Grundbegriffe. Bibliografie

Größe: px
Ab Seite anzeigen:

Download "Grundbegriffe. Bibliografie"

Transkript

1 Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler Bleymüller / Gehlert Verlag Vahlen Statistische Formeln, Tabellen und Programme PowerPointPresentationen (Prof. Kück) Vorlesungsskript für Statistik I (Dr. Pu Chen) Einführung und Grundbegriffe II 2 1

2 Merkmal Eine messbare Eigenschaft einer statistischen Einheit, für die man sich bei der Untersuchung interessiert, heißt Merkmal. Für allgemeine Aussagen werden die Merkmale mit großen lateinischen Buchstaben bezeichnet: A, B, C, etc Einführung und Grundbegriffe II 3 Merkmalsausprägung Die möglichen Werte (Kategorien), die ein Merkmal annehmen kann, heißen Merkmalsausprägungen. Für allgemeine Aussagen werden die Merkmalsausprägungen mit kleinen lateinischen Buchstaben und subindex bezeichnet: a 1, a 2,, b 1, b 2,, c 1, c 2, Einführung und Grundbegriffe II 4 2

3 Merkmalsträger Eine statistische Einheit, deren Eigenschaften erhoben werden, heißt Merkmalsträger. Beispiele: Merkmalsträger: Person Merkmale: Alter, Ausbildung, Position, Gehalt, etc Merkmalsträger: Fernsehgerät Merkmale: Hersteller, Model, Bildschirmdiagonale, Stromverbrauch, Frequenz, etc Merkmalsträger: PC Merkmale: Prozessor, Taktfrequenz, Arbeitsspeicher, Laufwerke, etc Einführung und Grundbegriffe II 5 Datenmengenklassifizierung Nach der Anzahl der Merkmale je Merkmalsträger entstehen: Eindimensionale Datenmengen: Es wird nur ein Merkmal pro Merkmalsträger erfasst. Mehrdimensionale Datenmengen: Es werden zwei bzw. mehrere Merkmale pro Merkmalsträger erfasst. Einführung und Grundbegriffe II 6 3

4 Eindimensionale Datenmengen Es wird nur ein Merkmal der statistischen Einheit erhoben. Dieses Merkmal bildet eine eindimensionale statistische Variable. Das Erfassungsergebnis für die statistischen Einheiten der Gesamtheit bildet die Univariate Datenmenge. Einführung und Grundbegriffe II 7 Mehrdimensionale Datenmengen Es werden zwei oder mehr Merkmale der statistischen Einheit erhoben. Zwei Merkmale bilden eine zweidimensionale statistische Variable. Die Erfassung aller Werte bilden eine bivariate Datenmenge Mehr als zwei Merkmale bilden eine mehrdimensionale statistische Variable. Die Erfassung aller Werte bilden eine multivariate Datenmenge Einführung und Grundbegriffe II 8 4

5 Merkmalstypen Die Merkmale lassen sich nach den Relationen bzw. Operationen, die man mit den Merkmalsausprägungen definieren kann, in drei Typen gruppieren. Die Merkmalstypen sind: qualitativ (begrifflich, kategorial) komparativ (abstufbar, vergleichbar) quantitativ (exakter zahlenmäßiger erfassbar) Einführung und Grundbegriffe II 9 Beispiel: Merkmalstypen Merkmal Konfession Geschlecht Familienstand Leistungsbeurteilung Körpergröße Alter Anzahl der Kinder Merkmalsausprägung röm.-kath., ev., sonstige, keine männlich, weiblich ledig, verheiratet, verwitwet, geschieden sehr gut, gut, befriedigend, ausreichend, mangelhaft x cm x Jahre 0, 1, 2, 3, Merkmalstypen qualitativ qualitativ qualitativ komparativ quantitativ quantitativ quantitativ Einführung und Grundbegriffe II 10 5

6 Qualitative Merkmale Qualitative Merkmale besitzen nur eine Äquivalentrelation: zwei Merkmalsausprägungen sind entweder identisch oder nicht. Durch diese Relation wird die Gesamtheit in gegenseitig ausschließenden Klassen geteilt. Die Ausprägungen können durch Zahlen ersetzt werden (Codierung). Mit diesen Zahlen dürfen aber keine mathematischen Operationen durchgeführt werden. Es bestehet auch keine Ordnungsrelation zwischen den Ausprägungen. Beispiel: Familienstand: ledig(1), verheiratet(2), verwitwet(3), geschieden(4). Einführung und Grundbegriffe II 11 Komparative Merkmale Die komparativen Merkmale sind qualitative Merkmale, unter deren Ausprägungen zusätzlich eine Ordnungsrelation besteht. D. h. die komparativen Merkmale besitzen eine Äquivalenz- und eine Ordnungsrelation. Beispiel: Die Evaluierung der Lehre durch die Studenten: Merkmalsausprägungen bzw. Noten: ausgezeichnet (1), sehr gut (2), gut (3), schlecht (4) und sehr schlecht (5) Einführung und Grundbegriffe II 12 6

7 Quantitative Merkmale Quantitative Merkmale sind komparative Merkmale, unter deren Ausprägungen zusätzlich eine Metrik definiert wird. D. h. sie besitzen eine Äquivalenz-, eine Ordnungsrelation, eine Null und eine Eins und mit ihren Ausprägungen dürfen die üblichen mathematischen Operationen durchgeführt werden. Die Differenzen und Quotienten sind interpretierbar. Beispiele: Körpergröße, Anzahl der Kinder und Alter einer Person lassen sich mit reelle Zahlenwerte darstellen. Einführung und Grundbegriffe II 13 Skalentypen Merkmale, Merkmalsträger und Merkmalsausprägungen drücken eine Sachlogik aus. Die Messung eines Merkmals bei einem Merkmalsträger geschieht durch eine Skala. Jeder Merkmalsausprägung wird ein Skalenwert zugeordnet. Diese Zuordnung nennt man Messsung. Entsprechend der Merkmalstypen unterscheidet man die Skalenarten in: nominal (für qualitative Merkmale) ordinal (für komparative Merkmale) kardinal (für quantitative Merkmale) Von den Skalentypen hängt die Wahl der anzuwendenden statistischen Verfahren ab. Einführung und Grundbegriffe II 14 7

8 Nominalskala Die Nominalskala wird bei qualitativen Merkmalen angewandt. Jedem Merkmalsausprägung wird ein und nur ein Skalenwert zugeordnet. Man soll es versuchen, eine sachlogische Skala zu definieren, damit die Arbeit mit den Werten und die Interpretation der Ergebnisse leichter wird. Eine Reihenfolge oder Rangordnung der Werte wird damit nicht festgelegt. Mathematische Operationen mit den Skalenwert sind in diesem Fall untersagt. Einführung und Grundbegriffe II 15 Beispiele: Nominalskala Geschlecht mögliche Ausprägungen: männlich / weiblich. mögliche Skalenwerte: (maskulin / feminin), (m/w), (0/1), etc Schulbildung mögliche Ausprägungen: kein Abschluss, Hauptschulabschluss, Realschulabschluss, Abitur. mögliche Skalenwerte: 1, 2, 3, 4 Studiengang mögliche Ausprägungen: BWL, VWL, Wirtschaftsinformatik, mögliche Skalenwerte: 1, 2, 3, Farbe mögliche Ausprägungen: gelb, grün, blau, rot, mögliche Skalenwerte: 1, 2, 3, 4, Einführung und Grundbegriffe II 16 8

9 Ordinalskala Die Merkmalsausprägungen eines komparativen Merkmals können nicht nur nach dem gleich/ungleich Kriterium verglichen werden, sondern sie können in eine Reihenfolge nach den größer/kleiner oder besser/schlechter Beziehungen gebracht werden. Dabei ist jedoch zu beachten, dass die Abstände zwischen den Merkmalsausprägungen nicht interpretierbar sind. Eine Ordinalskala soll diese Eigenschaften des entsprechenden komparativen Merkmals wiedergeben. Eine Ordinalskala mit ausschließlich ununterbrochenen ganzen Zahlen bezeichnet man Rangskala (Ratingskala). Einführung und Grundbegriffe II 17 Beispiele: Ordinalskala Noten Mögliche Ausprägungen: 1, 2, 3, 4, 5. Zwischen den Noten besteht eine besser/schlechter Beziehung, allerdings ist der Abstand zwischen zwei Noten nicht exakt interpretierbar. Rangplätze der Fußballbundesliga Es lässt sich eine besser/schlechter Aussage zwischen den Plätzen der Tabelle machen, allerdings sagt sie nichts über den genauen Abstand der Vereine zueinander aus. Abgestufte Antworten bei Fragen über Einstellungen, Haltungen Zwischen den Antworten besteht eine besser/schlechter Beziehung, diese lässt sich aber nicht genau quantifizieren. Bei praktischen Untersuchungen wird jedoch oft Äquidistanz zwischen den Skalenwert unterstellt, denn dadurch können die komfortableren Verfahren zur Datenanalyse kardinalskalierter Merkmalen verwendet. Einführung und Grundbegriffe II 18 9

10 Kardinalskala (metrische Skala) Neben der Rangordnung besteht die Möglichkeit, die Abstände zwischen den Merkmalsausprägungen eines quantitativen Merkmals zu interpretieren. Eine entsprechende Kardinalskala muss diese metrische Eigenschaften besitzen. Sie haben eine Null und eine Einheit. Kardinalskala Intervallskala - willkürlicher (relativer) Nullpunkt Beispiele: Temperaturmessung in C Kalenderzeitrechnung Verhältnisskala - absoluter Nullpunkt Beispiele: Temperaturmessung in K Körpergröße Lebensdauer, etc 0 K entspricht - 273,15 C Einführung und Grundbegriffe II 19 Absolutskala Eine kardinal- bzw. metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit heißt Absolutskala. Auf einer Absolutskala werden z. B. Stückzahlen oder Häufigkeiten gemessen. Beispiel: Im Geschäftsjahr 2001/2002 produzierte die Dr. Inc. h. c. F. Porsche AG Fahrzeuge. Einführung und Grundbegriffe II 20 10

11 quantitative Merkmale eine Klassifikation Je nach Menge der Ausprägungen, die ein quantitatives Merkmal annehmen kann, unterscheidet man: Diskretes Merkmal Die Menge der möglichen Ausprägungen sind endlich bzw. unendlich abzählbar. Stetiges (kontinuierliches) Merkmal Die Menge der möglichen Ausprägungen ist nicht abzählbar. Sie ist isomorph mit der Menge der reellen Zahlen. Quasistetiges Merkmal Ein diskretes Merkmal, welches viele und sehr dicht beieinander liegende Ausprägungen hat, wird wie ein stetiges Merkmal behandelt. Meistens liegt die Unstetigkeit an der Genauigkeit unserer Messinstrumente. Einführung und Grundbegriffe II 21 Beispiele: Diskrete Merkmale Zahl der Studenten im AudiMax Zahl der Kinder einer Familie Zahl der produzierten Erzeugnisse Zahl der Erwerbslosen einer Region Einführung und Grundbegriffe II 22 11

12 Stetige Merkmale Ein stetiges Merkmal kann theoretisch (zumindest in einem bestimmten Bereich) einen beliebigen reellen Wert annehmen. Das Messergebnis wird dadurch beeinflusst, dass man nicht beliebig genau messen kann. In der Praxis liegt die Genauigkeit an unseren vorhandenen Messinstrumenten. Beispiele: Zeit für 100 m Lauf Gewicht, Größe, Alter einer Person Höhe, Tiefe, Breite eines Produktes Einführung und Grundbegriffe II 23 Quasistetige Merkmale Bei einem quasistetigen Merkmal handelt es sich um ein diskretes Merkmal, die viele Eigenschaften eines stetigen Merkmals besitzen. Diese werden deswegen oft wie ein stetiges Merkmal behandelt. Eine solche Behandlung ist angemessen, wenn die Einheit, in der gezählt wird, vernachlässigbar klein ist gegenüber der großen Anzahl von möglichen Ausprägungen. Beispiel: Altersangabe (in Jahr) einer Person Die Altersangabe (Kalenderjahr minus Geburtsjahr) ist laut unsere Definition ein diskretes Merkmal. Weil hiermit jedoch Alterszeit (Lebensdauer), d. h. eine stetige Größe zu messen ist, besitzt dieses Merkmal mehr Eigenschaften eines stetigen Merkmal als von einem diskreten. Es wird quasistetig bezeichnet und als stetig behandelt. Altersangaben von 67,83 Jahre können für Mittelwerte einer Personengesamtheit stehen. Solche Angaben sind in der Praxis üblich. Einführung und Grundbegriffe II 24 12

13 Transformation Unter der Skalentransformation versteht man die Transformation der Skalenwerte in andere Werte, wobei die Eigenschaften der Skalen erhalten bleiben. Eigenschaften der Transformationen: Eineindeutigkeit Monotonie Linearität Einführung und Grundbegriffe II 25 Eineindeutigkeit Jedem Wert der alten Skala wird genau ein Wert der neuen Skala zugeordnet. Eindeutige Umkehrbarkeit ist gegeben. Das betrifft in der Praxis z.b. die erforderliche Umstellung bei Systematiken, Klassifikationen, Codierung. Entsprechend Skalentyp: Die Transformation einer Nominalskala muss eineindeutig sein. 1 2 X Y 3 Z Einführung und Grundbegriffe II 26 13

14 Beispiele: Eineindeutigkeit Transformation des Merkmals Geschlecht von männlich/weiblich in die Werte 0/1 bzw. X/Y Zuordnung eines Zahlenschlüssels für die Farbe eines Autos Zahlenschlüssel (Regionalschlüssel) für Städte und Gemeinden Mit diesen Zahlen darf man keine mathematische Operation durchführen. Es besteht auch keine Rangfolge unter ihnen. Einführung und Grundbegriffe II 27 Monotonie Die gleiche Ordnungsrelation der alten Skalenwerte bleibt unter den neuen Skalenwerten erhalten. Sie geben die entsprechenden Relationen der Merkmalsausprägungen wieder. Die Transformation einer Ordinalskala muss monoton sein. Eine monotone Transformation ist auch eine eineindeutige Transformation. Sie muss aber keine metrische Eigenschaft besitzen. Beispiel: Transformation der Noten sehr gut, gut, befriedigend, in 1, 2, 3, Einführung und Grundbegriffe II 28 14

15 Linearität Die Werte werden durch eine lineare Gleichung (Funktion) transformiert. Diese Transformation ist nur für kardinalskalierte Merkmale zulässig. Das Verhältnis von Abständen zwischen den Skalenwerten bleibt gleich. Die Transformation einer Kardinalskala muss linear sein. Eine lineare Transformation ist eineindeutig und monoton. x' = a x + b (a 0) Einführung und Grundbegriffe II 29 Beispiele: Lineare Transformation Umrechnungskurs zwischen Landeswährungen z. B. zur Euro Einführung: 1 DM 1,95583 * Euro (y=1,95583 x) Tageskurs für Touristen Deutschland und England 1 Euro 0,623 GBP (y=0,623 x) Umrechnung zwischen Meile und Kilometer, Gallone und Liter usw. Einführung und Grundbegriffe II 30 15

16 Eigenschaften von Skalen Kardinal Ordinal Nominal Der Übergang von einer höheren auf eine niedrigere Stufe ist jederzeit möglich. Ein solcher Informationsverlust wird im Interesse der Aussage oft sogar angestrebt. Beispiel: In Datenaufbereitungen und -auswertungen über Einkommen werden häufig drei Klassen bzw. Gruppen ausgewiesen: untere, mittlere und höhere Einkommen. Einführung und Grundbegriffe II 31 16

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung Statistik für alle Gliederung insgesamt Allgemeine Grundlagen Seite 1 1. Termin: Allgemeine Grundlagen 2. Termin: Eindimensionale Häufigkeitsverteilung 3. Termin: Lageparameter 4. Termin: Streuungsparameter

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Phasen des Forschungsprozesses (hypothesenprüfende Studie)

Phasen des Forschungsprozesses (hypothesenprüfende Studie) Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten

Mehr

Datenerhebung, Skalenniveaus und Systemdatei

Datenerhebung, Skalenniveaus und Systemdatei Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

1 Einführung und Grundbegriffe

1 Einführung und Grundbegriffe 1 Einleitung Die deskriptive Statistik dient der systematischen Erfassung und Darstellung von Daten, die bestimmte Zustände oder Entwicklungen aufzeigen. Sehr viele Entscheidungen des Alltags, in Wirtschaftsunternehmen

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Messtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN Was ist Messen? Messen - im weitesten Sinne - ist die Zuordnung von Zahlen zu Objekten und Ereignissen entsprechend einer Regel (Def. nach Stevensen

Mehr

Forschungsmethoden in der Sozialen Arbeit (XI)

Forschungsmethoden in der Sozialen Arbeit (XI) Forschungsmethoden in der Sozialen Arbeit (XI) Fachhochschule für Sozialarbeit und Sozialpädagogik Alice-Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

Statistik Grundbegriffe

Statistik Grundbegriffe Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Messtherorie Definitionen

Messtherorie Definitionen Messtherorie Definitionen Begriff Definition Beispiel Relationen Empirisches Relativ eine Menge von Objekten und ein oder mehreren beobachtbaren Relationen zwischen dieses Objekten Menge der Objekte =

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Meßtheoretische Vorüberlegungen

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Meßtheoretische Vorüberlegungen Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Meßtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

Formale Begriffsanalyse

Formale Begriffsanalyse Formale Begriffsanalyse I Kontexte, Begriffe und Begriffsverbände 3 Mehrwertige Kontexte und Begriffliches Skalieren Die Elemente von G nennen wir die Gegenstände, die von M die (mehrwertigen) Merkmale

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

2 Distanzen. Distanzen von Objekten. Einleitung Distanzen Repräsentation Klassifikation Segmentierung

2 Distanzen. Distanzen von Objekten. Einleitung Distanzen Repräsentation Klassifikation Segmentierung 2 von Objekten Datenanalyse II - Stefan Etschberger - Universität Augsburg - SS 2005 23 316 Gliederung Kapitel 2: von Objekten 2.1 Objekte und Merkmale 2.2 Merkmalstypen und ihre Nominale Merkmale Ordinale

Mehr

Einführung: Was ist Statistik?

Einführung: Was ist Statistik? Einführung: Was ist Statistik? 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG GLIEDERUNG Statistik eine Umschreibung Gliederung der Statistik in zwei zentrale Teilbereiche Deskriptive Statistik Inferenzstatistik

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Campbell (1920): "... die Zuweisung von Zahlen, um Eigenschaften darzustellen."

Campbell (1920): ... die Zuweisung von Zahlen, um Eigenschaften darzustellen. 3. Grundlagen der Messung 1 3. Grundlagen der Messung 1 3.1. Definitionen der Messung... 1 3.2. Problembereiche des Messens... 4 3.2.1 Wechselwirkung beim Messvorgang... 4 3.2.2 Repräsentationsproblem...

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

1. Einstellungen. Meinung - Vorurteil - Werthaltung - Einstellung - Wissen

1. Einstellungen. Meinung - Vorurteil - Werthaltung - Einstellung - Wissen 1. Einstellungen Meinung - Vorurteil - Werthaltung - Einstellung - Wissen Einstellungen-attitude-Attitüde Konstrukt aus der Alltagspsychologie - als relativ überdauernde Wahrnehmungsorientierung funktional

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1.

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1. Schüler Nr. Statistik I (7) Schuljahr /7 Mathematik FOS (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben, wenden Sie sich bitte an die betreuenden Lehrkräfte!) Tabelle : Die Tabelle wurde im Rahmen

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 16.04.2013 Gegenstand der Vorlesung und Grundbegriffe der

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Vorlesung 1: Grundbegriffe, einführende Begriffe, Merkmale in der Statistik Gliederung und Aufgaben einer Vorlesung Statistik

Vorlesung 1: Grundbegriffe, einführende Begriffe, Merkmale in der Statistik Gliederung und Aufgaben einer Vorlesung Statistik 1 Vorlesung 1: Grundbegriffe, einführende Begriffe, Merkmale in der Statistik Gliederung und Aufgaben einer Vorlesung Statistik Letzter Stand: 12. Juni 2000, 5 Seiten Literaturbezug Dieses Kapitel (einschließlich

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Mathematik. Schuljahr 1

Mathematik. Schuljahr 1 Mathematik 1 Duales Berufskolleg Mathematik Schuljahr 1 Fachrichtung Soziales 2 Mathematik Vorbemerkungen Die Schülerinnen und Schüler lernen im Fach Mathematik einfache naturwissenschaftliche Sachverhalte

Mehr

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1 Dr. Barbara Lindemann Fragebogen Kolloquium zur Externen Praxisphase Dr. Barbara Lindemann 1 Überblick 1. Gütekriterien quantitativer Forschungen 2. Fragebogenkonstruktion 3. Statistische Datenanalyse

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE Empirische Methoden der Politikwissenschaft 1 Einleitung 13 2 Methoden im empirischen Forschungsprozess 17 2.1 Methoden und wissenschaftliche Theorie 17 2.2

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

f j = ( 2) = 5.5.

f j = ( 2) = 5.5. Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Statistik Dr. Thomas Zehrt Merkmale und Häufigkeitsverteilung Motivation In der heutigen Zeit fällt jeden Tag eine unvorstellbare Menge von Daten

Mehr

Einführung in die Statistik mit R

Einführung in die Statistik mit R Einführung in die Statistik mit R Bernd Weiler syntegris information solutions GmbH Neu Isenburg Schlüsselworte Statistik, R Einleitung Es ist seit längerer Zeit möglich statistische Berechnungen mit der

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Skript. Stochastik. Beschreibende Statistik, Wahrscheinlichkeitsrechnung und schließende Statistik. Andreas Zeh-Marschke. Version 5.

Skript. Stochastik. Beschreibende Statistik, Wahrscheinlichkeitsrechnung und schließende Statistik. Andreas Zeh-Marschke. Version 5. Skript Stochastik Beschreibende Statistik, Wahrscheinlichkeitsrechnung und schließende Statistik Andreas Zeh-Marschke Version 5.1-013 Diplom-Mathematiker Andreas Zeh-Marschke Tauberring 16 b, 76344 Eggenstein-Leopoldshafen

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung Was heißt messen? Ganz allgemein: Eine Eigenschaft eines Objektes wird ermittelt, z.b. die Wahlabsicht eines Bürgers, das Bruttosozialprodukt eines Landes, die Häufigkeit von Konflikten im internationalen

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Einführung in die Statistik Einführung

Einführung in die Statistik Einführung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning

Mehr

Methoden der empirischen Kommunikationsforschung

Methoden der empirischen Kommunikationsforschung Studienbücher zur Kommunikations- und Medienwissenschaft Methoden der empirischen Kommunikationsforschung Eine Einführung Bearbeitet von Hans-Bernd Brosius, Alexander Haas, Friederike Koschel 7., überareitete

Mehr

Messen und Statistik

Messen und Statistik Messen und Statistik Statistische Grundkonzepte: Reliabilität, Validität, Skalen Bachelor Seminar SoSe 2009 Institut für Statistik LMU Monika Brüderl 12.05.2009 Gliederung Philosophische Grundlagen - Einige

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1.31 Größenbereiche 1. Didak(k der Zahlbereichserweiterungen

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

1. EINFÜHRUNG UND GRUNDLEGENDES

1. EINFÜHRUNG UND GRUNDLEGENDES 1. EINFÜHRUNG UND GRUNDLEGENDES mit dem Wort STATISTIK im Deutschen zwei Bedeutungen verbunden: eine wissenschaftliche Disziplin (engl. statistics ) das Ergebnis dieser wissenschaftlichen Betätigung (

Mehr

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II)

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II) Prinzipien der Fragebogenkonstruktion Seminar: Patricia Lugert, Marcel Götze 17.04.2012 Medien-Bildung-Räume Inhalt Fragebogenerstellung Grundlagen Arten von Fragen Grundlegende Begriffe: Merkmal, Variable,

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Grundbegriffe. Worum geht es in diesem Modul?

Grundbegriffe. Worum geht es in diesem Modul? Grundbegriffe Worum geht es in diesem Modul? Einführung Merkmale Merkmalstyp Skalenniveaus Skalentransformation Erhebung Erhebungsarten Datenmatrix Exkurs, Indexnotation Resümee Worum geht es in diesem

Mehr

2.1 Messen in der empirischen Kommunikationsforschung

2.1 Messen in der empirischen Kommunikationsforschung Messen und Zählen I.1 Messen in der empirischen Kommunikationsforschung Das folgende Kapitel beschreibt die Vorgehensweise, wie Ausschnitte der sozialen Realität für die Forschung wahrnehmbar, erfahrbar,

Mehr

Formale Begriffsanalyse mehrwertige Kontexte und begriffliche Skalierung

Formale Begriffsanalyse mehrwertige Kontexte und begriffliche Skalierung Formale Begriffsanalyse mehrwertige Kontexte und begriffliche Skalierung Folien angelehnt an Folien von Gerd Stumme zur Veranstaltung Formale Begriffsanalyse 2005 Formale Begriffsanalyse SoSe 2010 Wiebke

Mehr

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften TEIL 3: MESSEN UND SKALIEREN GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Objektivität Reliabilität Validität Konstruierte Skalen in den Sozialwissenschaften

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 4. Messtheorie Messen in den Sozialwissenschaften, Operationalisierung und Indikatoren, Messniveaus,

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Statistik für Ingenieure Vorlesung 8

Statistik für Ingenieure Vorlesung 8 Statistik für Ingenieure Vorlesung 8 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 12. Dezember 2016 Bezeichnungen und Klassifikationen von Merkmalen Bezeichnungen: Grundgesamtheit:

Mehr

Rumpfskript. Deskriptive Statistik. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Deskriptive Statistik. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Deskriptive Statistik Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern ist auch nur

Mehr