Reelle Zahlen, Gleichungen und Ungleichungen

Größe: px
Ab Seite anzeigen:

Download "Reelle Zahlen, Gleichungen und Ungleichungen"

Transkript

1 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen Zahlen Z = {..., 3, 2, 1,0,1,2,3,...}. * Die Menge der rationalen Zahlen Q = { p q : p, q Z, q 0}. Zwei rationale Zahlen p q und r s sind gleich, wenn ps = qr gilt. Rationalen Zahlen sind durch endliche oder periodisch unendliche Dezimalbrüche darstellbar. * Die Menge der reellen Zahlen R. Reellen Zahlen sind durch Dezimalbrüche darstellbar. Die nicht rationalen reellen Zahlen, das sind die Elemente von R \ Q, heißen irrationale Zahlen. * Die Menge der komplexen Zahlen C (wird später behandelt). Die komplexen Zahlen sind durch Paare reeller Zahlen darstellbar: C = {(a, b): a, b R} Mit der entsprechenden Interpretation gilt N Z Q R C. 4.2 Algebraische Eigenschaften Es sei K {Q,R}. Die Addition + besitzt folgende Eigenschaften (x, y, z K): x + y = y + x x + (y + z) = (x + y) + z x + 0 = x x K =1 x K (x + ( x) = 0) (Kommutativgesetz), (Assoziativgesetz) (neutrales Element bzgl. Addition) (additiv inverse Zahl) Bezüglich der Multiplikation gilt für K {Q,R} und (x, y, z} K x y = y x x (y z) = (x y) z x 1 = x x 0 =1 x 1 K (x x 1 = 1) (Kommutativgesetz) (Assoziativgesetz) (neutrales Element bzgl. Multiplikation) (multiplikativ inverse Zahl) Addition und Multiplikation sind verbunden durch x (y + z) = x y + x z (Distributivgesetz) Subtraktion und Division sind über Addition bzw. Multiplikation definiert: die Division aber nur für y 0. x y := x + ( y), x : y := x y 1,

2 10 4 ZAHLENMENGEN UND DER KÖRPER DER REELLEN ZAHLEN Weitere Gesetze wie 0 x = 0 und 1 x = x folgen aus den obigen Gesetzen. Bemerkung 4.1. Wenn man unter Beihaltung der bisherigen Eigenschaften von Addition und Multiplikation eine Division durch 0 definieren will, dann folgt 0 = 1 und weiter K = {0}, was nicht sehr nützlich ist. 4.3 Ordnungseigenschaften In K {Q,R} gibt es eine Ordnungsrelation und eine Relation < definiert durch x < y : x y und x y mit folgenden Eigenschaften (für x, y, z K): x x (Reflexivität) (x y y x) x = y (Antisymmetrie) (x y y z) x z (Transitivität) x y y x (totale Ordnung) x < y u K(x < u < y) (Dichtheit) x < y x + z < y + z (Verträglichkeit mit der Addition) z > 0 (x < y x z < y z) (Verträglichkeit mit der Multiplikation) Damit gilt die Trichotomie-Eigenschaft: Für je zwei Zahlen x, y K gilt genau eine der drei Beziehungen x < y, x = y, x > y. Eine Zahl x K heißt positiv, nichtnegativ, nichtpositiv bzw. negativ, wenn x > 0, x 0, x 0 bzw. x < 0. Definition 4.2. Ein Körper K mit einer Ordnungsrelation mit obigen Eigenschaften heißt total angeordneter Körper. Q und R sind also total angeordnete Körper. Der Körper C der komplexen Zahlen wird sich hingegen als nicht anordenbar erweisen. Für M R definieren wir M >a := {x M : x > a}, M a := {x M : x a},.... Intervalle: [a, b] = {x R: a x b} ]a, b[ = (a, b) = {x R: a < x < b} ]a, b] = (a, b] = {x R: a < x b} [a, b[ = [a, b[ = {x R: a x < b} abgeschlossenes Intervall, offenes Intervall, links halboffenes Intervall, rechts halboffenes Intervall.

3 4.4 Vollständigkeitseigenschaft von R Vollständigkeitseigenschaft von R Es seien K und M mit K {Q,R} und M R. Definition 4.3. M heißt * nach oben beschränkt, wenn ein S K existiert mit x S für alle M (S ist eine obere Schranke von M); * nach unten beschränkt, wenn ein s K existiert mit x s für alle x M (s ist eine untere Schranke von M); * beschränkt, wenn M nach unten und nach oben beschränkt ist. Beispiel 4.4. Sei M = [1,2] {3}. Dann sind 3, 4, 1000 obere Schranken von M. Definition 4.5. Wenn es unter den oberen Schranken von M eine kleinste Zahl in K gibt, dann heißt sie kleinste obere Schranke oder Supremum von M in K und wird mit sup M bezeichnet. Analog ist die größte untere Schranke oder das Infimum inf M von M in K definiert. Beispiel 4.6. Sei M = [1,2] [3,4[. Dann ist 4 kleinste obere Schrankeund 1 größte untere Schranke von M in Q und in R. Im Gegensatz zu Q besitzt R folgende Vollständigkeitseigenschaft: Jede nichtleere, nach oben beschränkte Teilmenge M von R besitzt ein Supremum in R. Beispiel 4.7. Betrachtet wird M = {x K: x 0, x 2 < 2} in K {Q,R}. Diese Menge besitzt kein Supremum in Q aber in R, nämlich sup M = 2. Wie dieses Beispiel schon andeutet, erlaubt die Vollständigkeit der reellen Zahlen, Wurzeln, Potenzen und die uns interessierenden (elementaren) Funktionen zu definieren. Konkret: Definition 4.8. Für nichtnegative, reelle Zahlen a und natürliches n ist die n-te Wurzel n a definiert als die nichtnegative Lösung der Gleichung x n = a. Es gilt dann n a = sup{x R: x 0 x n a} 5 Rechnen mit Zahlen und Termen 5.1 Formale Addition, Subtraktion, Multiplikation, Division Es seien p, q, r, s ganze Zahlen mit q, s 0. Dann gelten p q + r s = p s + q r, q s p q r s = p s q r, q s p q r s = p r q s, p q : r s = p s q r

4 12 5 RECHNEN MIT ZAHLEN UND TERMEN wobei für die letzte Beziehung noch r 0 vorausgesetzt werden muss. Das Ausmultiplizieren zu Summen ergibt sich aus Kommutativ-, Assoziativ- und Distributivgesetz: [ (a + b) (c + d) = (a + b) c + (a + b) d = c (a + b) + d (a + b) = (ca + cb) + (da + db) = (ac + bc) + (ad + bd) = ( (ac + bc) + ad ) + bd = ( ac + (bc + ad) ) + bd = ( ac + (ad + bc) ) + bd = ( (ac + ad) + bc ) ] + bd = ac + ad + bc + bd, wobei man sich nur den Übergang vom ersten zum letzten Ausdruck merken muss. Das Zusammenfassen zu Produkten ergibt sich aus Kommutativ-, Assoziativ- und Distributivgesetz: ac + bc = (a + b) c. Spezielle Formen sind die binomischen Formeln (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, (a + b)(a b) = a 2 b 2 für a, b R, deren eigentliche Anwendung nicht im trivialen Ausmultiplizieren von links nach rechts, sondern im Zusammenfassen von rechts nach links besteht. Beispiel 5.1. Es gilt 4a 2 + 9b 2 12ab = (2a) 2 + (3b) 2 2 (2a) (3b) = (2a) 2 2 (2a) (3b) + (3b) 2 = (2a 3b) Schriftliche Addition, Subtraktion, Multiplikation, Division Aus der Schule sollten Methoden für die schriftliche Addition, Subtraktion, Multiplikation, Division ganzer Zahlen (Grundschule) und endlicher Dezimalbrüche (Sekundarstufe 1) bekannt sein. Beispiel , , , , , , 7 3 1, , 8 8 3, , , , , , , : 3 7, 5 = 2, , 0 6, 0 0 3, 7 5 2, , Hier insbesondere zur richtigen Bestimmung des Kommas, aber auch für andere Zwecke, sollte man Überschlagsrechnungen sinnvoll anwenden können: Hier gelten 83,49 80 und 23,7 20 und daher 83,49 23, Potenzgesetze Die Potenzen zu positiven Basen a, b genügen folgenden Potenzgesetzen: a r a s = a r+s, a r /a s = a r s, a r b r = (ab) r, a r /b r = (a/b) r, (a r ) s = a rs. Insbesondere sollte folgender Zusammenhang von Wurzeln und Potenzen beachtet werden:

5 5.4 Rechnen mit Beträgen 13 n a = a 1 n für n N >0, a > 0. Bemerkung 5.3. Die Potenzgesetze gelten nicht für negative Basen. Zum Beispiel gilt x 2 = x für x R und nicht x 2 = (x 2 ) 1 2 = x (häufiger Fehler!), z. B. ( 1) 2 = 1. Bemerkung 5.4. Andere als die aufgeführten fünf Potenzgesetze gibt es nicht. Insbesondere gibt es keine Potenzgesetze bezüglich der Summe von Basen. Zum Beispiel gilt, auch wenn es oft Klausuren steht, eben nicht a 2 + b 2 = (a + b) 2 = a + b. 5.4 Rechnen mit Beträgen Das Rechnen mit Beträgen wird vom Anwender oft als unangenehm empfunden, da der Begriff "Betrag" zweigeteilt definiert ist. Man kann aber alle Schwierigkeiten ausräumen, wenn man sich stur an die Definition und die Rechenregeln hält. Diese seien im folgenden benannt. Definition 5.5. Für eine reelle Zahl a R wird der Betrag von a festgesetzt durch a := a, falls a 0 und a := a, falls a < 0. Beispiel 5.6. Es gilt 3 = 3, aber auch 3 = 3 = ( 3). Rechenregeln (für a, b, x R beliebig): a = a a a a a b = a b 1 a = 1 (a 0) a a + b a + b (Dreiecksungleichung) a b b a b oder b a b x a b a b x a + b a 2 = a a 2 = a 2

6 14 6 GLEICHUNGEN UND UNGLEICHUNGEN 5.5 Addition, Subtraktion, Multiplikation, Division von Termen Das Rechnen mit Termen folgt dem Rechnen mit ganzen bzw. rationalen Zahlen, weswegen man dieses Beherrschen muss. Beispiel 5.7. Addition von Bruchtermen (Addition gebrochenen-rationaler Funktionen) Beispiel 5.8. Polynomdivision mit Rest: 2x + 1 3x x + 6 (2x + 1)(7x + 8) + (3x + 4)(5x + 6) = 7x + 8 (3x + 4)(7x + 8) = 14x2 + 16x + 7x x x + 20x x x + 28x + 32 = 29x2 + 61x x x (3x 3 + 2x 2 x + 1) : (x 3) = 3x x Rest 97. 3x 3 9x 2 11x 2 x 11x 2 33x 32x x Gleichungen und Ungleichungen Ein Grundproblem der Mathematik ist die Ermittelung aller Lösungen von Systemen von Gleichungen und Ungleichungen. Am günstigsten ist immer eine äquivalente Umformung von Gleichungen und Ungleichungen. 6.1 Äquivalente Umformungen Äquivalente Umformungen sind Umformungen, welche die Lösungsmenge nicht verändern. Nichtäquivalente Umformungen führen zu einer (potentiellen) Ausweitung der Lösungsmenge der Gleichungen oder Ungleichungen. Ergebnisse, die nach nichtäquivalenten Umformungen erhalten werden, müssen noch als Lösungen überprüft werden. Folgende Regeln zur äquivalenten Umformung (für a, b, x, y, p, q R beliebig) ergeben sich aus den Eigenschaften der reellen Zahlen: x = y x + a = y + a x = y ax = ay, falls a 0 x y x + a y + a { ax ay, falls a > 0 x y ax ay, falls a < 0 0 < x y 0 < 1 y 1 x.

7 6.2 Nichtäquivalente Umformungen 15 Folgende Regeln können zur Lösung von Gleichungen genutzt werden: wenn p 2 4q. xy = 0 x = 0 oder y = 0 x 2 = a 2 x = a oder x = a x 2 + px + q = 0 x = p 2 + p 2 4 q oder x = p 2 p 2 4 q, Beispiel 6.1. Man bestimme die Lösungsmenge L der folgenden Gleichung (x 2) 2 + x = 2. Es gibt mehrere Lösungswege, einer davon ist der folgende: und damit L = {1,2}. (x 2) 2 + x = 2 x 2 4x x = 2 x 2 3x + 2 = 0 x = = 2 oder x = = 1, 6.2 Nichtäquivalente Umformungen Nichtäquivalente Umformungen sind Umformungen, die die Lösungsmenge nicht erhalten. Umformungen, die die Lösungsmenge verringern, sollten mit besonderer Vorsicht zu behandeln: Man muss untersuchen, welche Lösungen im konkreten Fall durch die Umformung verloren gehen könnten. Typischer Fall einer solchen nichtäquivalenten Umformung ist die Division beider Seiten einer Gleichung durch den selben Term, ohne zu beachten, dass dieser Null sein könnte. Umformungen, die die Lösungsmenge vergrößern, sind nicht immer zu vermeiden. Zu solche Umformungen gehört zum Beispiel das Quadrieren beider Seiten einer Gleichung. Hier können Scheinlösungen entstehen, die man durch Einsetzen in das Ausgangsproblem (Probe) gegebenenfalls als Lösung ausschließen kann. 6.3 Gleichungen und Ungleichungen mit Beträgen Eine Auflösung von Gleichungen und Ungleichungen mit Beträgen geschieht in der Regel durch Fallunterscheidung oder durch Veranschaulichung auf der Zahlengeraden. Beispiel 6.2. Man bestimme die Lösungsmenge L von x x 1 2. Fallunterscheidung:

8 16 6 GLEICHUNGEN UND UNGLEICHUNGEN 1. Fall: x < 1. Dann gilt x x 1 2 (x + 1) (x 1) 2 x 1, und daher L 1 = ], 1[ [ 1, [ =. 2. Fall: 1 x < 1. Dann gilt x x 1 2 (x + 1) (x 1) 2 2 2, und daher L 2 = [ 1,1[ R = [ 1,1[. 3. Fall: 1 x. Dann gilt x x 1 2 (x + 1) + (x 1) 2 x 1, und daher L 3 = [1, [ ],1] = {1}. Zusammengefasst: L = L 1 L 2 L 3 = [ 1,1].

Brückenkurs Mathematik 2017

Brückenkurs Mathematik 2017 1 Technische Universität Dresden Fachrichtung Mathematik, Institut für wissenschaftliches Rechnen PD Dr. Sebastian Franz aufbauend auf dem Material von Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen 2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung Kapitelgliederung 2. Reelle Zahlen 2.1 Der Körper der reellen Zahlen 2.2 Anordnungsaxiome 2.3 Betrag und Dreiecksungleichungen 2.4 Darstellung von Zahlen im Rechner 2.5 Intervalle Buchholz / Rudolph: MafI

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

LS Informatik 4 & Reelle Zahlen. Buchholz / Rudolph: MafI 2 2

LS Informatik 4 & Reelle Zahlen. Buchholz / Rudolph: MafI 2 2 2. Reelle Zahlen Buchholz / Rudolph: MafI 2 2 Kapitelgliederung 2.1 Der Körper der reellen Zahlen 2.2 Anordnungsaxiome 2.3 Betrag und Dreiecksungleichungen 2.4 Darstellung von Zahlen im Rechner 2.5 Intervalle

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018 HM I Tutorium 2 Lucas Kunz 31. Oktober 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper und Gruppen.............................. 2 1.2 Konstruktion der reellen Zahlen........................ 3 1.3 Natürliche

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird.

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird. 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Reelle Zahlen. 2-a Die Körperaxiome

Reelle Zahlen. 2-a Die Körperaxiome 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen:

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen: A.1.1 Zahlenmengen Die Menge der natürlichen Zahlen, die mit N bezeichnet werden N = {1, 2, 3, 4, 5,... } benutzen wir im Alltag, um mehrere gleichartige Gegenstände zu zählen. Es gibt unendlich viele

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Analysis I - Reelle Zahlen

Analysis I - Reelle Zahlen November 17, 2008 Algebraische Grundbegriffe und Körper Definition Sei M eine Menge. Jede Funktion f : M M M heißt eine (binäre, innere) Verknüpfung oder eine Operation auf M. Wir schreiben für (a, b)

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle...

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle... Goethe-Oberschule Berlin (Gymnasium) A. Mentzendorff Geändert: Januar 010 Zahlenbereiche Inhaltsverzeichnis 1 Die reellen Zahlen als angeordneter Körper 1.1 Körperaxiome....................................

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

1 Reelle Zahlen. 2 Potenzen und Wurzeln. 1.1 die reelle Zahl π. Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis

1 Reelle Zahlen. 2 Potenzen und Wurzeln. 1.1 die reelle Zahl π. Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis 1 Reelle Zahlen 1.1 die reelle Zahl π π ist ein Beispiel einer reellen Zahl, die keine rationale Zahl ist: π = 3.141592653589793238462643383279502884197169399375105823197494459

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag

Mehr

Reelle Zahlen. Kapitel Der Körper der reellen Zahlen

Reelle Zahlen. Kapitel Der Körper der reellen Zahlen Kapitel 2 Reelle Zahlen 2.1 Der Körper der reellen Zahlen Definition 2.1 (Gruppe). Sei G eine Menge und eine Verknüpfung auf G (d. h. x, y G. x y G, x y ist eindeutig). Das Paar (G, ) heißt eine Gruppe,

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

1 Grundlagen. 1.1 Elementare Logik

1 Grundlagen. 1.1 Elementare Logik Höhere Mathematik 7 1 Grundlagen 1.1 Elementare Logik Eine (mathematische) Aussage ist ein Satz, der entweder wahr oder falsch ist (keine Aussage ist sowohl wahr als auch falsch). Der Wahrheitswert v(a)

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Doz.Dr.rer.nat.habil. Norbert Koksch. Oktober 004 Kontakt: Willersbau C4, Telefon 3457 Homepage: http://www.math.tu-dresden.de/~koksch e-mail: koksch@math.tu-dresden.de Grundlagen:

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter Termumformungen 2. Kapitel aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 11. Oktober 2009 Überblick über die bisherigen ALGEBRA

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 28. Juli 2012 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 Prof. Dr. Thomas Runst Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Mathematisches Institut 1 Ziel der Vorlesung: Der Modul

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr