Übungen für die dritte Klausur

Größe: px
Ab Seite anzeigen:

Download "Übungen für die dritte Klausur"

Transkript

1 Übungen für die dritte Klausur formeln Übungen für die dritte Klausur Formeln Diese Formeln sollten sie kennen. Kennen bedeutet dabei, dass Sie wissen, was die einzelnen Formel- Buchstaben bedeuten und wozu man die Formel benutzt/benötigt. Ich habe deshalb hier ganz bewuÿt auf weitere Informationen verzichtet - wenn Ihnen etwas unklar ist: nachlesen s = 2 at2 v = at F = ma p = mv E pot = mgh E kin = 2 mv2 F = Ds E Sp = 2 Ds2 f = t ω = ϕ t = 2π T = 2πf v = ωr a Z = v2 r F Z = mv2 = mω 2 t F G = mg F R = f G F N r a 3 F Hmax = f H F N = a3 2 F T 2 T2 2 G = γ m m 2 ( r 2 V (r) = γm R ) V (r) = γm r r Für die nachfolgenden Lösungen gilt: ˆ Nach bestem Wissen und Gewissen ˆ ohne Gewähr ˆ Wer (sinnentstellende!) Fehler ndet, behält sie bitte nicht, sondern schickt mir eine Mail (friedrich@hattendoerfer.de)

2 Dynamik Seite metzler-gruen-46 Dynamik Seite46 Ein PKW (m = 900 kg) erfährt eine Beschleunigung a = 4, 5ms 2. Berechnen Sie die Kraft, die dabei von den Rädern auf den Wagen übertragen werden muss. F = m a () = 900 kg 4, 5ms 2 (2) = 4050 kgm 4, kn s 2 (3)

3 Dynamik Seite metzler-gruen-46 2 Ein Junge bringt einen Ball der Masse m = 0, 5 kg in der Zeit t = 0, 2 s auf die Geschwindigkeit v = 8 m/s. Berechnen Sie die (durchschnittliche) Kraft, die er auf den Ball ausübt. 2 F = p t = m v = t 0, 5 kg 8 m/s 0, 2 s = 20 kgm s (4) (5) (6) = 20 N (7) 2

4 Dynamik Seite metzler-gruen-46 3 Ein Zug der Gesamtmasse m = 600 t erreicht beim Anfahren von der Haltestelle aus auf der Strecke von s = 2, 45 km die Fahrgeschwindigkeit v = 20 km h. Bestimmen Sie die konstante Kraft, mit der die Lokomotive den Zug zieht. 3 Aus den Gesetzmäÿigkeiten der Bewegung mit konstanter Beschleunigung ermitteln wir zuerst die Beschleunigung a; v = at t = v a (8) s = 2 at2 = 2 a ( v a) 2 (9) = v2 2a (0) a = v2 () 2s F = m a (2) ( ) 2 20 = m kg (3) 3, 6 s 2 2, m = N (4) 36 kn (5) (6) 3

5 Dynamik Seite metzler-gruen-46 4 Ein PKW mit der Masse m = 600 kg wird auf einer Strecke von s = 50 m durch die konstante Kraft F = 900 N abgebremst. Berechnen Sie die Anfangsgeschwindigkeit. 4 Lösung: Aus a = F m und v2 = 2as (vgl Aufgabe 3) folgt v = 2as (7) = 2s F m = 2 50 m 900 N 600 kg (8) (9) = 2, 247 m/s (20) 44 km h (2) 4

6 Dynamik Seite metzler-gruen-46 5 Ein Körper der Masse m = 2 kg wird geradlinig nach dem folgenden Zeit- Geschwindigkeits-Diagramm bewegt. Bestimmen Sie daraus für die einzelnen Bewegungsabschnitte die wirkende Kraft und zeichnen Sie das Zeit-Kraft- Diagramm. 5

7 Dynamik Seite metzler-gruen-46 5 Es gilt immer: v t F Intervall ms s N 0 s s 0 0 s 3 s 2 3 s 4 s 2 4 s 5 s s 6 s -3-6 F = m a (22) = m v t (23) = 2 kg v t (24) 6

8 Dynamik Seite metzler-gruen-46 6 Ein PKW (m = 000 kg) fährt bergan auf einer Straÿe mit dem Steigungswinkel a = 20. Bestimmen Sie die Kraft (ohne Berücksichtigung von Reibungskräften), die der Motor erzeugt, wenn das Auto bergan fährt 6. mit konstanter Geschwindigkeit, 6.2 mit einer (konstanten) Beschleunigung von a = 0, 2 m s Berechnen Sie die Kraft, mit der das Auto in beiden Fällen auf die Straÿe drückt. 6.4 Berechnen Sie die Lösungen, wenn das Auto unter den Bedingungen a) und b) bergab fahrt. 7

9 Dynamik Seite metzler-gruen Die Antriebskraft ist gleich der Hangabtriebskraft F = m g sin α (25) = 000 kg 9, 8 ms 2 sin 20 (26) = 3355, 2 N (27) 3, 36 kn (28) (29) 6.2 F = m g sin α + m a (30) = m(g sin α + a) (3) = (32) = 3555, 2 N (33) 3, 56 kn (34) 6.3 Die Normalkraft ist F N = m g cos α = 928N 9, 22 kn 6.4 Bei konstanter Geschwindigkeit muss mit die Kraft F R = 3355 N der Hangabtriebskraft das Gleichgewicht halten. Soll das Auto mit Beschleunigung a = 0, 2 ms 2 bergab fahren, so muss es mit der Kraft F B gebremst werden, für die gilt ma = mgsina F B, also F B = 355N 3, 6 kn 8

10 Dynamik Seite metzler-gruen-46 8 Über eine feste Rolle läuft eine Schnur, an deren beiden Enden zwei Körper mit den Massen m und m 2 (m < m 2 ) gehängt werden. Beschreiben und analysieren Sie den Bewegungsvorgang, wenn diese Anordnung freigegeben wird. m m2 9

11 Dynamik Seite metzler-gruen-46 Lösungen 8 Auf beide Körper wirkt die Erdanziehung.Auf m die Gewichtskraft G = m g, auf m 2 die Gewichtskraft G 2 = m 2 g. Da G < G 2 werden die Körper beschleunigt. Die beschleunigende Kraft ist F = G 2 G, die zu beschleunigende Masse ist m ges = m + m 2. Damit folgt: bzw. F = m ges a (35) a = G 2 G m 2 + m (36) = m 2 g m g m 2 + m (37) = m 2 m m 2 + m g (38) g = m 2 + m m 2 m a (39) (40) Es handelt sich um eine Atwoodsche Fallmaschine. Sie wurde 784 von George Atwood ( ) entwickelt. Sie wurde als Nachweis für die Gesetze der gleichmäÿig beschleunigten Bewegung konzipiert. Mit ihr kann man mit einfachen Mitteln statt der Fallbeschleunigung eine beliebig verringerte Beschleunigung erhalten. Näheres: 0

12 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 Kreisbewegungen Seite 53 Ein Körper (m = 0, 40 kg) wird an einer l = 0, 8 m langen Schnur 80-mal im der Minute auf einem Kreis, der in einer waagerechten Ebene liegt, herumgeschleudert. Berechnen Sie. die Zentripetalkraft.2 die Umdehungszahl, bei der die Schnur reiÿt, wenn ihre Zugfestigkeit mit F max = 500 N angegeben ist.

13 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 Lösungen. f = s = 4 3 s () (vgl. Seite 32) ω = 2πf = 8 3 π (2) s F Z = mω 2 r (3) ( 8 = 0, 40 kg 3 π ) 2 0, 8 m (4) s = 22, 5 N (5).2 F Z = mω 2 r (6) = m (2πf) 2 r (7) f 2 = F max 4π 2 mr (8) =... (9) = 39, 58 s 2 (0) f = 6, 29 s f = 60 6, 29 = 377 min min () (2) (3) (4) 2

14 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 6 Eine Straÿenkurve mit dem Radius r = 300 m sei nicht überhöht, sodass ein Auto (m = 900 kg) in der Kurve allein durch die Haftkraft zwischen Reifen und Straÿe gehalten wird. Berechnen Sie die Höchstgeschwindigkeit, mit der ein Auto die Kurve auf. trockener (f H = 0, 8) 2. nasser (f H = 0, 5) 3. vereister(f H = 0, ) 3

15 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 Lösungen 6 Die Haftkraft muss gröÿer sein, als die Zentripetalkraft. Also muss gelten: F H F Z (5) Einsetzen ergibt: f H m g mv2 r v 2 f H m g r m fh m g r v m (6) (7) (8) ˆ trockene Straÿe : v 75 km h ˆ nasser v 38 km h ˆ vereister v 6, 8 km h 4

16 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 7 Ein Pkw (m = 300 kg) fährt mit konstanter Geschwindigkeit (v = 40 km h über eine gewölbte Brücke. Der Radius des Brückenbogens beträgt R = 50 m. Bestimmen Sie die Normalkraft des PKW auf die Brückenmitte und die Geschwindigkeit, bei der der PKW abheben würde. 5

17 GK Physik EF-2 (ht) Kreisbewegungen Seite metzler-gruen-53 Lösungen 7 Die Zentripetalkraft ist F Z = mv2 R = 320 N (9) sodass auf die Brücke die Last F = G F Z = 9543N (20) wirkt. Der PKW hebt ab, wenn die Zentripetalkraft gröÿer wird als die Gewichtskraft, also, wenn ist. Dies ist der Fall bei mv 2 mg (2) R g R v (22) m v 22, 5 m s = 79, 7 km h 80 km h (23) 6

18 Gravitationskraft Seite metzler-gruen-87 Gravitationskraft Seite 87 Berechnen Sie die Gravitationskraft zwischen. zwei Schien von je m = t, die sich mit dem Schwerpunktabstand d = 200 m begegnen..2 Zwei Autos von je m = 900 kg die im Schwerpunktabstand d = 5 m aneinander vorbeifahren..3 zwei Wasserstoatomen (m H =, kg) im Abstand von d = m Lösungen. F = γ m2 r 2 () F = 6, 69 N (2)

19 Gravitationskraft Seite metzler-gruen-87.2 F = 2, N (3).3 F =, N (4) 2

20 metzler-gruen-93 Berechnen Sie die Gravitationsfeldstärke auf der Oberäche der Erde am Pol und am Äquator, auf der Mondoberäche und auf der Obeäche der Sonne.

21 metzler-gruen-93 Lösungen (Werte stehen auf Seite 576) G = γ M r 2 () G (Äquator) = 6, m 3 kg s 2 5, kg (6, m) 2 (2) = 9, 7982 ms 2 (3) G (P ol) = 6, m 3 kg s 2 5, kg (6, m) 2 (4) = 9, 8643 ms 2 (5) =, 0067 G (Äquator) (6) G (Mond) = 6, m 3 kg s 2 7, kg (, m) 2 (7) =, 6237 ms 2 (8) = 0, 66g (9) G (Sonne) = 6, m 3 kg s 2, kg (6, m) 2 (0) = 273, 99 ms 2 () = 27, 94g (2) 2

22 metzler-gruen-93 2 Für einen Punkt im Erdinnern zählt für die Gravitationskraft nur die Masse der Kugel, deren Radius seinem Abstand vom Mittelpunkt entspricht. Setzen Sie homogene Massenverteilung voraus und berechnen Sie 2. die Gravitationsfeldstärke in 000 km Tiefe, 2.2 die Abhängigkeit der Gravitationsfeldstärke im Innern der Erde vom Abstand vom Erdmittelpunkt. 3

23 metzler-gruen-93 Lösungen 2 2. Es ist ( ) 2 rt m t = m E (3) r E g t = γ mt r t (4) = γ mer 2 t r t r 2 E = γ mer t r 2 E = γ me r E (5) rt r E (6) = g E rt r E (7) mit der mittleren Schwerebeschleunigung g E = 9, 84 ms 2 ist: g(000km) = 8, 274ms 2 = 0, 843g E (8) 4

24 metzler-gruen-93 3 Erde (Masse M) und Mond (m) haben den Schwerpunktsabstand r. Berechnen Sie den Punkt, in dem die Feldstärke null ist (allgemein und betragsmäÿig). 5

25 metzler-gruen-93 Lösungen 3 Es sei r E der Abstand des Punktes vom Erdmittelpunkt, r M vom Mondmittelpunkt. Ich setze die Feldstärken gleich: der Abstand G Erde = G Mond (9) γ m E r 2 E = γ m M r 2 M nun ist aber r E + r M = r also r M = r r E r E ( + me m M (20) r 2 E = m E m M r 2 M (2) r E = ±r M me m M (22) me r E = (r r E ) (23) m M ) me = r (24) m M me r E = r + m M me m M me = r mm + (25) m E Als zweite Lösung (Minus-Zeichen in Gl. (22) erhält man: mm r E2 = r me (26) m M einsetzen der Werte: r E = 3, m (27) r M = 0, m (28) bzw. r E2 = 4, m (29) r M2 = 0, m (30) (3) 6

26 metzler-gruen-93 Beachten Sie, dass im ersten Punkt Schwerelosigkeit herrscht, während im zweiten Punkt nur die Beträge der gleichgerichteten Feldstärken gleich sind. 7

27 Gravitationskraft Seite metzler-gruen-95 Gravitationskraft Seite 95 Ein Stellit (m =, 5 t) wird von der Erdoberäche auf die Höhe h = km gebracht. Berechnen Sie die erforderliche Energie. mit der Näherung dass die Gravitationsfeldstärke konstant (wie auf der Erdoberäche) ist.2 im radialen Gravitationsfeld der Erde.

28 Gravitationskraft Seite metzler-gruen-95 Lösungen. E = m g h () = (2) = 3, 86 0 J (3).2 ( E 2 = γmm E ) r E r E + h (4) = (5) = 7, J (6) 0, 2E (7) 2

29 Gravitationskraft Seite metzler-gruen-95 2 Berechnen Sie die potentielle Energie der Sonnensonde Helios (m = 370, 5 kg) bezüglich der Sonnenobeäche für den sonnenfernsten Punkt (Aphel) der Bahn (Entfernung zum Sonnenmittelpunkt d max = 47, m) und den sonnennächsten (Perihel) Punkt (Entfernung d max = 46, m)

30 Gravitationskraft Seite metzler-gruen-95 Lösungen 2 Die Entfernung der Helios-Sonde im sonnennächsten Punkt ist 46,5 Millionen Kilometer. Mit der Sonnenmasse M S, dem Sonnenradius R S, der Entfernung r E der Erde von der Sonne und der Entfernung r H der Sonde von der Sonne ist die potentielle Energie bezogen auf die Sonnenobeäche E pot (r) = γmm ( ) R S r H (8) im Aphel E pot,aphel = 7, J (9) im Perihel E pot,p erihel = 6, J (0) die Dierenz beträgt: 2. E pot = 7, 3 0 J () 4

31 metzler-gruen-98 Bestimmen Sie die Umlaufzeit des Uranus aus der mittleren Entfernung Erde - Sonne r E =, m und der mittleren Entfernung UranusSonne r U = 2, m. Lösungen Es gilt das dritte Keplersche Gesetz: TU 2 TE 2 = r3 U r 3 E T U = T E r 3 U r 3 E () (2) 2, m = a (3), m 28, 7 = a (4), 496 = 84, 03 a (5)

32 metzler-gruen Der Saturnmond Mimas umkreist seinen Planeten in der Umlaufzeit T = 0, 9422 d mit der groÿen Halbachse a =, km. Berechnen Sie die Masse des Saturn. 2.2 Der Mond umkreist die Erde in der Umlaufzeit T = 27, 327 d mit der groÿen Halbachse a = km. (Werte lt. Wikipedia - Strand ) Berechnen Sie die Masse der Erde. 2

33 metzler-gruen-98 Lösungen 2 2. Die Gravitationskraft ist gleich der Zentripetalkraft für den Saturn (S) und seinen Begleiter Mimas (M) γ msm M r 2 = m M ω 2 r (6) Die Masse des Mondes Mimas m M kann gekürzt werden, muss also nicht bekannt sein, um die Masse des Saturn zu bestimmen. γ ms r 2 = ( ) 2 2π r (7) T m S = 4π2 r 3 γt 2 (8) 4π 2 (, m) 3 = γ(0, s) 2 (9) = 5, kg 5, kg (0) Literaturwerte (lt. Wikipedia - Strand ): T = 0, d r = a = km γ = 6, m 3 kg s 3 m S = 5, kg 2.2 m E = 4π2 r 3 γt 2 () = 4π2 (3, m) 3 γ(27, s) 2 (2) = 6, kg 6, kg (3) Literaturwert (lt. Wikipedia - Strand ): M E = 5, kg 3

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November Übungen zur Physik - Wintersemester 22/23 Serie 4 5. November 22 Abzugeben bis zum 6. November Aufgabe : Ein Apfel hängt in einem Baum an der Position r = (; ; m). Zum Zeitpunkt t = löst sich der Apfel

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 4

Grundlagen der Physik 1 Lösung zu Übungsblatt 4 Grundlagen der Physik Lösung zu Übungsblatt 4 Daniel Weiss 3. November 9 Inhaltsverzeichnis Aufgabe - Elektron auf Kreisbahn a) Geschwindigkeit des Elektrons.......................... b) Energie des Elektrons...............................

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007 2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik 11 2006/2007 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen

Mehr

Übungsblatt 8 Physik für Ingenieure 1

Übungsblatt 8 Physik für Ingenieure 1 Übungsblatt 8 Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 4. 12. 2001 1 Aufgaben für die Übungsstunden Statische Gleichgewichte 1, Gravitation 2, PDF-Datei 3 1. Bei einem Kollergang

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion s(t) beschreiben, die zu jedem Zeitpunkt t (Stunden oder Sekunden)

Mehr

Lösungblatt III Veröentlichung

Lösungblatt III Veröentlichung Aufgabe 1 a) Ein Block der Masse m = 0.5Kg hängt am unteren Ende einer vertikal aufgehängten Feder. Aufgrund des Blocks streckt sich die Feder um eine Distanz d = 5cm aus ihrer Gleichgewichtslage (vgl.

Mehr

Prüfungsvorbereitung Physik: Bewegungen und Kräfte

Prüfungsvorbereitung Physik: Bewegungen und Kräfte Prüfungsvorbereitung Physik: Bewegungen und Kräfte Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Vektor/Skalar b) Woran erkennt man eine Kraft? c) Welche

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer Eine allumfassende, No!iistische Formelsammlung Ferdinand Ihringer 2. Juni 2004 Inhaltsverzeichnis I Physik 3 1 Mechanik des Massenpunktes 4 1.1 Grundlagen............................................ 4

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

Dynamik der gkb: die Zentripetalkraft

Dynamik der gkb: die Zentripetalkraft PD Dr. N.Grinberg - Physik, Kl.0, Zentripetalkraft Dynamik der gkb: die Zentripetalkraft Eine Kraft, egal welcher Natur, die einen Körper auf eine kreisförmige Laufbahn zwingt, nennt man Zentripetalkraft.

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

1.1 Eindimensionale Bewegung. Aufgaben

1.1 Eindimensionale Bewegung. Aufgaben 1.1 Eindimensionale Bewegung Aufgaben Aufgabe 1: Fahrzeug B fährt mit der Geschwindigkeit v B am Punkt Q vorbei und fährt anschließend mit konstanter Geschwindigkeit weiter. Eine Zeitspanne Δt später fährt

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am Übungen zur Vorlesung PN1 Übungsblatt 6 Lösung Besprechung a7.11.2012 Aufgabe 1: Zentrifuge Eine Zentrifuge habe einen Rotor mit einem Durchmesser von 80 cm. An jedem Ende hängen Schwinggefäße mit einer

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel:

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel: Prüfungshinweise Physik 1. Prüfungstermine: Hauptprüfung: 27.03.03 / Nachprüfung: 07.04.03 2. Bearbeitungszeit: 120 Minuten 3. Anzahl und Art der Aufgaben: sechs Aufgaben 4. Zugelassene Hilfsmittel: Zeichengerät,

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 30. 11. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen! ÜBUNGEN ZUR EINFÜHRUNG IN DIE PHYSIK I WS 2008/09 PROBEKLAUSUR 05.12.2008 Kennwort :... Übungsgruppe (Tag/Uhrzeit) Kennzahl : nur für die Korrektoren: Studienziel (bitte ankreuzen): Aufgabe Punkte Physik

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht.

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht. R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Beschleunigungsmessung an der Fahrbahn Protokoll und Auswertung einer Versuchsdurchführung. Gemessen wird die Zeit, die der Wagen bei einer beschleunigten

Mehr

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung Abschlussprüfung Berufliche Oberschule 15 Physik 1 Technik - Aufgabe III - Lösung Teilaufgabe 1. Ein Plattenkondensator mit Luft als Dielektrikum wird zunächst an eine Gleichspannungsquelle mit der Spannung

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

1.Klausur LK Physik 12/2 - Sporenberg Datum:

1.Klausur LK Physik 12/2 - Sporenberg Datum: 1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017 Test 2 Musterlösung Brückenkurs Physik donat.adams@fhnw.ch www.adams-science.org Name, Nummer: Datum: 17. Juni 2017 1. Citroën 2CV C5H817 Ein elektrifizierter Döschwo (Citroën 2CV) überholt mit 202.73

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Tutorium Physik 1. Kinematik, Dynamik.

Tutorium Physik 1. Kinematik, Dynamik. 2 Tutorium Physik 1. Kinematik, Dynamik. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Übungen zu Physik I für Physiker Serie 2 Musterlösungen

Übungen zu Physik I für Physiker Serie 2 Musterlösungen Übungen zu Physik I für Physiker Serie 2 Musterlösungen Allgemeine Fragen 1. Ein Auto fährt entlang einer Strasse von A nach D (vgl. Abb. 1). Zeichne für die Punkte 1 bis 7 den Beschleunigungsvektor (ungefähr)

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Ann-Kathrin Straub, Christoph Raab, Markus Perner 22.03.2010 1 Klassische Mechanik des Massenpunktes

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der

Mehr

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1 3.2.5 Zerlegung von Kräften (am Beispiel der schiefen Ebene) Aus der Statik ist bekannt, dass sich resultierende Kräfte aus einzelnen Kräften zusammensetzen können (Addition einzelner Kräfte). Ebenso kann

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

Kraft als Ursache von Bewegungsänderungen, F=ma

Kraft als Ursache von Bewegungsänderungen, F=ma Kraft als Ursache von Bewegungsänderungen, F=ma 1. Der ICE 3 hat laut Hersteller eine maximale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für einen

Mehr

FORMELSAMMLUNG PHYSIK. by Marcel Laube

FORMELSAMMLUNG PHYSIK. by Marcel Laube FORMELSAMMLUNG PHYSIK by Marcel Laube INHALTSVERZEICHNIS INHALTSVERZEICHNIS 1 Die gradlinige Bewegung: 3 Die gleichförmig gradlinige Bewegung: 3 Zurückgelegter Weg: 3 Die gleichmässig beschleunigte geradlinige

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

Physik LK 11, 2. Klausur Gravitation, Rotation Lösung

Physik LK 11, 2. Klausur Gravitation, Rotation Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht eplizit anders verlangt. Besondere Näherungen

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Abiturtraining Physik

Abiturtraining Physik Abiturtraining Physik Aus: Schriftliche Abiturprüfung Physik Sachsen Anhalt 04 Thema G : Auf dem Weg zum Mars Gravitation Die russische Raumsonde Phobos Grunt startete im November 0 zu einem Flug zum Marsmond

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

H 3. Fachhochschule Hannover vorgezogene Wiederholungsklausur WS

H 3. Fachhochschule Hannover vorgezogene Wiederholungsklausur WS Fachhochschule Hannover vorgezogene iederholungsklausur S89..9 Fachbereich Maschinenbau Zeit: 9 min Fach: Physik (Prof. Schrewe) Hilfsmittel: Formelsammlung zur Vorlesung. Der Anhalteweg eines Pkw setzt

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Übungen zu Physik I für Physiker Serie 5 Musterlösungen

Übungen zu Physik I für Physiker Serie 5 Musterlösungen Übungen zu Physik I für Physiker Serie 5 Musterlösungen Allgemeine Fragen 1. Wohin geht die Energie, die durch Reibung verbraucht wird? Nenne praktische Beispiele. Sie wird in Wärme umgewandelt. Beispiele:

Mehr

! den Ausdruck W = F. s schreiben darf?

! den Ausdruck W = F. s schreiben darf? Probeklausur 1. ufgabe Ohne die Luftreibung wären Regentropfen sehr gefährlich, sie könnten uns "erschießen". Welchen Betrag in km/h hätte die Geschwindigkeit eines Regentropfens, der frei (ohne Luftreibung)

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr