seite Kapitel Titel im E-Book+ Bild/Text Info Üben 11 A Interaktive Übung Übungen zum Wiederholen des Wissens aus der Volksschule (einfach) Kategorie Seite Kapitel Titel im E-Book+ Bild/Text Info Üben 11 A Interaktive Übung Übungen zum Wiederholen des Wissens aus der Volksschule (einfach) Verstehen 12 A Historisches Video Prof. Taschner über

Mehr

Fit für die vierte Klasse

Fit für die vierte Klasse S e h t ars t a M Fit für die vierte Klasse Hier trainiert Mit Sticker n So wirst du zum Mathe-Star: Wenn du eine Seite oder eine Doppelseite bearbeitet hast, darfst du hinten auf der Umschlagklappe ein

Mehr

Mathematisch Argumentieren

Mathematisch Argumentieren Mathematisch Argumentieren Ende Schuljahrgang 6 zusätzlich Ende Schuljahrgang 8 zusätzlich Ende Schuljahrgang 10 - hinterfragen mathematische Aussagen stellen mathematische Vermutungen an (intuitiv und/oder

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13?

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 1 Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 2 Sanya und Thomas sollen die Quadratwurzel aus 625 durch Probieren ermitteln. Sanya hat die Aufgabe ziemlich schnell

Mehr

nachsehen, ob zwei etwas ausrechnen Dinge gleich sind oder ob es Unterschiede gibt etwas aussieht richtig ist Arbeitsanweisungen - Quartett berechnen

nachsehen, ob zwei etwas ausrechnen Dinge gleich sind oder ob es Unterschiede gibt etwas aussieht richtig ist Arbeitsanweisungen - Quartett berechnen Arbeitsanweisungen - Quartett nachsehen, ob zwei Dinge gleich sind oder ob es vergleichen - etwas ausrechnen - nachsehen, ob alles richtig ist - genau sagen, wie etwas aussieht etwas ausrechnen berechnen

Mehr

2.3 Lies folgende Zahlen und trage sie in das Stellenwertsystem ein: , achthundertzweiundzwanzigtausendfünf, , vier Millionen dreizehn

2.3 Lies folgende Zahlen und trage sie in das Stellenwertsystem ein: , achthundertzweiundzwanzigtausendfünf, , vier Millionen dreizehn 1.1 Gib die Zahlen in unserer Zahlenschreibweise an! Erst urkundliche Erwähnung Österreichs: CMXVI Erste Türkenbelagerung Wiens: MDXXIX Mozarts Geburtsjahr: MDCCLVI Österreichischer Staatsvertrag: MCMLV

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Zentrale Abschlussprüfung Sekundarstufe I

Zentrale Abschlussprüfung Sekundarstufe I Die Senatorin für Kinder und Bildung Freie Hansestadt Bremen Zentrale Abschlussprüfung Sekundarstufe I Grundlegendes Anforderungsniveau 2017 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass5 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580521

Mehr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Anregungen für Mathematik in der Realschule Niedersachsen auf der Grundlage von Faktor 6 Von den

Mehr

Stoffverteilungsplan. Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Stoffverteilungsplan. Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Anregungen für Mathematik in der Hauptschule Niedersachsen auf der Grundlage von Maßstab 6 Von den

Mehr

Hinführung zur Lernstandserhebung

Hinführung zur Lernstandserhebung Hinführung zur Lernstandserhebung für Schülerinnen und Schüler im Fach Mathematik Zentrale Lernstandserhebungen in der Jahrgangsstufe 8 28 Liebe Schülerin, lieber Schüler, die folgenden Hinweise sollen

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b)

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung kannst du dir als eine Balkenwaage

Mehr

Lösungen - 3. Klasse / 3. Schulstufe

Lösungen - 3. Klasse / 3. Schulstufe 3. Klasse / 3. Schulstufe Lösungen - 3. Klasse / 3. Schulstufe 1. Anna hat nur 2-er, 3-er, 4-er und 5-er Taler Münzen. Von jeder dieser Münzen hat sie entweder ein Stück oder zwei Stück. Anna hat insgesamt

Mehr

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis

Mehr

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

1 a) = 6 2 b) = 9 3 c) = 2 a) = 4 5 b) = 4 8 c) = 3 a) a) 6 a) 7 2 = 7 a) 25 5 =

1 a) = 6 2 b) = 9 3 c) = 2 a) = 4 5 b) = 4 8 c) = 3 a) a) 6 a) 7 2 = 7 a) 25 5 = PA Teste dein Können a) 2 + = 2 + = c) 2 + = 2 a) 2 = = c) = 2 2 a) 00 2 2 a) 2 0 0 + 2 + 2 c) 2 d) 2 2 2 2 a) + + 2 = + + = 2 + + = + 2 + = a) 2 = 2 = 2 = 0 = 0 c) = 0 0 = 0 = 20 2 0 = 0 = a) 2 = = 0

Mehr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Anregungen für Mathematik in der Realschule Niedersachsen auf der Grundlage von Faktor 6 Von den

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Rechnen mit Variablen

Rechnen mit Variablen E Rechnen mit Variablen 5. Gleichungen 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12) Seiten / 7 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 1 a) x 4 1 - x = 4 x 1 2 2x = 48 x 1 = 48 x = x = 7 b) x - 19 1 c) x 18 = x - 12 10 18x 114 x = 9x 108 1x - 114 = 9x -

Mehr

Setze bei jeder Rechnung die Klammern so, dass das Ergebnis der Rechnung 20 ist! a) = b) = c) 40 : =

Setze bei jeder Rechnung die Klammern so, dass das Ergebnis der Rechnung 20 ist! a) = b) = c) 40 : = Setze bei jeder Rechnung die Klammern so, dass das Ergebnis der Rechnung 20 ist! a) 5 + 3 + 2 2 = b) 3 3 2 2 2 + 2 = c) 40 : 5 + 3 + 3 5 = Erkläre genau und in ganzen Sätzen, wie du bei einem Rechteck

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Realschule Jgst. /6 Aufgaben zur individuellen Förderung Übungsaufgaben mit unterschiedlichen Anforderungsstufen geben den Schülerinnen

Mehr

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt.

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt. Inhaltsverzeichnis Einführung 2 Aufgaben Lösungen A1 Zahlverständnis (Natürliche Zahlen)... 3 27 A1* Zahlverständnis (Natürliche Zahlen)... 4 28 A2 Rechnen (Natürliche Zahlen)... 5 29 A2* Rechnen (Natürliche

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A) Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2012 Mathematik (A) Teil 1 Taschenrechner und

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 5. Semester ARBEITSBLATT 2 ABTRAGEN UND TEILEN VON STRECKEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 5. Semester ARBEITSBLATT 2 ABTRAGEN UND TEILEN VON STRECKEN Mathematik: Mag. Schmid Wolfgang rbeitsblatt 5. Semester REITSLTT TRGEN UND TEILEN VON STRECKEN 3 eispiel: Der Punkt (3/-1) soll um 10 Einheiten in Richtung des Vektors s = 4 verschoben werden. erechnen

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Pascal sche Dreieck - Übungen zu arithmetischen Beziehungen und Zahlenmustern Das komplette Material finden Sie hier: Download

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Berechnung von Summen- und Differenzwerten

Berechnung von Summen- und Differenzwerten Berechnung von Summen- und Differenzwerten 1. Viele der in Deutschland verbrauchten Eier werden in Niedersachsen gelegt. Im Jahr 2003 waren dies 2323 Millionen Eier, davon 283 Millionen Eier im Dezember

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Knobelaufgaben ============================================================================== Aufgabe 1 :

Knobelaufgaben ============================================================================== Aufgabe 1 : Knobelaufgaben ============================================================================== Aufgabe 1 : Untersuche, ob man die Zahl 1 000 000 000 in ein Produkt aus zwei natürlichen Zahlen zerlegen kann,

Mehr

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Schulinterner Lehrplan Mathematik Klasse 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen

Mehr

PDF created with pdffactory Pro trial version

PDF created with pdffactory Pro trial version 1. Berechne: a) - 311 185 b) - 176 + 213 c) 234 865 d) 195 (- 523) e) (- 324) (- 267) f) 165 + (- 316) g) (-23) 18 h) (- 17) (- 54) i) 35 (- 78) j) 314 1234 k) (- 8) 4 l) (- 11) 3 m) (- 2) 9 n) (- 2) 10

Mehr