Einführung in die Systemprogrammierung

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Systemprogrammierung"

Transkript

1 Einführung in die Systemprogrammierung Repräsentierung Rationaler Zahlen Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 19. Juni 2015

2 Rationale Zahlen Wie können wir Rationale Zahlen im Rechner repräsentieren? Festkommazahlen Brüche Fließkommazahlen

3 Festkommazahlen Idee: wir speichern die Zahl als Zweierkomplementzahl mit multiplikativem Bias Beispiel: Zwei Dezimal-Nachkommastellen: repr(n) = n 100 n repr(n) , Addition/Subtraktion: Wie bei Zweierkomplement Multiplikation: repr(repr(x) repr(y)) = x y 100

4 Division von Festkommazahlen Vorsicht bei der Division! ( ) repr(x) repr = x repr(y) y 100 0,4 : 0,3 Erst Division: 100 * (40 / 30) = 100 * 1 = 100 = repr(1) Erst Multiplikation: (100 * 40) / 30 = 4000 / 30 = 133 = repr(1,33) Integer-Division schneidet Nachkommastellen ab! Schneller: Bit-Schiebeoperationen statt langsamer Division, aber nur für Binärnachkommastellen

5 Festkommazahlen: Eigenschaften Vorteile: Festkommazahlen sind exakt bei Addition, Subtraktion (modulo Überlauf) Festkommazahlen sind effizient bei Addition, Subtraktion Mit existierenden Mitteln einfach zu implementieren Nachteile: Festkommazahlen sind ungenau bei Multiplikation, Division Festkommazahlen arbeiten immer mit festem Multiplikator (100, in unserem Beispiel) Fester Multiplikator ist für naturwissenschaftliche Zwecke nicht flexibel genug!

6 Fließkommazahlen: Die Idee Naturwissenschaftler: Wir brauchen Zahlen mit sehr unterschiedlichen Größenordnungen! flexibler multiplikativer Bias! Repräsentierungsbeispiel: 4, als 420, 23 1, als 115, 8 Wir speichern den Exponenten der Zahl zusammen mit einer Annäherung der signifikanten Ziffern (Mantisse) Im Rechner sind Zweierexponenten effizienter als Zehnerexponenten

7 Fließkommarepräsentierung Vorzeichen Exponent Mantisse Zahl getrennt in Vorzeichenbit, Exponent, Mantisse Exponent mit Bias gespeichert Falls die Zahl 0, muß Binärmantisse immer mit 1 beginnen, daher ist dieses Bit implizit. Beispiel: 8 Bits Exponent, Bias 127, Mantisse 23 Bits

8 Fließkommarepräsentierung: Beispiel Vorzeichen Exponent Mantisse Beispiel: 8 Bits Exponent, Bias=127, Mantisse 23 Bits Vorzeichen v = 0 Exponent e = = 9 Mantisse m = 1, = v 2 e m = = 1000

9 IEEE 754: Fließkommazahlen Standardisierte Repräsentierung: IEEE-754 Format Exponent Bias (Exponent) Mantisse binary32 8 Bits Bits binary64 11 Bits Bits Unterstützt von handelsüblicher Hardware, z.b. dem MIPS-Coprozessor #1 binary32 auch als Fließkommazahl mit einfacher Präzision bezeichnet (C/C++/Java: float) binary64 auch als Fließkommazahl mit doppelter Präzision bezeichnet (C/C++/Java: double)

10 IEEE 754: Besondere Zahlen Bestimmte Bitmuster haben spezielle Bedeutungen. Hier für binary32: IEEE 754-Zahlen nehmen besondere Bedeutungen an, wenn der Exponent nur aus 0- oder 1-Bits besteht. Exponent = 0...0: 0x repräsentiert 0 0x repräsentiert 0 Allgemein: 1 v m (ohne 1,-Erweiterung) Exponent = 1...1: 0x7f repräsentiert 0xff repräsentiert Andere Werte für NaN, not a number: Bei 0 0 Bei 1...

11 Fließkomma-Multiplikation xor Verschiebung (δ) Normalisierung Hier nur für normale Fließkommazahlen beschrieben Vorzeichen, Exponent: multiplizieren Mantisse: ( 1 ): mit fühender 1, erweitern, multiplizieren Normalisieren: um δ verschieben, bis genau eine 1, vor dem Komma δ auf Exponent addieren Auf Überlauf prüfen

12 Fließkomma-Addition 0 e 0 m e 1 m 1 Annahme: positiv, e 0 > e 1. Andere Fälle analog. m m 1 e 0 e 1 0 e 0 m c Exponent ist der größere (e 0 ) Hintere Bits von m 1 werden abgeschnitten, Resultat der Mantissenaddition nach m c Überlauf um 1 Bit möglich

13 Risiken bei Fließkommazahlenarithmetik Zahlenrepräsentierung notwendigerweise ungenau Addition/Subtraktion von Zahlen verschiedener Größenordnung verwirft Nachkommastellen Wenn Differenz zwischen Exponenten größer ist als Mantisse, ist Addition/Subtraktion komplett wirkungslos! Vorsicht beim Aggregieren von Zahlen!

14 Fließkommaregister auf MIPS binary32: $f0 $f1... $f30 $f31 binary64: $f0... $f30 MIPS: Fließkommazahlen in Coprozessor #1 32 binary32-fließkommaregister $f0 bis $f31 Je zwei konsekutive Register $fx,$fx+1 können als binary64-register zusammengeschaltet werden Erstes Register muß geradezahlig sein $f0, $f2,... binary64-register hat gleichen Namen wie erstes Register

15 Fließkommaarithmetik auf MIPS Befehl Bedeutung Register add.s $z, $x, $y binary32 $z := $x + $y add.d $z, $x, $y binary64 sub.s $z, $x, $y binary32 $z := $x $y sub.d $z, $x, $y binary64 mul.s $z, $x, $y binary32 $z := $x $y mul.d $z, $x, $y binary64 div.s $z, $x, $y $z := $x binary32 div.d $z, $x, $y $y binary64 sqrt.s $z, $x $z := binary32 $x sqrt.d $z, $x binary64 Alle Grundrechenoperationen und die Quadratwurzel als binary32 (.s) oder binary64 (.d)

16 MIPS-Fließkommas: Kopieren, Konvertieren Konvertierungen: cvt.s.d $z, $x: Konvertiere binary64 nach binary32 cvt.s.w $z, $x: Konvertiere Zweierkomplementzahl nach binary32 cvt.d.w,s: Konvertiere nach binary64 cvt.w.s,d: Konvertiere nach Zweierkomplement Kopieren zwischen Hauptprozessor und Koprozessor #1: mtc1 $z, $x: CPU Koprozessor z.b.: mtc1 $f0, $v0 mfc1 $z, $x: Koprozessor CPU z.b.: mfc1 $v0, $f0 Weitere Operationen: Vergleich, Runden,...

17 Zusammenfassung: Fließkommazahlen v e m Vorzeichen Exponent Mantisse Fließkommazahl besteht aus Vorzeichen v, Exponent e, Mantisse m Wert: meist 1 v 2 e 1,m Sonderwerte wenn alle Bits im Exponenten 0 oder 1 sind Ermöglichen effizientes Arbeiten mit Zahlen in unterschiedlichen Größenordnungen Vorsicht: Addition/Subtraktion impräzise bei ungleichen Exponenten

18 Zusammenfassung: Rationale Zahlen Repräsentierung per Fixkommazahlen: Fester multiplikativer Bias Einfach zu implementieren (keine Zusatzhardware nötig) Verwendet Standardregister Repräsentierung per Bruchzahlen (per Softwarebibliothek) Repräsentierung per Fließkommazahlen Multiplikativer Bias je nach Zahl unterschiedlich Benötigt Zusatzhardware, aber auf fast allen modernen Prozessoren verfügbar Verwendet meist Zusatzregister

Einführung in die Systemprogrammierung 03

Einführung in die Systemprogrammierung 03 Einführung in die Systemprogrammierung 03 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 24. Mai 2013 Übungen Übung 3 (Freitag, 12:00) findet nicht mehr statt WebSPIM wird nach

Mehr

Einführung in die Systemprogrammierung 03

Einführung in die Systemprogrammierung 03 Einführung in die Systemprogrammierung 03 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 24. Mai 2013 Übungen Übung 3 (Freitag, 12:00) findet nicht mehr statt WebSPIM wird nach

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 9. Juli 2015 Rationale Zahlen Wie können wir Rationale Zahlen im Rechner repräsentieren?

Mehr

Einführung in die Systemprogrammierung 09

Einführung in die Systemprogrammierung 09 Einführung in die Systemprogrammierung 09 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 17. Juni 2014 Rationale Zahlen Wie können wir Rationale Zahlen im Rechner repräsentieren?

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion 6.2 Non-Restoring Division Restoring Division Divisor wird subtrahiert falls Unterlauf (Ergebnis negativ) Divisor wird wieder addiert im nächsten Durchlauf wird die Hälfte des Divisor subtrahiert (Linksshift

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen 121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen Bin are Zahlendarstellungen Binäre Darstellung ("Bits" aus {0, 1) 4. Zahlendarstellungen bn bn 1... b1 b0 entspricht der Zahl bn 2n + + b1 2 + b0 Wertebereich der Typen int, float und double Gemischte

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation

Mehr

Numerik. Festpunkt-Darstellung

Numerik. Festpunkt-Darstellung Numerik Ablauf: Festpunkt-Darstellung Gleitpunkt-Darstellung Runden Addition/Subtraktion Multiplikation Ausblick und Zusammenfassung Wolfgang Kastner, Institut für Rechnergestützte Automation, TU Wien

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen Rückblick Addition in der b-adischen Darstellung wie gewohnt 5 0 C E + D 4 2 D = 44 Rückblick Multiplikation in der b-adischen Darstellung wie gewohnt 1 0 1 0 1 0 1 = 45 Rückblick Darstellung negativer

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Fest- und Gleitkommasysteme

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Fest- und Gleitkommasysteme Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Fest- und Gleitkommasysteme Eberhard Zehendner (FSU Jena) Rechnerarithmetik Fest- und Gleitkommasysteme 1 / 13 Gleitkommazahlen:

Mehr

2.4 Codierung von Festkommazahlen c) Wie lässt sich im Zweier-Komplement ein Überlauf feststellen? neg. pos.

2.4 Codierung von Festkommazahlen c) Wie lässt sich im Zweier-Komplement ein Überlauf feststellen? neg. pos. 24 Codierung von Festkommazahlen 115 Aufgaben a) Codieren Sie für n 8 und r 0 die folgenden Zahlen binär im Zweier Komplement EC +10 : 00001010 11110101 Dezimal Binär 10 1111 0110 + 0 ch 1111011 0 20 00000000

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 2 am 12.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 3 AM 13./14.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Implementierung von Gleitkomma-Operationen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Gleitkomma-Operationen 1

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Warum Computer doch nicht so präzise rechen. Thomas Staub. Gleitkommazahlen: Gleitkommazahlen Thomas Staub lerntool.ch 2016

Warum Computer doch nicht so präzise rechen. Thomas Staub. Gleitkommazahlen: Gleitkommazahlen Thomas Staub lerntool.ch 2016 Warum Computer doch nicht so präzise rechen 1 Thomas Staub Gleitkommazahlen: 2 Dieses Dokument ist ein Zusammenschnitt mehrerer Beiträge und Berichte aus dem Internet zum Thema Gleitkommazahlen. Die Quellen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 5. Vorlesung 06.11.2018 1 Zahlendarstellungen 2 Speicherinhalte: Bits Hardware Spannung Ladung Magnetisierung Codierung 0V ungeladen unmagnetisiert 0 5V geladen magnetisiert

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10)

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10) Richtig Rechnen Typen float und double; systeme, Löcher im Wertebereich, IEEE Standard, Fliesskomma-Richtlinien // Program: fahrenheit.cpp // Convert temperatures from Celsius to Fahrenheit. std::cout

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6 Rechnen in B Ralf Dorn 3. September 2018 R. Dorn (H 2 O) Informatik LK 3. September 2018 1 / 6 Festkommazahlen Wie werden Kommazahlen dargestellt? R. Dorn (H 2 O) Informatik LK 3. September 2018 2 / 6

Mehr

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10)

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10) Richtig Rechnen Typen float und double; systeme, Löcher im Wertebereich, IEEE Standard, Fliesskomma-Richtlinien // Program: fahrenheit.cpp // Convert temperatures from Celsius to Fahrenheit. int main()

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

1. TÜ-Zusammenfassung zum Modul Computersysteme

1. TÜ-Zusammenfassung zum Modul Computersysteme 1. TÜ-Zusammenfassung zum Modul Computersysteme Kurzzusammenfassung 1. Kapitel Netzteil: Aufbau: Bereitgestellte Spannungen: 12V, -12V, 5V, -5V und 3.3V Leistung: Da bei Transformatoren die übertragbare

Mehr

Richtig Rechnen. // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit.

Richtig Rechnen. // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit. Fliesskommazahlen Richtig Rechnen // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit. #include int main() { // Input std::cout

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Grundzüge der Informatik Tutorium Gruppe 6

Grundzüge der Informatik Tutorium Gruppe 6 Grundzüge der Informatik Tutorium Gruppe 6 Inhalt Einführung Numerik Fest- und Termin 5 07.2.2006 Apfelthaler Kathrin Test-Beispiel e0225369@student.tuwien.ac.at Numerik Festpunkt-Darstellung Berechnung

Mehr