Hochbegabungsförderung in der Praxis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hochbegabungsförderung in der Praxis"

Transkript

1 Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik

2 Übersicht Was ist Hochbegabung? Mathematische Hochbegabung Beispiele aus Mathematik Integration im Unterricht Sommerakademien und Pull-Out-Kurse Fragen 2

3 Was ist Hochbegabung? Hochbegabung ist die D i s p o s i t i o n für herausragende Leistungen nicht die Hochleistung selbst Hochbegabung setzt sich zusammen aus sehr guter Motivation sehr guter Kreativität überdurchschnittlichen Fähigkeiten Hochbegabung führt nicht automatisch zu außerordentlichen Leistungen kommt ohne Unterstützung nur selten zur Entfaltung 3

4 Begabungsfaktoren (nach HELLER) Intellektuelle Fähigkeiten sprachliche, mathematische, technisch-konstruktive, abstrakte, begrifflich-logische, etc. Fähigkeiten Sozial-emotionale Fähigkeiten Musisch-künstlerische Fähigkeiten Musikalische Fähigkeiten Kreativität sprachliche, mathematische, technische, gestalterische, etc. Kreativität Psychomotorische Fähigkeiten (Sport, Tanz, etc.) Praktische Intelligenz 4

5 Mathematisch hochbegabte Kinder Hohes Detailwissen Außergewöhnlich gute Merkfähigkeit Schnelle Erfassung von Ursache-Wirkungs-Beziehungen Hohe Abstraktionsfähigkeit Gute Beobachtungsgabe Streben nach Perfektion Hohes Maß an Selbstkritik Hohes Maß an Ausdauer und Eigenverantwortlichkeit Hohe intellektuelle Denkfähigkeiten Langeweile bei Routineaufgaben 5

6 Umgang mit Hochbegabung? 6

7 Adäquate Förderung und Aufmerksamkeit Begabte Schüler erkennen Vielfalt von unterrichtlichen Methoden und Unterrichtsformen Underachiever erkennen unterschiedliche Problemkreise Aufmerksamkeit und Wertschätzung der Persönlichkeit Akzeptieren eigenständiger Denkansätze und Lösungswege Vermeiden von vielen Übungs- und Wiederholungsaufgaben Raum für eigenes Lerntempo Möglichkeit, flow im Unterricht zu erleben 7

8 Figurierte Zahlen 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 Auf dem Weg zur Formel Wie groß ist die Summe aller geraden Zahlen von 2 bis 1000? =? Carl Friedrich Gauß = 1002 mal 250 =

17 Was ist ein Beweis? Annahme: a > c a c c a Ziffernsumme = a c c a = 18 17

18 Algorithmen anwenden Think of a number Add 3 Multiply by 5 Subtract 7 Double Add 4 Divide by 10 Subtract the original number Why does everybody get 2? 18

19 Algorithmen mit Formeln beschreiben {[({[(x+3). 5]-7}. 2) + 4 ]: 10} x = 2 5. x x x x x x + 2 x = 2 19

20 Abstraktion und Selbstkontrolle 20

21 Entdeckendes Lernen Zusammenhänge erfahren 21

22 Selbstständiges Üben und Wiederholen 22

23 Gesetzmäßigkeiten finden 23

24 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 1 Schreibe eine dreistellige Zahl auf (Hunderterziffer ungleich Einerziffer). Bilde die Umkehrzahl / Spiegelzahl und subtrahiere die kleinere von der größeren Zahl und sage mir die erste Ziffer. Ich sage dir, wie das Ergebnis lautet. Aufgabe 2 (1) Nimm eine 3-stellige Zahl (Hunderterziffer ungleich Einerziffer), bilde die Umkehrzahl / Spiegelzahl und subtrahiere die kleinere von der größeren Zahl. (2) Addiere zum Ergebnis die Umkehrzahl des Ergebnisses. Führe die Rechenoperationen (1) und (2) mit fünf verschiedenen Zahlen durch. Was stellst du fest? 24

25 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 3 Schreibe eine beliebige Zahl auf, sie kann vierstellig, achtstellig oder zehnstellig sein. Schüttle diese Zahl gut durcheinander, d. h. schreibe dieselben Ziffern in einer anderen Reihenfolge. Subtrahiere die kleinere Zahl von der größeren und streiche irgendeine Ziffer aus dem Ergebnis, aber bitte keine NULL, falls eine darin vorkommt. Schreibe das Ergebnis ohne die gestrichene Zahl auf. Aufgabe 4 Multipliziere die Zahl mit Was stellst du fest? Hast du eine Erklärung? Aufgabe 5 Multipliziere die Zahlen 11, 111, 1111, 11111,, mit sich selbst. Welche Eigenschaft haben die Produkte? Hast du eine Erklärung dafür? 25

26 Aufgaben SoAk 2009 / 1. und 2. Klasse AHS und HS Aufgabe 6 Multipliziere die Zahl der Reihe nach mit 1, 2, 3, 4, 5 und 6. Was stellst du fest? Hast du eine Erklärung? Aufgabe 7 Denke dir eine Zahl Multipliziere sie mit 3 Addiere 6 Dividiere durch 3 Sage mir das Ergebnis ich sage dir die Zahl, die du dir gedacht hast Aufgabe 8 Magische Quadrate a) Schreibe die Zahlen 1 bis 9 so in ein 3 x 3- Quadrat, dass die Summe aller Zeilen, aller Spalten und der beiden Diagonalen gleich ist. Es gibt 8 Möglichkeiten. b) Führe die Aufgabe a) für die Zahlen 1 bis 16 in einem 4 x 4- Quadrat aus. Hier gibt es schon 880 Möglichkeiten. Du musst jetzt nicht mehr alle aufschreiben 26

27 Kreativität und Abstraktion r = 21 27

28 Systematisch Daten sammeln und auswerten i = 31 r A = 1+ 2 i A = 40,5 cm² 28

29 Aufgaben SoAk 2009 / Volksschule Zahlenmauern Mehr als nur zum Üben des Addierens? 1. Kannst du das Ergebnis im grünen Kästchen ohne Berechnung der Zwischenergebnisse in der zweiten Zeile ermitteln? 2. Findest du eine allgemeine Formel? 3. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 4. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 5. Wie lautet die allgemeine Formel für vier Ausgangszahlen? 6. Kannst du eine allgemeine Formel für n Ausgangszahlen angeben? 29

30 Aufgaben SoAk 2009 / Volksschule Würfeltrick Kannst du Zahlen schneller als jeder Taschenrechner zusammenzählen? 1. Bastle fünf Würfel aus Papier (Kantenlänge = 3 bis 4 cm). 2. Auf jede Seite des Würfels schreibst du eine dreistellige Zahl; aber nicht beliebig, sondern nach folgendem Schema: a) Alle Zahlen auf einem Würfel haben dieselbe Zehnerziffer die Summe der fünf Zehnerziffern beträgt 30. b) Alle Zahlen eines Würfels müssen dieselbe Quersumme haben die Summe der Quersummen muss 70 betragen. 30

31 Aufgaben SoAk 2009 / Volksschule Die Diagonalen eines Rechtecks Für diese Aufgabe verwendest du kariertes Papier. 1. Zeichne verschieden große Rechtecke, bei denen sich die Länge (l) und die Breite (b) immer über eine ganze Zahl von Quadraten erstrecken. 2. Ziehe nun durch jedes Rechteck eine Diagonale und notiere die Anzahl der Quadrate (d), die von der Diagonale durchkreuzt werden. Erstelle eine Tabelle. Es gibt einen interessanten Zusammenhang zwischen l, b und d. Versuche, diesen Zusammenhang herauszufinden. 31

32 Strategien entwickeln 32

33 Erklärungen und Begründungen finden 33

34 Beweisbedürfnis wecken 34

35 Zum experimentellen Arbeiten anregen 35

36 Systematisch an eine Aufgabe herangehen 36

37 Besondere Begabungen erkennen und fördern 37

38 Anreize zum selbstständigen Lernen geben 38

39 Verschiedene Lösungswege / abh. von der Schulstufe Aufgabe 2 - Wie alt sind die Kinder? In einer Familie mit drei "Kindern", die alle innerhalb einer Dekade geboren sind, gibt es Zwillinge. Das Produkt der Alter der drei "Kinder" (im Jahr 2002) beträgt Wie alt sind die "Kinder"? 39

40 Welche Voraussetzungen brauchen Schüler/innen? 40

41 Wie gehen Schüler/innen an die Bearbeitung heran? 41

42 Was wird durch diese Aufgabe gefördert? 42

43 Danke für Ihre Aufmerksamkeit! 43

Wir entdecken Rechenvorteile

Wir entdecken Rechenvorteile Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Schulinterner Lehrplan Mathematik Klasse 5

Schulinterner Lehrplan Mathematik Klasse 5 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

100 Aufgaben für die Hundertertafel

100 Aufgaben für die Hundertertafel 100 Aufgaben für die Hundertertafel Die Schwierigkeitsgrade der Aufgaben sind unterschiedlich und eignen sich für die ersten drei Schuljahre. Wenn die Aufgaben auf Spielkarten geschrieben werden, können

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Tag der Mathematik 2010

Tag der Mathematik 2010 Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Mathematik. Mathematische Leitidee: Zahlen und Operationen. Aufgabe Nr./Jahr: 22/2008. Kompetenzstufen: Bezug zu den Bildungsstandards:

Mathematik. Mathematische Leitidee: Zahlen und Operationen. Aufgabe Nr./Jahr: 22/2008. Kompetenzstufen: Bezug zu den Bildungsstandards: Mathematik Mathematische Leitidee: Zahlen und Operationen Aufgabe Nr./Jahr: 22/2008 Kompetenzstufen: Niveau III: Erkennen und Nutzen von Zusammenhängen in einem vertrauten (mathematischen und sachbezogenen)

Mehr

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September 1. Die natürlichen Zahlen Kenntnisse und Fähigkeiten im Umgang mit natürlichen Zahlen vertiefen Vorstellungen mit natürlichen Zahlen verbinden natürliche Zahlen am Zahlenstrahl darstellen und

Mehr

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Monat Lehrstoff Lehrplan Inhaltsbereich Handlungsbereiche September Ein neuer Anfang 1 Natürliche Zahlen 1.1 Zählen und Zahlen 1.2

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 02.11.2016 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien eigene Vorgehensweisen beschreiben Problemlösen

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und Einführung Schon immer haben sich die Menschen gern mit Rätseln und Zauberei beschäftigt. Oft beruhen solche magischen Spielereien auf physikalischen oder chemischen Phänomenen oder resultieren aus der

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Realschule Jgst. /6 Aufgaben zur individuellen Förderung Übungsaufgaben mit unterschiedlichen Anforderungsstufen geben den Schülerinnen

Mehr

Arbeitsblatt rund ums

Arbeitsblatt rund ums Arbeitsblatt rund ums Abbildung 1: Anton Ameise beim Vorwärtsarbeiten Für die Bearbeitung dieses Arbeitsblatts hast Du eine Woche Zeit! 1. Suche Dir eines der folgenden Projekte aus und überlege Dir interessante

Mehr

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird

Mehr

Grundlagen der Mathemagie

Grundlagen der Mathemagie Übungen zur Vorlesung Grundlagen der Mathemagie Helmut Glas und Martin Kreuzer ASG Passau und Universität Passau Lehrerfortbildung Bezaubernde Mathematik Universität Passau, 16.12.2014 1 Die vier Asse

Mehr

Schulinterner Lehrplan Mathematik Klasse 8

Schulinterner Lehrplan Mathematik Klasse 8 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 8 Als Lehrwerk wird das Buch Mathematik real 8, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Schulinterner Lehrplan Mathematik Klasse 7

Schulinterner Lehrplan Mathematik Klasse 7 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 7 Als Lehrwerk wird das Buch Mathematik real 7, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Addieren und subtrahieren

Addieren und subtrahieren Addieren und subtrahieren Zahlenmauern Mirko und Luca schreiben möglichst oft die Ziffer in ihre Zahlenmauer.. Mirko 0 0 8 Luca 0 0 Basissteine:, 0, (Die Zahl 0 ist verboten.) 90 0 Basissteine:,,, 0 (Die

Mehr

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT S 1 Gedankenlesen mit Termen und Gleichungen Rätsel lösen Wolfgang Göbels, Bergisch Gladbach M 1 Mit Termen und Gleichungen umgehen Zur Erinnerung: Die wichtigsten Gesetze auf einen Blick Für alle rationalen

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A) Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2012 Mathematik (A) Teil 1 Taschenrechner und

Mehr

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf: 1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,

Mehr

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 1. Addieren (Zusammenzählen), 3 Seiten 2. Subtrahieren (Abziehen) Abziehverfahren *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 3. Subtrahieren (Abziehen)

Mehr

4. Jgst. 1. Tag. Name Vorname Note:

4. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 4. Jgst. 1. Tag 1. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

15. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 2012/2013

15. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 2012/2013 für die 3. Klassen der Grundschulen 2012/2013 Aufgabe 1: Musikunterricht Paula kann die Noten g, a, f und h auf der Blockflöte spielen. Die Flötenlehrerin bittet sie, verschiedene Tonfolgen aus den vier

Mehr

Knobelaufgaben ============================================================================== Aufgabe 1 :

Knobelaufgaben ============================================================================== Aufgabe 1 : Knobelaufgaben ============================================================================== Aufgabe 1 : Untersuche, ob man die Zahl 1 000 000 000 in ein Produkt aus zwei natürlichen Zahlen zerlegen kann,

Mehr

Binnendifferenzierung im Mathematikunterricht

Binnendifferenzierung im Mathematikunterricht Binnendifferenzierung im Mathematikunterricht Beispiele und Ansätze Veronika Kollmann Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Stuttgart Dimensionen von Heterogenität (nach SPIEGEL

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Sachinformation Umkehrzahlen

Sachinformation Umkehrzahlen Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet

Mehr

BEGABTE SIND CHANCEN FÜR UNS ALLE. Begabungs- und Begabtenförderung als gesellschaftliche Aufgabe. Die NÖ Begabtenakademie

BEGABTE SIND CHANCEN FÜR UNS ALLE. Begabungs- und Begabtenförderung als gesellschaftliche Aufgabe. Die NÖ Begabtenakademie BEGABTE SIND CHANCEN FÜR UNS ALLE Begabungs- und Begabtenförderung als gesellschaftliche Aufgabe Die NÖ Begabtenakademie DIE AUFGABE LAUTET FÜR ALLE GLEICH: KLETTERN SIE AUF DEN BAUM! 2 DIE ZIELE DER NÖ

Mehr

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012 Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe

Mehr

Rechentrainer 3. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger

Rechentrainer 3. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Rechentrainer Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Erarbeitet von Nadine Franke-Binder, Kurt Hönisch, Claudia Neuburg, Dr. Thomas Rottmann, Michaela Schmitz, Gerhild

Mehr

234 3 H + 4 Z + 2 E = =

234 3 H + 4 Z + 2 E = = Hunderter, Zehner, Einer Geheimschrift Zahlen in Geheimschrift. Wie heißen die Zahlen? a) zweihundertvierunddreißig H + Z + E = 00 + 0 + = H + Z + E = 00 + 0 + = b) H + Z + E = 00 + 0 + = c) d) e) H +

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik FLÄCHEN (Jgst. 5) WARM-UP-PHASE LEHRERINFO Die Warm-up-Phase ist ein wesentlicher Faktor für kompetenzorientiertes Lernen. In dieser Phase wird mathematisches Handwerkszeug kontinuierlich angewendet und

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren Im Fach Mathematik führen unsere SuS ein Merkheft. In diesem Heft werden alle grundlegenden Rechenregeln und Rechengesetze mit kleinen Beispielen aufgelistet. Die SuS verwenden das Heft zum Wiederholen

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf

Mehr

Berechnung von Summen- und Differenzwerten

Berechnung von Summen- und Differenzwerten Berechnung von Summen- und Differenzwerten 1. Viele der in Deutschland verbrauchten Eier werden in Niedersachsen gelegt. Im Jahr 2003 waren dies 2323 Millionen Eier, davon 283 Millionen Eier im Dezember

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 8 Gymnasium Schuljahr 2009/2010 Fach Mathematik ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

TESTEN ÜBEN. 3. Klasse Mathematik. Textaufgaben WISSEN. Drei Lernbausteine für garantiert bessere Noten! + 8

TESTEN ÜBEN. 3. Klasse Mathematik. Textaufgaben WISSEN. Drei Lernbausteine für garantiert bessere Noten! + 8 3. Klasse Mathematik Textaufgaben Drei Lernbausteine für garantiert bessere Noten! WISSEN ÜBEN TESTEN 7 1 2 3 + 8 1 2 5 So lernst du mit diesem Heft: Wissen Hier findest du auf einen Blick die wichtigsten

Mehr

Individualisierung durch Lernaufgaben

Individualisierung durch Lernaufgaben Individualisierung und neue Medien Individualisierung durch Lernaufgaben Lehren und Lernen mit digitalen Medien Dr. Hildegard Urban-Woldron Überblick Fallstudien zum Einsatz digitaler Medien im Physikunterricht

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Russische Bauern- Multiplikation

Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Mittelschule, technische Berufsschule Binäre

Mehr

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme Kreuzzahlrätsel Die Zeichen bedeuten für jede einzelne Aufgabe: mehrstellige natürliche Zahl Rechenoperationszeichen Ziffer 0,, 2,... oder 9 In das Kreuzzahlrätsel ist immer das Ergebnis der Aufgabe einzutragen.

Mehr

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben 50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Zählprinzip und Baumdiagramm (Aufgaben)

Zählprinzip und Baumdiagramm (Aufgaben) Gymnasium Pegnitz Grundwissen JS 5 17. Juni 2007 Zählprinzip und Baumdiagramm (Aufgaben) 1.,,Nur einmal zweimal - Ein Würfelspiel für 2 oder mehr Spieler Jeder Spieler würfelt so lange, bis eine Zahl zum

Mehr

Online - Team Wettbewerb 2014

Online - Team Wettbewerb 2014 1. Aufgabe (Würfelei): a) Rechts sind elf Augen zu sehen, wegen 4 + 5 + 2 = 11. Hinten können wegen 1 + 4 + 6 = 11 elf Augen gesehen werden. Links können wegen 3+2+5 = 10 zehn Augen gesehen werden. b)

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig Download Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Mit Tippkarten Schritt für Schritt zur richtigen Lösung Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Grundschule

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel:

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel: 8 Brüche Zä hler Bruchstrich Nenner Wie kann man einen Bruch erkennen / ablesen? Zähle zuerst alle Bruchstücke cke eines Ganzen. Die Anzahl sagt dir, wie der Nenner heißt. Jetzt zählst z du alle gefärbten

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

BEGABTE FINDEN UND FÖRDERN Ein BEITRAG DER NÖ BEGABTENAKADEMIE ZUR LEHRERINNENFORTBILDUNG

BEGABTE FINDEN UND FÖRDERN Ein BEITRAG DER NÖ BEGABTENAKADEMIE ZUR LEHRERINNENFORTBILDUNG BEGABTE FINDEN UND FÖRDERN Ein BEITRAG DER NÖ BEGABTENAKADEMIE ZUR LEHRERINNENFORTBILDUNG Chancen für SchülerInnen Chancen für Lehrende Chancen für die Zukunft NICHT FÜR ALLE DAS GLEICHE, SONDERN FÜR JEDEN

Mehr

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare

Mehr

Jede Lösung ist einem Buchstaben zugeordnet. Trage sie unten in den Lösungssatz ein! c) = 338. d) = 870. c) 9 2.

Jede Lösung ist einem Buchstaben zugeordnet. Trage sie unten in den Lösungssatz ein! c) = 338. d) = 870. c) 9 2. Mein Wissen aus der Volksschule Beispiele Jede Lösung ist einem Buchstaben zugeordnet. Trage sie unten in den Lösungssatz ein! Addiere! Lösungsbuchstaben a) 5 9 9 + 7 b) 7 + 5 9 6 c) 5 + = 6 d) 7 + 5 =

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

BLICKPUNKT Mathematik 1 1. September 2007

BLICKPUNKT Mathematik 1 1. September 2007 V Bekanntes aus der Volksschule Blatt Buch Vorschau Längenmaße: m - cm - mm 1a A 1, 2 13 ab 09.07 Längenmaße: m - cm - mm Lösungen 1a L 1,2 Längenmaße 1 A 12, 13 Längenmaße Lösungen Massenmaße I 2 A 14

Mehr

Selbstkontrollaufgaben

Selbstkontrollaufgaben Sekundarstufe I Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe 5. Klasse Lehrplanrelevante Arbeitsblätter mit integrierter Lösung Ideal für die Freiarbeit 2013 Auer Verlag, Donauwörth AAP Lehrerfachverlage

Mehr

Didaktik der Arithmetik. Was wollen Sie lernen? An welchen Überlegungen zum Ma-U sind Sie interessiert? Notieren Sie 3 Stichpunkte!

Didaktik der Arithmetik. Was wollen Sie lernen? An welchen Überlegungen zum Ma-U sind Sie interessiert? Notieren Sie 3 Stichpunkte! Didaktik der Arithmetik Was wollen Sie lernen? An welchen Überlegungen zum Ma-U sind Sie interessiert? Notieren Sie 3 Stichpunkte! Modell des Ma-U in der GS (in Anlehnung an Radatz & Schipper 1983, S.

Mehr

Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben

Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben Leitidee: Muster und Strukturen (MS) Beispiel: Variationen zu Testaufgabe 25/ 2011 ähnliche Aufgaben: - Zahlenfolgen:

Mehr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Stoffverteilungsplan Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr Anregungen für Mathematik in der Realschule Niedersachsen auf der Grundlage von Faktor 6 Von den

Mehr

Hochbegabung. - Eine Einführung - Dipl.-Psych. Götz Müller

Hochbegabung. - Eine Einführung - Dipl.-Psych. Götz Müller Hochbegabung - Eine Einführung - Hochbegabung Pädagogisch- psychologischer Begriff Eng an Intelligenz gebunden Allgemein verstanden als Disposition zu hohen Leistungen Was ist Intelligenz? Intelligenz

Mehr

Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, d.h. wenn sie auf 0,2,4,6 oder 8 endet.

Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, d.h. wenn sie auf 0,2,4,6 oder 8 endet. Teilbarkeitsregeln Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, d.h. wenn sie auf 0,2,4,6 oder 8 endet. Eine Zahl ist durch 3 teilbar, wenn die Quersumme der Zahl durch 3 teilbar ist. Wenn ich z.b.

Mehr

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12) Seiten / 7 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 1 a) x 4 1 - x = 4 x 1 2 2x = 48 x 1 = 48 x = x = 7 b) x - 19 1 c) x 18 = x - 12 10 18x 114 x = 9x 108 1x - 114 = 9x -

Mehr

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt

Mehr

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen Mathematik Klasse 9 Inhalt/Thema von Maßstab Band 5 1. Grundkenntnisse Rechnen mit Brüchen und Dezimalbrüchen Rechnen mit Größen Proportionale und umgekehrt proportionale Zuordnungen, Dreisatz Prozent-

Mehr

Vedische Multiplikation

Vedische Multiplikation Vedische Multiplikation Aus den vedischen Schriften des alten Indien stammt diese Methode der Multiplikation mit dem Namen Überkreuz-und-übereinander oder Urdhva-tiryag bhyam. Diese Methode und andere

Mehr

Lernwerkstatt 7 Detailübersicht Mathematik

Lernwerkstatt 7 Detailübersicht Mathematik Lernwerkstatt 7 Detailübersicht Mathematik ZAHLENRECHEN- 23 Übungen S Name Anzahl der Sterne, versch. Aufgaben Zahlenraum Art Zahlenmauern Zahlenschlange Zahlenhäuser Zauberdreiecke Rechendreiecke Zahlen

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

DOWNLOAD VERA Mathematik. Klasse. Julia Menz. Kompetenzorientierte Übungen zum Testdurchgang Zahlen & Operationen, Muster & Strukturen

DOWNLOAD VERA Mathematik. Klasse. Julia Menz. Kompetenzorientierte Übungen zum Testdurchgang Zahlen & Operationen, Muster & Strukturen DOWNLOAD Julia Menz VERA 2016 Mathematik Kompetenzorientierte Übungen zum Testdurchgang Zahlen & Operationen, Muster & Strukturen 3. Klasse Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Mathematik leichter begreifen TI-Nspire CX CAS in der Sek 1? Dr. Thomas Müller, 2012

Mathematik leichter begreifen TI-Nspire CX CAS in der Sek 1? Dr. Thomas Müller, 2012 Mathematik leichter begreifen TI-Nspire CX CAS in der Sek 1? Dr. Thomas Müller, 2012 Übersicht Prolog T3 und T3-Österreich (KPH Wien/Krems) TI-Nspire CX CAS (Software und Handheld) TI-Nspire am BG/BRG

Mehr

Intellektuelle Hochbegabung

Intellektuelle Hochbegabung Intellektuelle Hochbegabung Vortrag für Lehrer zum Thema Hochbegabung in Kooperation mit der DGhK Bad Bramstedt und der Grundschule Am Bahnhof Überblick Hochbegabung was ist das (Vorurteile, Konzepte &

Mehr

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Addition und Subtraktion. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Addition und Subtraktion. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel: Download Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathematik Klasse 5 Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe 5. Klasse Sekundarstufe I Lehrplanrelevante Arbeitsblätter mit integrierter

Mehr

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Die Beitragskontonummer besteht aus einem 6-stelligen numerischen Begriff und einer Prüfziffer Die Prüfziffer wird auf folgende Art berechnet:

Mehr

Aufgaben / M-Beispielen

Aufgaben / M-Beispielen Aufgaben / M-Beispielen 1. Schularbeit aus MATHEMATIK KL.: M2/I. - S.2 1) Zeichne den begonnen Schrägriss eines Quaders mit 40 mm Höhe fertig! Schularbeitenvorbereitung Köck 2) Zeichne den begonnenen Schrägriss

Mehr

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7 Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die

Mehr