[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

Größe: px
Ab Seite anzeigen:

Download "[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an."

Transkript

1 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet man nach der Formel e t = x t T t S t. c) Bei monatlichen Daten über mehrere Jahre wird bei der in der Vorlesung besprochenen Zeitreihenanalyse S 1 = S 13 = S 25 =... d) Ein durch einfachen gleitenden Durchschnitt berechneter Trend wird glatter, wenn der Durchschnitt über mehr Werte gebildet wird. e) Auch bei Zeitreihen mit deutlicher Saisonschwankung kann man beliebige gleitende Durchschnitte zur Berechnung eines vernünftigen Trends verwenden. [ 2 ] Die folgende Zeitreihe gibt viermonatliche Daten für drei Jahre. Berechnen Sie die Saisonkomponente für die zweite Saison (zweites Jahresdrittel). (I) (II) (III) (I) (II) (III) (I) (II) (III) x t T t S 2 = [ 3 ] a) Soll ein gleitender Durchschnitt für eine Zeitreihe berechnet werden, so muss berücksichtigt werden, ob Saisonschwankungen vorliegen. b) Saisonschwankungen S t können erst berechnet werden, wenn der Trend T t bekannt ist. c) Es gilt: T t = t x t / (Anzahl aller Werte x t ). d) Den Wert des Residuums e t mit t = 1 kann man nicht berechnen. e) Für jede Zeitreihe lässt sich genau eine Trendfunktion bestimmen.

2 13 Zeitreihenanalyse 2 [ 4 ] Die folgende Zeitreihe gibt über 4 Jahre Daten des jeweiligen Sommer- und Winterhalbjahres wieder: t W 1 S 1 W 2 S 2 W 3 S 3 W 4 S 4 x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse den Trend (T 2 bis T 7 ) und die Saisonschwankung für Sommer- und Winterhalbjahr! Geben Sie die Summe der berechneten Trendwerte (T 2 bis T 7 ) an! Geben Sie die Saisonkomponente der Sommerhalbjahre an! [ 5 ] Welche der folgenden Aussagen sind im Zusammenhang mit dem Begriff des einfachen gleitenden Durchschnitts D t = (x t a x t x t+a )/(2a + 1) WAHR? Kreuzen Sie sie an. a) D 1, D 2,..., D a kann man mit der gegebenen Formel nicht erhalten. b) Vergrößert man den verwendeten Wert von a, so wird der gleitende Durchschnitt in der Regel glatter. c) Wenn keine Saisonschwankung vorliegt, wird in der klassischen Zeitreihenanalyse oft ein einfacher gleitender Durchschnitt zur Berechnung des Trends verwendet. d) Es gibt eine eindeutige Lösung zur Bestimmung der Saisonkomponente. e) Zur Berechnung des Trends bei monatlichen Daten mit Saisonschwankungen ist der einfache gleitende Durchschnitt in der Regel nicht geeignet.

3 13 Zeitreihenanalyse 3 [ 6 ] Bei der Analyse einer Zeitreihe nach der klassischen Methode soll der Trend durch einfache gleitende Durchschnitte berechnet werden: T t = 1 a x t+i 2a + 1 i= a a) Je größer a ist, desto mehr Trendwerte können am Anfang der Zeitreihe nicht berechnet werden. b) Je kleiner a ist, desto glatter verläuft der Trend. c) Weist die Zeitreihe deutliche Saisonschwankungen auf, so ist der Wert von a beliebig. d) Bei Zeitreihen ohne Saisonschwankungen werden die Fehler e t um so größer, je kleiner a ist. e) Weist die Zeitreihe keine Saisonschwankung auf, berechnet man die Fehler U t als Differenz zwischen den Werten der Zeitreihe x t und dem Trend T t. [ 7 ] Gegeben ist die folgende Zeitreihe mit Quartalsdaten und Saisonschwankung: (I) (II) (III) (IV) (I) (II) (III) (IV) (I) (II) (III) (IV) t x t Verwenden Sie zentrierte gleitende Durchschnitte zur Berechnung des Trends, und berechnen Sie die Saisonkomponente für das 3. Quartal. S III = [ 8 ] Gegeben ist die folgende Zeitreihe mit halbjährlichen Daten und deutlicher Saisonschwankung: (I) (II) (I) (II) (I) (II) t x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse die Saisonkomponenten. S I = S II =

4 13 Zeitreihenanalyse 4 [ 9 ] Gegeben ist die folgende Zeitreihe mit halbjährlichen Daten und deutlicher Saisonschwankung. (I) (II) (I) (II) (I) (II) t x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse die Saisonkomponenten. S I = S II = [ 10 ] a) Ein durch einfachen gleitenden Durchschnitt berechneter Trend wird glatter, wenn der Durchschnitt über mehr Werte gebildet wird. b) Liegen Daten mit Saisonschwankungen vor, so sind die zentrierten Filter für die Berechnung des Trends besonders geeignet. c) Der gewichtete Durchschnitt wird wie folgt berechnet: b D t = λ i x t+i, t = a + 1,...,n b a,b > 0 i= a d) Die Residuale e t geben die Differenz zwischen Trend und Saisonkomponente an. e) Es gibt unterschiedliche Verfahren zur Bestimmung des Trends, der Saisonkomponente und des Fehlers, die auch zu unterschiedlichen Ergebnissen führen. [ 11 ] Welche der folgenden Aussagen über Zeitreihen sind WAHR? Kreuzen Sie sie an. a) Den Wert der Residualen e t mit t = 1 kann man nicht berechnen. b) Der einfache gleitende Durchschnitt wird mit wachsendem a glatter. c) Für jede Zeitreihe läßt sich genau eine Trendfunktion bestimmen. d) Der gewichtete Durchschnitt wird wie folgt gemessen: D t = b i= a λ i x t+i t = a + 1,..., n b a,b > 0. e) Es gilt : T t = x t /(Anzahl aller Werte x t ).

5 13 Zeitreihenanalyse 5 [ 12 ] Gegeben ist die folgende Zeitreihe mit halbjährlichen Daten und deutlicher Saisonschwankung. (I) (II) (I) (II) (I) (II) (I) (II) t x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse die Saisonkomponente für das erste Halbjahr. S I = [ 13 ] Gegeben ist die folgende Zeitreihe mit halbjährlichen Daten und Saisonschwankung. (I) (II) (I) (II) (I) (II) (I) (II) t x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse die Saisonkomponente für das erste Halbjahr und bestimmen Sie das Residual e 5. S I = e 5 = [ 14 ] Gegeben sei folgende Zeitreihe mit halbjährlichen Messungen pro Jahr und deutlicher Saisonschwankung: (I) (II) (I) (II) (I) (II) (I) (II) (I) t x t Berechnen Sie den Trend T 5 und die Saisonkomponente für das zweite Halbjahr S II. T 5 = S II =

6 13 Zeitreihenanalyse 6 [ 15 ] Gegeben ist die folgende Zeitreihe mit drei Messungen pro Jahr und deutlicher Saisonschwankung: a) Berechnen Sie den Trend T 4. (I) (II) (III) (I) (II) (III) (I) (II) (III) t x t b) Berechnen Sie die Saisonkomponente für die mittleren 4 Monate eines jeden Jahres (S II ). a) T 4 = b) S II = [ 16 ] Gegeben ist die folgende Zeitreihe mit Halbjahresdaten und deutlicher Saisonschwankung. (I) (II) (I) (II) (I) (II) t x t Berechnen Sie nach der Methode der klassischen Zeitreihenanalyse die Saisonkomponente für das zweite und das erste Halbjahr und geben Sie die Summe beider Saisonkomponenten an. Berechnen Sie ebenso das Residual e 4. S I + S II = e 4 = B: Klausuraufgaben: [ 17 ] II07S Für vierteljährliche Daten liegen die folgenden Beobachtungen vor: Quartalsdaten t Quartal I II III IV I II III IV I x t Bestimmen Sie den gewichteten gleitenden Durchschnitt D mit dem entsprechenden zentrierten Filter für t = 5. Bestimmen Sie außerdem die Saisonkomponente des 3. Quartals III. D 5 = S III =

7 13 Zeitreihenanalyse 7 [ 18 ] IV07S2 Gegeben seien folgende Umsatzzahlen (in 1000 Euro für jeweils 4 Monate) eines Unternehmens von 2002 bis 2004: Jahr t Saison I II III I II III I II III x t Bestimmen Sie den Trend T 2 für t = 2, die Saisonkomponente S II und das Residual e 8 für t = 8. Geben Sie in Ihren Ergebnissen (falls nötig) gekürzte Brüche an. T 2 = S II = e 8 = [ 19 ] II07S2 a) Man spricht von einer Zeitreihe, wenn eine Variable zu verschiedenen aufeinanderfolgenden Zeitpunkten beobachtet wird. b) Verwendet man ein additives Modell für eine Zeitreihe, so ist der beobachtete Wert der Variablen gleich der Summe aus dem Trend und der Saisonkomponente. c) Wachsen die Saisonschwankungen mit der Zeit, so ist oft ein multiplikatives Modell für die Beschreibung der Daten geeignet. d) Wird das multiplikative Modell verwendet, so folgen die Logarithmen der Zeitreihe einem additiven Modell. e) Das Ziel einer logarithmischen oder anderen Transformation der Daten ist es, die Saisonschwankungen konstant zu machen. [ 20 ] IV07S a) Ein einfacher gleitender Durchschnitt kann für alle Werte der Zeit t berechnet werden. b) Mit wachsendem a wird der gleitende Durchschnitt glatter. c) Für monatliche, vierteljährliche und halbjährliche Daten muss ein zentrierter Filter verwendet werden. d) Ein Nachteil des multiplikativen Modells ist es, dass man keine Zerlegung der Ursprungsdaten erhalten kann. e) Saisonkomponente und Saisonfaktor bedeuten dasselbe.

8 13 Zeitreihenanalyse 8 C: Lösungen: 1) a, b, c, d 2) 1 3 3) a, b, d 4) 76 ; 3 5) a, b, c, e 6) a, e 7) ) -2 ; 3 9) ; ) a, b, c, e 11) a, b, e 12) -7 13) -6 ; 0 14) 12 ; ) 9 ; ) 1 ; -1 17) 25 ; -6 18) 182 ; 23 3 ; ) a, d, e 20) b, c

13. Übungswoche - Lösungen

13. Übungswoche - Lösungen 1 13. Übungswoche - Lösungen Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] a) Es gibt deutliche Unterschiede, die Gruppen 2, 3, 7 und 9 liegen deutlich tiefer. b) F = DQ(gruppe)/DQ(Residuals) = 25.13/6.19

Mehr

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung)

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung) 1 13. Übungswoche Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] Im Vorkurs Mathematik für Wirtschafstwissenschaftler vor Beginn des Sommersemesters 2009 wurde am Anfang und am Ende ein Test geschrieben,

Mehr

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4

Mehr

Zeitreihenanalyse Das Holt-Winters-Verfahren

Zeitreihenanalyse Das Holt-Winters-Verfahren Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende

Mehr

Kapitel XII - Einführung in die Zeitreihenanalyse

Kapitel XII - Einführung in die Zeitreihenanalyse Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Einführung in die Zeitreihenanalyse Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell 6. Das klassische Komponentenmodell Gegeben sei eine ZR x t für die Zeitpunkte t = 1,..., T. Im additiven klassischen Komponentenmodell wird sie folgendermaßen zerlegt: x t = ˆm t + ŝ t + ε t ˆm t ist

Mehr

Zerlegung von Zeitreihen

Zerlegung von Zeitreihen Kapitel 7 Zerlegung von Zeitreihen Josef Leydold c 2006 Mathematische Methoden VII Zerlegung von Zeitreihen 1 / 39 Lernziele Klassische Zerlegung von Zeitreihen Saisonbereinigungsverfahren: Gleitende Durchschnitte

Mehr

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Regina Tüchler November 2, 2009 Beispiel: Zeitreihenanalyse der Übernachtungs-Daten: Wir haben Daten mit monatlichen Übernachtungszahlen

Mehr

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/?? Dynamische Systeme und Zeitreihenanalyse Saisonbereinigung und Glättung Kapitel 10 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung

Mehr

Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation

Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation Bei Zeitreihendaten ist häufig das Phänomen zu beobachten, daß die Werte der Zeitreihe zeitverzögert mit sich selbst korreliert sind. Dies bedeutet,

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Zeitreihenanalyse Differenzenbildung

Zeitreihenanalyse Differenzenbildung Zeitreihenanalyse Differenzenbildung Worum geht es in diesem Lernmodul? Einleitung Verfahren der einfachen Differenzenbildung Verfahren der saisonalen Differenzenbildung Kombination einfacher und saisonaler

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Zeitreihenanalyse Das klassische Komponentenmodell

Zeitreihenanalyse Das klassische Komponentenmodell Zeitreihenanalyse Das klassische Komponentenmodell Worum geht es in diesem Lernmodul? Zeitreihen mit unterschiedlichen Charakteristika Zeitreihen mit regelmäßigen Schwankungen Mittel und Niveau einer Zeitreihe

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Zerlegung der Zeitreihe F t Trendkomponente

Mehr

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden.

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden. Statistik I, SS 2005, Seite 1 von 9 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - selbst erstellte Formelsammlung für

Mehr

Produkt Basisjahr Berichtsjahr Basisjahr Berichtsjahr

Produkt Basisjahr Berichtsjahr Basisjahr Berichtsjahr 14 Indizes 1 Kapitel 14: Indizes A: Übungsaufgaben: [ 1 ] 1 8 10 13000 10000 2 5 6 15000 15000 3 14 15 12000 10000 4 8 10 10000 6000 Berechnen Sie den nindex nach Paasche. Q P [ 2 ] 1 80 100 13 10 2 32

Mehr

Zeitreihenanalyse Saisonbereinigung

Zeitreihenanalyse Saisonbereinigung Zeitreihenanalyse Saisonbereinigung Worum geht es in diesem Lernmodul? Einleitung Die starre Saisonfigur Saisonbereinigung für Zeitreihen ohne Trend Saisonbereinigung für Zeitreihen mit Trend Warum müssen

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Regression: 4 eindimensionale Beispiele Berühmte

Mehr

Kapitel 39 Sequenzdiagramme

Kapitel 39 Sequenzdiagramme Kapitel 39 Sequenzdiagramme Sequenzdiagramme bilden eine spezielle Form von Liniendiagrammen. Die Besonderheit von Sequenzdiagrammen besteht darin, daß sie stets die einzelnen Werte einer Variablen aus

Mehr

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage.

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage. Wolf-Gert Matthäus, Jörg Schulze Statistik mit Excel Beschreibende Statistik für jedermann 3./ überarbeitete und erweiterte Auflage Teubner Inhaltsverzeichnis Einleitung 11 1 Grundlagen 17 1.1 Statistische

Mehr

Heteroskedastie. Test auf Heteroskedastie. Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist.

Heteroskedastie. Test auf Heteroskedastie. Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist. Heteroskedastie Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist. Beispiele: Bei Zeitreihendaten : Ansteigen der Varianz über die Zeit, Anstieg der Varianz mit

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Zeitreihenanalyse Der einfache gleitende Durchschnitt

Zeitreihenanalyse Der einfache gleitende Durchschnitt Zeitreihenanalyse Der einfache gleitende Durchschnitt Worum geht es in diesem Lernmodul? Einleitung Erläuterung der Methode Berechnung des einfachen gleitenden Durchschnitts Der einfache gleitende Durchschnitt

Mehr

Ausgewählte Probleme der Ökonometrie

Ausgewählte Probleme der Ökonometrie Ausgewählte Probleme der Ökonometrie Bernd Süßmuth IEW Institute für Empirische Wirtschaftsforschung Universität Leipzig November 28, 2011 Bernd Süßmuth (Universität Leipzig) APÖ November 28, 2011 1 /

Mehr

Math. II, Statistik, Uebung2, Termin (AI), (BI) 1-Logistischer Trend, 2-Faktoren, 3-Expon. Glätten, 4-Häufigkeit

Math. II, Statistik, Uebung2, Termin (AI), (BI) 1-Logistischer Trend, 2-Faktoren, 3-Expon. Glätten, 4-Häufigkeit Math. II, Statistik, Uebung2, Termin 11.04.2013 (AI), 15.04.2013 (BI) 1-Logistischer Trend, 2-Faktoren, 3-Expon. Glätten, 4-Häufigkeit ALLGEMEINES 1d) 94,2% der Zunahme der Sättigung mit Smartphones ist

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Arithmetische Folgen 1-E. Ma 1 Lubov Vassilevskaya

Arithmetische Folgen 1-E. Ma 1 Lubov Vassilevskaya Arithmetische Folgen 1-E Arithmetische Folge Definition 1: Eine Folge heißt arithmetische Folge, wenn es eine Konstante d gibt, so dass für alle Folgenglieder gilt: +1 = + d +1 = d Definition 2: Eine Folge

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Inhaltsverzeichnis I. Allgemeine Aussagen II. Subjektive Planzahlenbestimmung III. Extrapolierende Verfahren 1. Trendanalyse:

Mehr

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt. 3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments

Mehr

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/ Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/2018 06.12.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Übungsblatt 5 - Lösungen Z-Aufgaben

Übungsblatt 5 - Lösungen Z-Aufgaben Aufgabe 1: Übungsblatt 5 - Lösungen Z-Aufgaben a) Das nominale BIP gibt die Wertschöpfung in der BRD in aktuellen Marktpreisen an. Das bedeutet bei gleichbleibender Warenproduktion und Inflation von 3%,

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Addition und Subtraktion

Addition und Subtraktion 3 Rechenregeln Addition Das Kommutativgesetz. Für je zwei Zahlen a, b gilt a + b = b + a. Für je drei Zahlen a, b, c gilt a + b + c = (a + b) + c nach Definition. Assoziativgesetz. Für je drei Zahlen a,

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Bruchterme. Klasse 8

Bruchterme. Klasse 8 ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Repetitorium Statistik

Repetitorium Statistik Peter P. Eckstein Repetitorium Statistik Deskriptive Statistik - Stochastik - Induktive Statistik Mit Klausuraufgaben und Lösungen 6., aktualisierte Auflage GABLER VII I Deskriptive Statistik 1 1 Statistik

Mehr

Kapitel 2. Mittelwerte

Kapitel 2. Mittelwerte Kapitel 2. Mittelwerte Im Zusammenhang mit dem Begriff der Verteilung, der im ersten Kapitel eingeführt wurde, taucht häufig die Frage auf, wie man die vorliegenden Daten durch eine geeignete Größe repräsentieren

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Explorative Zeitreihenanalyse

Explorative Zeitreihenanalyse Einheit 11 Explorative Zeitreihenanalyse Department of Statistics and Mathematics WU Wien c 2007 Statistik 11 Explorative Zeitreihenanalyse 0 / 53 Inhalt Beschreiben von Zeitreihen Klassische Zeitreihenzerlegung

Mehr

Alle Jahre wieder. Arbeitslose in West- und Ostdeutschland - Personen in Mio. Arbeitslose West. Arbeitslose Ost. Nr. 12 /

Alle Jahre wieder. Arbeitslose in West- und Ostdeutschland - Personen in Mio. Arbeitslose West. Arbeitslose Ost. Nr. 12 / Nr. 12 / 8.5.1998 Alle Jahre wieder Saisoneffekte in der Arbeitslosigkeit Für 1998 wird zwischen dem größten und kleinsten Saisoneinfluß wieder eine Differenz von 0,6 Mio Personen erwartet q q q Die Entwicklung

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden.

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden. Aufgabe 1: Nehmen Sie Stellung zu den nachfolgenden Behauptungen (richtig/falsch mit kurzer Begründung): a) Die normierte Entropie ist gleich Eins, wenn alle Beobachtungen gleich häufig sind. b) Bei einem

Mehr

MOVING Fahrschul-Index 1. Halbjahr 2016

MOVING Fahrschul-Index 1. Halbjahr 2016 MOVING Fahrschul-Index 1. Halbjahr 2016 Zuletzt gab es in der Presse Berichte, die schon fast den Untergang der ganzen Branche prophezeiten. Tatsächlich sinkt die Zahl der seit einigen Jahren. Aber bedeutet

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Ausgewählte Probleme der Ökonometrie

Ausgewählte Probleme der Ökonometrie Ausgewählte Probleme der Ökonometrie Bernd Süßmuth IEW Institute für Empirische Wirtschaftsforschung Universität Leipzig October 16, 2012 Bernd Süßmuth (Universität Leipzig) APÖ October 16, 2012 1 / 13

Mehr

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken Bestandsmanagement Prognoseverfahren und Lagerhaltungspolitiken Inhalt Bestandsmanagement in Supply Chains Prognoseverfahren Prognose bei regelmäßigem Bedarf Konstantes Bedarfsniveau Trendförmiges Bedarfsniveau

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Explorative Zeitreihenanalyse

Explorative Zeitreihenanalyse Kapitel 11 Explorative reihenanalyse Department of Statistics and Mathematics WU Wien c 2008 Statistik 11 Explorative reihenanalyse 0 / 66 Inhalt Beschreiben von reihen Klassische reihenzerlegung Trend,

Mehr

Bruchterme 3. Sammlung der Aufgaben aus Bruchterme 1 und Bruchterme 2. Dort werden alle Methoden ausführlich an Beispielen besprochen

Bruchterme 3. Sammlung der Aufgaben aus Bruchterme 1 und Bruchterme 2. Dort werden alle Methoden ausführlich an Beispielen besprochen ALGEBRA Bruchterme Sammlung der Aufgaben aus 0 Bruchterme und Bruchterme Dort werden alle Methoden ausführlich an Beispielen besprochen Zum Einsatz im Unterricht. Datei Nr. Stand. Juni 07 Friedrich W.

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

Fit in Mathe. Januar Klassenstufe 9 Bruchrechnung

Fit in Mathe. Januar Klassenstufe 9 Bruchrechnung Thema Musterlösungen Bruchrechnung Bestimme die Primfaktoren von a) 6 b) 0 c) 0 zu c) 6 Die Anzahl aller Primfaktoren ist, also Buchstabenpaar MU. Ist die linke Zahl größer als die rechte, so erhältst

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 ***

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 *** Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Aufgabe 1. Aufgabe 2. Die Formel für den mittleren Fehler einer Streckenmessung mit Meßband lautet:

Aufgabe 1. Aufgabe 2. Die Formel für den mittleren Fehler einer Streckenmessung mit Meßband lautet: Semesterklausur Fehlerlehre und Statistik WS 96/97 11. Februar 1997 Zeit: 2 Stunden Alle Hilfsmittel sind zugelassen Die Formel für den mittleren Fehler einer Streckenmessung mit Meßband lautet: m s :

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2018 Vorlesung MINT Mathekurs SS 2018 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung MINT

Mehr

HTW Chur Tourism, Mathematik, T. Borer Repetitions-Aufgaben /10

HTW Chur Tourism, Mathematik, T. Borer Repetitions-Aufgaben /10 Repetitions-Aufgaben Aufgaben R. Die Mengen U, A und B sind wie folgt gegeben: U = {, 2, 3, 4, 5, 6, 7, 8, 9, 0} A = {, 2, 3, 9} B = {, 3, 5, 6, 7, 8, 9} Bestimmen Sie die Elemente der folgenden Mengen:

Mehr

Deskriptive Statistik Erläuterungen

Deskriptive Statistik Erläuterungen Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung

Mehr

Zuerst soll untersucht werden, wie die Koeffizienten einer Polynomfunktion mit ihren Ableitungen zusammenhängen. +Q 1/ cccccccccccccccccccc. folgt.

Zuerst soll untersucht werden, wie die Koeffizienten einer Polynomfunktion mit ihren Ableitungen zusammenhängen. +Q 1/ cccccccccccccccccccc. folgt. 7D\ORU3RO\RPH Materialien zur Vorlesung, Wintersemester 3 / 4 Zuerst soll untersucht werden, wie die Koeffizienten einer Polynomfunktion mit ihren Ableitungen zusammenhängen. Für [ ± 5 sei also mit reellen

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 4 MINT Mathkurs SS 2017 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung 4

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Trendanalysen, Datentabellen, Zielwertsuche

Trendanalysen, Datentabellen, Zielwertsuche Trendanalysen, Datentabellen, Zielwertsuche Inhaltsverzeichnis Trendanalysen, Datentabellen, Zielwertsuche... 1 Inhaltsverzeichnis... 1 Trendanalysen... 2... 2 Vergangenheitswerte bleiben unverändert...

Mehr

14. Polarpunktberechnung und Polygonzug

14. Polarpunktberechnung und Polygonzug 14. Polarpunktberechnung und Polygonzug An dieser Stelle sei noch einmal auf das Vorwort zu Kapitel 13 hinsichtlich der gekürzten Koordinatenwerte hingewiesen. 14.1. Berechnungen bei der Polaraufnahme

Mehr

6. Faktorenanalyse (FA) von Tests

6. Faktorenanalyse (FA) von Tests 6. Faktorenanalyse (FA) von Tests 1 6. Faktorenanalyse (FA) von Tests 1 6.1. Grundzüge der FA nach der Haupkomponentenmethode (PCA) mit anschliessender VARIMAX-Rotation:... 2 6.2. Die Matrizen der FA...

Mehr

5 Elektronengas-Modell und Polyene

5 Elektronengas-Modell und Polyene 5.1 Übersicht und Lernziele Übersicht Im vorherigen Kapitel haben Sie gelernt, das Elektronengas-Modell am Beispiel der Cyanin-Farbstoffe anzuwenden. Sie konnten überprüfen, dass die Berechnungen für die

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeitreihenökonometrie Kapitel 11 - Filterverfahren Unterscheidung zwischen Wachstum und Konjunktur Wachstum: langfristige Entwicklung des Bruttoinlandsproduktes bei voller oder normaler Auslastung der

Mehr

NIEDERSCHLAG. Hausübung 1

NIEDERSCHLAG. Hausübung 1 Hausübung 1 NIEDERSCHLAG Abgabe: 25.10.2017 Niederschlag wird nahezu weltweit mit einem Netz von Messstationen erfasst. Dabei handelt es sich um punktuelle Messungen. Für grundlegende Fragen der Ingenieurhydrologie

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Winter 2009 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Statistik von Dr. Peter M. Schulze Professor für Statistik und Ökonometrie an der Johannes Gutenberg-Universität Mainz 6., korrigierte und aktualisierte Auflage R.Oldenbourg Verlag München

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Die Cramersche Regel

Die Cramersche Regel Die Cramersche Regel W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Die Cramersche Regel in allgemeiner Form 2 3 Auflösen einer Determinante 2 3.1 Fall 1: Zweireihige Determinanten......................

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr