Die Proportionen der regelmässigen Vielecke und die

Größe: px
Ab Seite anzeigen:

Download "Die Proportionen der regelmässigen Vielecke und die"

Transkript

1 geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale Die grundlegenden Proportionen der Platonischen (und Archimedischen) Körper finden wir an den regelmässigen Vielecken in den Massverhältnissen ihrer Seitenlängen zu den Diagonalen. Die Seiten an den Diagonalen im Rechten Winkel aufgeklappt, spannen die entsprechend proportionierten Rechtecke auf. Es zeigt sich, dass den Platonischen Körpern die folgenden Massverhältnisse zu Grunde liegen: 1 : 2 = 1 : und 1 : 3 = und 1 : Φ = 1 : und = 1 : Im Würfel finden wir räumlich das Längenverhältnis von Kante : Flächendiagonale : Raumdiagonale: 1 : 2 : 3 Das sind die Proportionen, von denen Würfel, Oktaeder und Tetraeder beherrscht werden. Es sind auch die Massverhältnisse von denen die Mineralwelt ausgeht. Der Raum ist ausgefüllt mit Materie. Man könnte sie die kubischen oder mineralischen Proportionen nennen. Die Verhältnisse des Goldenen Schnittes, d.h. 1 : Φ und 1 : ( Φ + 1) finden wir am Ikosaeder und am Pentagondodekaeder. Diese Körper sind sphärisch gebau,t und der Raum lässt sich mit ihnen (wie auch mit Kugeln) nicht lückenlos ausfüllen. Jeder Körper ist eine eigene Welt. Man könnte den Goldenen Schnitt auch sphärische Proportion nennen. Man findet in der Vergangenheit auch die Bezeichnung Göttliche Teilung (divina proportione). Dreieck Jede Ecke ist mit jeder anderen Ecke über eine Seite erreichbar. Die Seiten fallen mit den Diagonalen zusammen, könnte man sagen. Von den Enden einer Dreiecksseite klappen wir das Dreieck zum Quadrat auf. Das Quadrat (1:1) ist die Diagonalebene des Oktaeders. Quadrat Die beiden Diagonalen im Quadrat schneiden sich im Mittelpunkt der Fläche und halbieren sich gegenseitig. Der Punkt hat keine Ausdehnung. Das aufgespannte Rechteck mit dem Massverhältnis 1: 2 entspricht den Diagonalebenen von Kante zur gegenüberliegenden Kante im Würfel. Ueli Wittorf 1

2 Die Proportionen der regelmässigen Vielecke und die Platonischen Körper geometric design Fünfeck Die fünf Diagonalen im Fünfeck schneiden sich gegenseitig jeweils mit zwei benachbarten Diagonalen im Goldenen Schnitt. Bei einer Seitenlänge 1 bildet sich folgende Einteilung: (Φ-1) : 2-Φ : (Φ-1) oder : : das ist das Seitenverhältnis der Rechtecke, mit denen ein Ikosaeder aufgespannt werden kann. Die fünf Diagonalen im Fünfeck umschliessen gemeinsam ein kleineres Fünfeck, in dem die gleiche Teilung wiederholt durchgeführt werden kann. Fünfeck Verwenden wir den eckanliegenden Teil der Diagonalen als Rechteckseite, so ergibt sich ein überlanges Rchteck im ereweiterten Goldenen Schnitt. das ist das raumdiagonale Rechteck, das im Pentagondodekaeder aufgespannt ist. Sechseck Sechs der neun Diagonalen dritteln sich gegenseitig und umschliessen in ihrer Mitte ein neues Sechseck (in dem die Teilung von Neuem volzogen werden könnte), während drei Diagonalen sich in der Flächenmitte schneiden. Diese halbieren die äusseren Diagonalen und werden selber geviertelt. Die Platonischen Körper aus Rechtecken Diagonal sich gegenüberliegende Kanten der Platonischen Körper spannten Rechtecke auf, welche entsprechende Proportionen aufweisen. Mit Ausnahme des Tetraeders können alle Platonischen Körper aus der halben Anzahl ihrer Kanten Diagonalrechtecken gebaut werden. Zunächst sei die Frage gestellt, wieviele solche Rechtecke genügen, damit jede Körperecke einmal besetzt ist? Der Würfel Zwei sich im Rechten Winkel schneidende Rechtecke mit dem Seitenverhältnis 1 : 2 spannen die 8 Ecken des Würfels auf. Sie bestimmen damit eine der drei möglichen (Symmetrie-) Achsen. Dadurch sind nicht alle Einblicke in die Quadrate gleich. 2 Ueli Wittorf

3 geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Das Ikosaeder Drei zueinander senkrecht sich durchdringende Rechtecke im Goldenen Schnitt (1 : Φ) spannen im Raum die 12 Ecken des Ikosaeders regelmässig auf. Es existieren zwei verschiedene Einblicke durch die Dreiecke (sechs und acht). Das Pentagondodekaeder Fünf geneigte, um eine Achse gesammelte überlange Goldene Rechtecke (1 : (Φ+1) = 1 : 2.618) spannen die 20 Ecken des Pentagondodekaeders auf. Auf der Achse ergeben sich zwei Zentren. Die beiden Einblicke in Richtung der Achse erweisen sich als regelmässige Trichter. Die anderen zehn Trichter sind asymmetrisch. An letzter Stelle der Bauanleitungen findet man die Anleitung zum Bau aus Papier und eine Abbildung. Das Oktaeder Mit 6 Ecken benötigt das Oktaeder ein Quadrat und nur noch eine senkrecht dazu gerichtete Quadratdiagonale. Das Tetraeder Die vier Ecken des Tetraeders liegen um 90 verdreht im Raum. Eine rechteckige, ebene Fläche kann das nicht erfüllen. Sie müsste um 90 verdreht sein. Die Stäbe können als Diagonalen zweier sich im Würfel parallel gegenüberliegender Quadrate aufgefasst werden. Ueli Wittorf 3

4 Die Proportionen der regelmässigen Vielecke und die Platonischen Körper geometric design Die Platonischen Körper aus allen ihren Diagonalrechtecken Oktaeder Drei Quadrate durchdringen sich senkrecht zueinander stehen. Alle 12 Quadratkanten sind zugleich Oktaederkanten. Hexaeder/Würfel Im Würfel weisen die sechs Diagonal-rechtecke das Seitenverhältnis 1: 2 auf. Das in Eurpopa normierte A-Format beruht auf dieser Proportion, was den Vorteil hat, dass bei jeder weiteren Halbierung das Längenverhältnis der langen zur kurzen Seite erhalten wird. Aus sechs A4-Blättern lässt sich somit ein Würfel zusammenbauen. (Vergl. weiter unten). Ikosaeder Entsprechend den 30 Kanten des Ikosaeders spannen 15 Rechtecke mit dem Seitenverhältnis 1: Φ (1:1.618 ) das Ikosaeder auf. In jeder Ecke treffen sich fünf Rechteckecken. Pentagondodekaeder Auch das Pentagondodekaeder hat 30 Kanten. Die 15 Diagonalrechtecke sind schlanker als beim Ikosaeder und weisen das Seitenverhältnis 1:( Φ+1) auf. 4 Ueli Wittorf

5 geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Tetraeder Im Tetraeder können es keine Rechtecke mehr sein, da die gegenübeliegenden Kanten um 90 gedreht sind. Geometrische Körper aus regelmässigen Diagonalvielecken Bündelgeometrie Nur in wenige geometrische Körper lassen sich regelmässige Vielecke als Diagonalebenen einschreiben. Das Oktaeder mit seinen drei Quadraten haben wir oben bereits kennen gelernt. Es bleiben noch das Kuboktaeder und das Ikosidodekaeder. Oktaeder: 3 Diagonal-Quadrate Ober fläche : 4 Dreiecken und 4 Dreiecken Das Oktaeder ist der Kern der Tetraeder-Tetraeder-Durchdringung Kuboktaeder: 4 Diagonal-Sechsecke Ober fläche : 8 Dreiecken und 6 Quadraten Das Kuboktaeder ist der Kern der Oktaeder-Hexaeder-Durchdringung Ikosidodekaeder: 6 Diagonal-Zehnecke Ober fläche : 20 Dreiecke und 12 Fünfecke Das Ikosidodekaeder ist der Kern der Ikosaeder-Dodekaeder-Durchdringung Es fällt auf, dass nur gerade die drei Kerne der Dualpaar-Durchdringungen der Platonischen Körper regelmässige Vielecke als Diagonalebenen aufweisen. Sie spielen im Stammbaum der Platonischen und Archimedischen Körper eine zentrale Rolle. (Vergl. Der Stammbaum der Platonischen und Archimedischen Körper) Ueli Wittorf 5

6 Die Proportionen der regelmässigen Vielecke und die Platonischen Körper geometric design Bauanleitungen Die folgenden Anleitungsblätter sind auf die Hälfte der ihrer Längenmasse verklienert. 5 mm Schaumstoffsandwich-Platten 6 Ueli Wittorf

7 geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Papier 160 g. Die Schlitze müssen mit zwei Schnitten geschnitten werden, so dass sie 0.5 bis 1 mm breit werden. Ueli Wittorf 7

8 Die Proportionen der regelmässigen Vielecke und die Platonischen Körper geometric design 8 Ueli Wittorf

9 geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Ueli Wittorf 9

10 Die Proportionen der regelmässigen Vielecke und die Platonischen Körper geometric design Das Pentagondodekaeder mit zwei Zentren aus zehn schiefen Papiertrichtern gebaut. Die beiden geraden Trichter ergeben sich. Trichter-Pentagondodekaeder mit zwei Zentren Die Abbildung zeigt deutlich die beiden Zentren im Pentagondodekaeder übereinander. Die geraden Trichter liegen somit oben und unten. Dreiteiliges Pentagondodekaeder Die beiden in einer fünfzähligen Symmetrieachse liegenden Zentren geben die Anregung das Pentagondodekaeder aus drei Teilen zu bauen, d.h. aus zwei identischen als Deckel und Boden und einem eingeschlossenen Patisson. Zürich, im September 2013 Ueli Wittorf 10 Ueli Wittorf

Ein System zum Bau von geometrischen Körpern

Ein System zum Bau von geometrischen Körpern Die Entdeckung des Prinzips der Verschränkung von geschlitzten, ebenen Kunststoffbauelementen eröffnete die Möglichkeit fast beliebig komlizierte geometrische Modelle zu bauen. Das System verwendet keinen

Mehr

Die Platonischen Körper im Sechseck

Die Platonischen Körper im Sechseck Alle Platonischen Körper weisen (auch) eine dreizählige Symmetrie auf und können deshalb in ein regelmässiges Sechseck eingezeichnet werden. In einem zweiten Schritt ist es möglich, die Durchdringungen

Mehr

Sterne der Platonischen Körper

Sterne der Platonischen Körper Der Griechische Philosoph Platon (428 348 v. Chr.) ordnete die regelmässigen geometrischen Körper den Naturelementen und dem Himmelsraum zu. Feuer Luft Wasser Erde Himmelsraum Wie präsentieren sich die

Mehr

Das Hyperdodekaeder. Einleitung

Das Hyperdodekaeder. Einleitung geometricdesign Einleitung Die fünf Platonischen Körper können nach ihren Proportionen in zwei Gruppen eingeteilt werden: 1. Die Vertreter der mineralischen Natur sind Würfel, Oktaeder und Tetraeder. An

Mehr

Sterne der Platonischen Körper

Sterne der Platonischen Körper Der Griechische Philosoph Platon (428 348 v. Chr.) ordnete die regelmässigen geometrischen Körper den Naturelementen und dem Himmelsraum zu. Feuer Luft Wasser Erde Himmelsraum Wie präsentieren sich die

Mehr

Die Platonischen Körper und ihre Sternformen im

Die Platonischen Körper und ihre Sternformen im Die Platonischen Körper und ihre Sternformen im Kemperschen Würfel Der Kempersche Würfel Umklappen, Umstülpen Für die Abwicklung der sechs Flächen eines Würfels gibt es 11 verschiedene Möglichkeiten. Wir

Mehr

Vorwort und Einführung

Vorwort und Einführung Vorwort und Einführung Geometrische Körper Die intensive Beschäftigung mit der Geometrie der Platonischen Körper verdanke ich einer Kindergärtnerin, der ich eine Schokoladekugel elegant verpackt, schenken

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Platonische Körper. 1 Die fünf platonischen Körper

Platonische Körper. 1 Die fünf platonischen Körper Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: annamaria.jahn@online.de 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander

Mehr

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ueli Wittorf 101 Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ausgehend vom Tetraeder ist es möglich mit sieben beweglichen Torsions-Doppelpolyeder- Modellen alle Platonischen

Mehr

Vorwort und Einführung

Vorwort und Einführung Vorwort und Einführung Geometrische Körper Die intensive Beschäftigung mit der Geometrie der Platonischen Körper verdanke ich einer Kindergärtnerin, der ich eine Schokoladekugel elegant verpackt, schenken

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten Hans Walser, [20140901] Origami im Raum Anregung: G. G., B. 1 Worum geht es? Statt mit einem quadratischen Origami-Papier arbeiten wir mit entsprechenden Analoga im Raum. 2 Klassisches Origami und einige

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Der Stammbaum der Platonischen und Archimedischen

Der Stammbaum der Platonischen und Archimedischen Der Stammbaum der Platonischen und Archimedischen Körper Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ausgehend vom Tetraeder ist es möglich mit sieben beweglichen Torsions-Doppelpolyeder-

Mehr

Bastelbogen platonische Körper

Bastelbogen platonische Körper E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Dodekaeder Simum als Sphäre

Dodekaeder Simum als Sphäre Eine Gemeinschaftsarbeit von Schülerinnen und Schülern der 12. und 11. Klassen der Atelierschule Zürich im September 2009 Im Grundlagen-Wahlfach haben wir mit 11.- und 12.-KlässlerInnen einen luftigen,

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $ $Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Verknüpfung zweier C 2 Drehachsen

Verknüpfung zweier C 2 Drehachsen Phsikalische und Theoretische Methoden der Anorganischen Chemie, WS 2009/10 Verknüpfung zweier Drehachsen 2 C (360 /2) = C 360 /2 D (360 /2) Phsikalische und Theoretische Methoden der Anorganischen Chemie,

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht Das Innere eines Oktaeders Michael Hofer, Workshop: Origami im Geometrieunterricht Schritt 1 Halbiere das Quadrat über die Seiten (2x) und öffne die Faltungen wieder. Schritt 2 Drehe das Blatt um und halbiere

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Gegenstände der Geometrie

Gegenstände der Geometrie Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,

Mehr

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild: IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt Hans Walser www.walser-h-m.ch/hans 1 Der Goldene Schnitt Wo steckt der Goldene Schnitt? 2 Der Goldene Schnitt 3 Der Goldene Schnitt Stetige Teilung (Euklid, 3. Jh. v. Chr.) 4 Der Goldene

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Schrägbilder zeichnen

Schrägbilder zeichnen Was sind Schrägbilder und welchen Zweck haben sie? Durch ein Schrägbild wird auf einer ebenen Fläche (z.b. Blatt Papier) ein Körper räumlich dargestellt (räumliche Perspektive des Körpers). Es gibt sehr

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt! Hans Walser! www.walser-h-m.ch/hans! 1! Drohne:!! Mutti, wie bin ich auf die Welt gekommen?! 1 1 2! Eine männliche Biene (Drohne)! hat nur eine Mutter (Königin)!! Unbefruchtetes Ei!

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."

Kommt ein Vektor zur Drogenberatung: Hilfe ich bin linear abhängig. Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch

Mehr

Übungen zum Verbessern der Raumvorstellung. Josef Molnár

Übungen zum Verbessern der Raumvorstellung. Josef Molnár ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Würfelzerlegungen. Von. K. MERZ (Chur). (Mit 16 Abbildungen im Text.) (Als Manuskript eingegangen am 5. Juni 1039.)

Würfelzerlegungen. Von. K. MERZ (Chur). (Mit 16 Abbildungen im Text.) (Als Manuskript eingegangen am 5. Juni 1039.) Würfelzerlegungen. Von K. MERZ (Chur). (Mit 16 Abbildungen im Text.) (Als Manuskript eingegangen am 5. Juni 1039.) Durch Schnittebenen und Auswahl von Scheitelzellen an Doppelstrecken lässt sich der Würfel

Mehr

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W. Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders

Mehr

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel.

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel. Hans Walser, [20110903a] Kugeln als Baumaterial 1 Worum geht es? Es werden einige bekannte Figuren als Kugelpackungen dargestellt. Dabei wird die dichteste Kugelpackung verwendet. Statt Kugeln können auch

Mehr

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45.

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45. Hans Walser, [20180201] Mehrfarbige Packungen 1 Worum geht es? Die gängigen räumlichen Packungen werden bezüglich der Minimalzahl der benötigten Farben untersucht. Wenn zwei Füller-Elemente eine Fläche

Mehr

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f = Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Strategien für Aufbauspiele mit Mosaik-Polyominos. Jens-P. Bode

Strategien für Aufbauspiele mit Mosaik-Polyominos. Jens-P. Bode Strategien für Aufbauspiele mit Mosaik-Polyominos Jens-P. Bode Vom Fachbereich für Mathematik und Informatik der Technischen Universität Braunschweig genehmigte Dissertation zur Erlangung des Grades eines

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

Das Torsionskuboktaeder

Das Torsionskuboktaeder Anleitung zum Bau eines beweglichen Modelles Richard Buckminster Fullers Vectorequilibrium bestand aus einem räumlichen Netz von 8 Stabdreiecken, die mit Gummischlauchstücken beweglich miteinander verbunden

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten Hans Walser, [20090829a] Polyedermodelle aus rechteckigen Karten 1 Die Idee Wir schrägen bei einem Polyeder die Ecken ab und anschließend die ursprünglichen Kanten. Dadurch entsteht aus jeder ursprünglichen

Mehr

S T E R N E U N D P O L Y G O N E

S T E R N E U N D P O L Y G O N E Ornament Stern und Polygon (S. 1 von 11) / www.kunstbrowser.de S T E R N E U N D P O L Y G O N E Polygone und Sterne in regelmäßiger Form sind ein wichtiges Grundmotiv in der Ornamentik, da sie v ielf

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen

Mehr

Johnson Polyeder J 1 J 2

Johnson Polyeder J 1 J 2 Polyeder -Polyeder sind konvexe Polyeder, welche ausschließlich regelmäßige n-ecke als Seitenflächen besitzen. Davon ausgenommen werden die 5 regelmäßigen Platonischen Körper und die 13 halbregulären Archimedischen

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Mathematik 6 Parallelogramm 01 Name: Vorname: Datum: (1)

Mathematik 6 Parallelogramm 01 Name: Vorname: Datum: (1) Mathematik 6 Parallelogramm 01 Name: Vorname: Datum: (1) Mathematik 6 Parallelogramm 01 (1) (2) 1. Gegenüberliegende Seiten sind immer parallel. 2. Alle Seiten sind gleich lang. Quadrat Rechteck Rhombus

Mehr

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Generelle Definition. Kristallklassen im kubischen Kristallsystem. Kristallformen im kubischen Kristallsystem

Generelle Definition. Kristallklassen im kubischen Kristallsystem. Kristallformen im kubischen Kristallsystem Generelle Definition Seite 1 von Alle Kristalle des kubischen Systems lassen sich auf ein Achsenkreuz beziehen mit drei senkrecht aufeinanderstehenden Achsen und gleichlangen Achsenabschnitten. Also: Alpha

Mehr

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am MW-E Mathematikwettbewerb der Einführungsphase 0. Februar 03 Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 03 am 0.0.03 Hinweis: Beim Mathematikwettbewerb MW-E der Eingangsstufe werden Aufgaben

Mehr

Platonische Körper falten

Platonische Körper falten Platonische Körper falten Dr. Markus Junker Mathematisches Institut, Albert Ludwigs Universität Freiburg, Eckerstraße 1, 79104 Freiburg markus.junker@math.uni-freiburg.de Oktober 2009 Ziel: Aus jeweils

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 207 Die fünf platonischen Körper Hans Walser: Modul 207, Die fünf platonischen Körper ii Inhalt 1 Definition der fünf platonischen Körper... 1 2 Tabelle...

Mehr

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima) Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 8 Körper und Kippen

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 8 Körper und Kippen Elemente der SchulgeometrieGrundschule Aufgabenblatt 8 Körper und Kippen Aufgabe 1: a) Zeichnen Sie als Schrägbild (Winkel 45,Verkürzungsfaktor 0.5) einen Oktaeder mit der Seitenlänge 10 cm. (Achtung!

Mehr

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge!

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge! Eine Pyramide aus Kugeln Eine Pyramide aus übereinander gelegten Kugeln das ist sehr einfach und kompliziert zugleich! In der Draufsicht So wie in den Abbildungen links wurden damals im Mittelalter Kanonenkugeln

Mehr

Der Polyasche Abzählsatz und Färbungen regulärer Polyeder

Der Polyasche Abzählsatz und Färbungen regulärer Polyeder Der Polyasche Abzählsatz und Färbungen regulärer Polyeder Hans-Gert Gräbe, Leipzig Der Polyasche Abzählsatz behandelt folgende Abzählaufgabe: Unterscheidbare) Teile eines Objekts O sollen mit unterscheidbaren)

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

4.13 Euklid (um 300 v.chr.) und seine Werke

4.13 Euklid (um 300 v.chr.) und seine Werke 4.13 Euklid (um 300 v.chr.) und seine Werke wurde (vermutlich nach Studium in Athen) von einem frühen Vertreter der Dynastie der Ptolemäer nach Alexandria berufen, wo er die dortige mathematische Schule

Mehr

Der umstülpbare Würfel von Paul Schatz

Der umstülpbare Würfel von Paul Schatz geometric design I. Das Pentagondodekaeder als kosmische Sphäre Paul Schatz beschäftigte sich mit den Platonischen Körpern, welche Plato die kosmischen Körper nannte. Im Dialog Timaios ordnete Plato die

Mehr

III.1. Symmetrien und Gruppen

III.1. Symmetrien und Gruppen 50 III.1. Symmetrien und Gruppen συµµετρι α heißt so viel wie Ebenmaß, richtiges Verhältnis, Harmonie. Definition: Eine Bewegung der Ebene (des Raumes), die eine Figur (einen Körper) auf sich abbildet,

Mehr

1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. x x = 4. 2 von 13

1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. x x = 4. 2 von 13 1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. 2x + 4 8 x 4 6 = 4 2 von 13 2. a) Fülle die Lücken in der Tabelle aus. x y x 4y x 2 2(y x) 4 2 3 14 b) Vereinfache

Mehr

Meisterklasse Dresden 2014 Olaf Schimmel

Meisterklasse Dresden 2014 Olaf Schimmel Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?

Mehr

Die Formel von Descartes ist äquivalent zur Polyederformel von Euler ( ).

Die Formel von Descartes ist äquivalent zur Polyederformel von Euler ( ). Hans Walser, [20090304a], [20131023] Winkeldefizite bei konvexen Polyedern Anregung: [Heinrich 2009], J. P. und P. H. 1 Worum es geht Die Summe der ebenen Winkel in einer konvexen Polyederecke ist kleiner

Mehr

Problem des Monats Februar 2019

Problem des Monats Februar 2019 Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $ $Id: convex.tex,v 1.29 2016/05/24 15:01:13 hk Exp $ 3 Konvexgeometrie 3.2 Die platonischen Körper Am Ende der letzten Sitzung hatten wir die sogenannten platonische Körper eingeführt, ein platonischer

Mehr

Die historische Betrachtung der Platonischen Körper

Die historische Betrachtung der Platonischen Körper Die historische Betrachtung der Platonischen Körper Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie christian.hartfeldt@t-online.de

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Sicheres, vernetztes Wissen zu geometrischen Formen

Sicheres, vernetztes Wissen zu geometrischen Formen Sicheres, vernetztes Wissen zu geometrischen Formen SINUS Veranstaltung Grundschule Egelsbach 08.12. 2011, 14:30-17:30 Uhr Renate Rasch, Universität Koblenz-Landau, Campus Landau r-rasch@uni-landau.de

Mehr

Die Abbildung 2 zeigt eine Verzerrung dieses Parketts. Abb. 1: Bienenwabenmuster. Abb. 2: Verzerrung

Die Abbildung 2 zeigt eine Verzerrung dieses Parketts. Abb. 1: Bienenwabenmuster. Abb. 2: Verzerrung Hans Walser, [20131217] Gleichseitige punktsymmetrische Sechsecke 1 Einführung Die Abbildung 1 zeigt das üblich hexagonale Parkett (Bienenwabenmuster). Abb. 1: Bienenwabenmuster Die Abbildung 2 zeigt eine

Mehr

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4.

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4. 47 Polyeder.1 Einstiegsproblem Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 1 Blätter des DIN-Formates A, z.b. A 4. H.-J. Gorski, S. Müller-Philipp,

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Lösungen zum Übungsblatt 10

Lösungen zum Übungsblatt 10 Lösungen zum Übungsblatt 10 Aufgabe 1 a) vierbeiniger, rechteckiger Tisch C 2 -Achse senkrecht zur Tischplatte in der Tischmitte zwei Spiegelebenen σ v, die die C 2 -Achse enthalten und je zwei Seiten

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Platonische und archimedische Parkettierungen. Meisterklasse Mathematik Dresden 2016 Olaf Schimmel

Platonische und archimedische Parkettierungen. Meisterklasse Mathematik Dresden 2016 Olaf Schimmel Platonische und archimedische Parkettierungen Meisterklasse Mathematik Dresden 2016 Olaf Schimmel Inhaltsübersicht 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische

Mehr