Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2"

Transkript

1 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a 0 (Quadrate reeller Zahlen sind immer positiv.) Beispiel a =5 a =5 a =5 und a = 5 Allgemein gilt: a = a Wurzelziehen ist keine Äquivalenzumformung. a =5 a=5 Hier geht die zweite Lösung a= 5 verloren!. Reelle Zahlen Grundwissen 9. Klasse 9/ Jede rationale Zahl lässt sich in einen Dezimalbruch verwandeln. Dieser ist entweder eine ganze Zahl, ein endlicher Dezimalbruch oder ein unendlicher periodischer Dezimalbruch. z.b. 6 = =0, =0,7 Jeder unendliche, nicht periodische Dezimalbruch stellt eine irrationale Zahl dar. z.b., Die rationalen und die irrationalen Zahlen bilden zusammen die reellen Zahlen. Zu jeder reellen Zahl gehört ein Punkt auf der Zahlengeraden. Zahlenmengen Natürliche Zahlen: N={ ; ;3; } Ganze Zahlen: Z={ ; ; ;0;; ;... } Rationale Zahlen: Q= {...; ;0 ; ; ; ; 3 ; 3 ; 4 ; 3 ; 3 ; 4 ;... } Menge aller Brüche Reelle Zahlen: R= Menge aller rationalen und irrationalen Zahlen Es gilt N Z Q R

2 Grundwissen 9. Klasse 9/3 3. Rechenregeln für Wurzeln Die Wurzel darf auf die Glieder eines Produkts bzw. eines Quotienten verteilt werden: Produktregel: a b= a b ; a,b 0 z.b. 6= 3 Quotientenregel: a b = a b ; a 0, b 0 z.b 3 = 3 Es gibt keine Summenregel, denn z.b.: 4 3 = 6 9=5, aber 6 9=7 4. Anwendung der Rechenregeln für Wurzeln Grundwissen 9. Klasse 9/4 Produkt von Wurzeln: 8= 8= 36=6 Quotient von Wurzeln: 8 = 8 = 9=3 Teilweises Radizieren: 8= 4 = 4 = Rationalmachen des Nenners: 6 = 6 =6 =3 Summe bzw. Differenzen müssen durch Ausklammern in Produkte verwandelt werden: 5 3 3= 5 3=4 3 9a 9= 9 a =3 a

3 Grundwissen 9. Klasse 9/5 5. Binomische Formeln Plusformel: a b =a a b b Minusformel: a b =a a b b Plusminusformel: a b a b =a b Anwendung der Formeln Ausmultiplizieren: 3 = 3 3 = 6 3=5 6 Faktorisieren: Quadratisch ergänzen: Nenner rational machen: 4 x = x = x x 4 x 4 x=4 x 4 x = x x = x ±,5 x 3 x=x,5 x = x,5 x,5,5 = x,5,5 3 = 3 = =3,5 Radizieren: x x = x = x Betrag! Grundwissen 9. Klasse 9/6 6. Quadratische Funktionen I Normalform: f x =a x b x c Der Graph heißt Parabel, für a= Normalparabel. a 0 heißt Streckungsfaktor. a ist der Abstand zur Parabel, wenn man vom Scheitel S (tiefster / höchster Punkt der Parabel) eins nach rechts geht. Beispiel: Für a 0 ist die Parabel nach oben geöffnet, für a 0 nach unten geöffnet. Je größer a ist, desto steiler ist die Parabel (Sektglas). Für sehr kleine Werte von a sieht die Parabel wie ein flache Schale aus. Alle Parabeln sind achsensymmetrisch zu einer Parallelen der y-achse durch den Scheitel S. c ist der y-achsenabschnitt. Zum Finden von b kann man jeden Punkt auf der Parabel y= 0,5 x b x,5 außer den Schnittpunkt mit der y-achse (z.b. Scheitel) in = 0,5 b,5 b= die Normalform einsetzen. f x = 0,5 x x,5

4 Grundwissen 9. Klasse 9/7 7. Quadratische Funktion II Faktorisierte Form: f x =a x x x x Beispiel: x und x sind die Nullstellen der Parabel. Der Scheitel S x S y S liegt in der Mitte zwischen den beiden Nullstellen auf der Symmetrieachse der Parabel: x S = x x und y S = f x S Liegt der Scheitel auf der x-achse, so gilt: Nullstellen: x = und x =3 x =x (doppelte Nullstelle) f x = 0,5 x x 3 Scheitel S, da: x S = 3 = und y S = Scheitelform: f x =a x x S y S f x = 0,5 x 8. Quadratische Gleichung Die Gleichung a x b x c=0 heißt quadratischen Gleichung. Grundwissen 9. Klasse 9/8 Ihre Lösungen x und x sind die Nullstellen der quadratischen Funktion f x =a x b x c. Lösungsformel der quadratischen Gleichung ( Mitternachsformel ) Die Diskriminante ist der Ausdruck Für für für Beispiel x, = b± b 4ac a D=b 4ac (Radikand der Lösungsformel). D 0 hat die quadratische Gleichung zwei reelle Lösungen, D=0 hat sie eine reelle Lösung und D 0 keine reelle Lösung. 3 x 5 x =0, also a=3, b= 5, c= x, = b± b 4 a c a = 5± x =, x = 3 = 5± 5 4 = 5±7 6 6

5 9. Sonderfälle der quadratischen Gleichung a) b=0 : a x c=0 Isolieren von x 5 x 0=0 0 5 x =0 :5 x = x = x =, x = Grundwissen 9. Klasse 9/9 b) c=0 : a x b x=0 Ausklammern von x x 3 x=0 x x 3 =0 x =0, x 3=0 x =0, x =,5 c) a= : x b x c=0 Satz von Vieta: b= x x und c=x x x 3x 4=0, also 3= x x und 4= x x Es kommen die Werte 4,,,,,4 in Frage. Ausprobieren ergibt x =, x =4. 0. Satzgruppe des Pythagoras Grundwissen 9. Klasse 9/0 In einem rechtwinkligen Dreieck mit Katheten a,b Hypotenuse c Hypotenusenabschnitte p, q gilt: Hypotenusenhöhe h c Satz des Pythagoras: a b =c Auch die Umkehrung ist richtig: Gilt in einem Dreieck a b =c Höhensatz: h c = p q, so ist es rechtwinklig und a, b sind seine Katheten. Kathetensatz: a =c q und b =c p

6 . Die n-te Wurzel Grundwissen 9. Klasse 9/ Definition: Für die positive Zahl a ist n a diejenige positive Zahl, deren n-te Potenz a ergibt. z.b. 3 8=, da 3 =8 Potenzgleichungen Die Gleichung x n =a hat a) bei geradem Exponent n n a n =a 4= 4=, da =4 zwei Lösungen, wenn a 0 z.b. x 4 = x = 4, x = 4 eine Lösung, wenn a=0, z.b. x 4 =0 x =0 keine Lösungen, wenn a 0. z.b. x 4 = b) bei ungeradem Exponent n immer genau eine Lösung. z.b. x 3 = x = 3 oder x 3 = x = 3. Potenzen mit rationalen Exponenten Wurzelschreibweise: a n = n a, a m Grundwissen 9. Klasse 9/ n = n a m = n a m Merke: Rechne mit dem Exponenten auf einer Stufe tiefer als mit den Potenzen: Multiplizieren Exponenten addieren: a m a n =a m n z.b. Dividieren Exponent subtrahieren: a m a n =am n z.b. 4 3 : =4 Potenz potenzieren Exponent multiplizieren: a m n =a m n = a n m z.b. 8 3 =8 3 =8 3 = Summe potenzieren Es muss ausmultipliziert werden. 3 6 =4 6 =4 3 6 =4 = 4 z.b. 3 3 = = =3 3 =5 3 Addition und Subtraktion ist nur bei gleichartigen Termen möglich: z.b. 5a 3 a 3 = 5 a 3 =4a 3 = 4= = 4 =

7 3. Trigonometrie am rechtwinkligen Dreieck G Gegenkathete, H Hypotenuse, A Ankathete Grundwissen 9. Klasse 9/3 Tangens= G A Sinus= G H Kosinus= A H Zusammenhänge cos 90 =sin sin cos = trigonometrischer Pythagoras sin tan = cos für cos 0 Beispiel =30,c=, =90 Hypotenuse c, Gegenkathete a, Ankathete b sin 30 = a a= cos 30 =b b= 3 =60 4. Mehrstufige Zufallsexperimente Grundwissen 9. Klasse 9/4 In einem Baumdiagramm entspricht jedes Ergebnis einem Pfad des Baumes. Pfadregeln:. Die Wahrscheinlichkeit eines Ergebnisses ist gleich dem Produkt der Wahrscheinlichkeiten längs des zugehörigen Pfades im Baumdiagramm.. Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe der Wahrscheinlichkeiten der Ergebnisse (Pfade), die zu diesem Ereignis gehören. Beispiel Eine Urne enthält 3 rote und 7 blaue Kugeln. Es wird zweimal ohne Zurücklegen gezogen. Die Chance als zweites eine blaue Kugel zu ziehen ist also P. Kugel blau =P BB P RB = =70% B R B R B R

8 Grundwissen 9. Klasse 9/5 5. Körper Prisma Zylinder Pyramide O Prisma = G M V Prisma =G h O Zylinder = r r h V Zylinder =r h O Pyramide =G M V Pyramide = 3 G h Kegel O Kegel =r r m=r b m V Kegel = 3 r h

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

2. Bereich der reellen Zahlen IR

2. Bereich der reellen Zahlen IR Fachinternes Curriculum für das Fach Mathematik (letzte Aktualisierung: 14.03.2014) Ab Schuljahr: 14/15 Jahrgang: 9 Die dritte Klassenarbeit wird in Klasse 9 über 90 Minuten geschrieben. Zeitraum Pflichtmodul

Mehr

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und 4 Inhalt 1 Quadratwurzeln 6 2 Rechnen mit Quadratwurzeln 8 3 Wurzelgleichungen 10 4 Reinquadratische Funktionen 12 5 Gemischtquadratische Funktionen 14 6 Quadratische Gleichungen 16 7 Satz von Vieta und

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ :

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ : Zahlmengen. Reelle Zahlen ℝ : natürliche Zahlen ℕ 0 ganze Zahlen ℤ negative ganze Zahlen Arechende und nichtarechende periodische Dezimalzahlen (Bruchzahlen) rationale Zahlen ℚ reelle Zahlen ℝ nichtarechende

Mehr

1 Quadratwurzeln 14 2 Reelle Zahlen 16 3 Wurzelziehen und Quadrieren 18 4 Umformen von Wurzeltermen 20

1 Quadratwurzeln 14 2 Reelle Zahlen 16 3 Wurzelziehen und Quadrieren 18 4 Umformen von Wurzeltermen 20 Inhalt A Grundlagen 6 1 Gleichungen und Ungleichungen 6 Bruchterme 7 3 Einfache Bruchgleichungen 8 4 Lineare Gleichungssysteme 9 5 Zinsen und Zinseszinsen 11 6 Wahrscheinlichkeiten 1 7 Umfang und Flächeninhalt

Mehr

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik (Stand: 01.08.2013) (Lehrwerk: Elemente der Mathematik) Klasse 5 Nr. Themen, Schwerpunkte, inhaltsbezogene 1 Natürliche Zahlen und Größen

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133 Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 37, 89 (Wurzelzeichen) 36, 84 (Multiplikations-Zeichen) 36 * (Multiplikations-Zeichen) 36 + (Plus-Zeichen) 36, 43, 99, 120 - (Minus-Zeichen)

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik Klasse Inhaltsbezogene Prozessorientierte 1. Natürliche Zahlen Große Zahlen; Römische Zahlzeichen; Anordnung auf dem Zahlenstrahl; Graphische Darstellung Vermehrt soll

Mehr

Themen des schulinternen Curriculums Mathematik

Themen des schulinternen Curriculums Mathematik Brüche I Figuren und Körper I Rechnen in N und Z Größen Beschreibende Statistik Themen des schulinternen Curriculums Mathematik Klasse 5 Fragebögen auswerten Diagramme erstellen und Informationen daraus

Mehr

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

Unterrichtsinhalte Mathematik Klasse 5

Unterrichtsinhalte Mathematik Klasse 5 Schulinternes Curriculum Jahrgangsstufen 5-9 Mathematik Phoenix-Gymnasium Dortmund Fachschaft Mathematik Unterrichtsinhalte Mathematik Klasse 5 Ziel des Unterrichts ist es, die Mathematikkenntnisse aus

Mehr

Jahrgangsstufe Anzahl Dauer

Jahrgangsstufe Anzahl Dauer Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2007 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.: 010-D-591-de- Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 6 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand

Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand 04.09.2013 Mathematik Klasse 5 (Lehrbuch: Lambacher Schweizer, ausgehend von vier Wochenstunden, kursiv optional, Übungsmaterial kann aus den Servicebänden

Mehr

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016 Klasse 5 Schuljahr 2015/2016 Bereich 1 Strichlisten und Diagramme Zahlenstrahl und Anordnung Dezimalsystem Große Zahlen; Schätzen; Runden Große Einmaleins Bereich 2 Natürliche Zahlen Addition und Subtraktion

Mehr

KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch:Schnittpunkt 10 Klettbuch Seite 1 von 6

KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch:Schnittpunkt 10 Klettbuch Seite 1 von 6 KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch: Klettbuch 978-3-12-742501-7 nutzen zur Lösung einer komplexen Aufgabe mehrere Modelle und verknüpfen sie vergleichen Vorgehensweisen des s bzgl.

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Lehrkraft: Wochenstundenzahl:

Lehrkraft: Wochenstundenzahl: Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl: S E P T E M B E R 10.1 Potenzen und Wurzeln Potenzen und Wurzeln 5 Kennenlernen von Größeneinheiten; Hinführung zur Thematik Potenzen mit beliebiger

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Jahresplanung. Seitentitel/ Schularbeit

Jahresplanung. Seitentitel/ Schularbeit Jahresplanung Reihenfolge und Zeitbedarf der Themenblöcke in der Jahresplanung haben Vorschlagscharakter und müssen an die individuellen Bedürfnisse, die Länge des es, Ferienzeiten und besondere inhaltliche

Mehr

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch Das Thema Lineare Gleichungssysteme soll in Berlin bereits in Klasse 7/8 behandelt werden. Schnittpunkt 9 Kapitel 1 Lineare Gleichungssysteme Klassenarbeit Beschreiben und Interpretieren von Realsituationen

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Schulinternes Curriculum Mathematik (S I)

Schulinternes Curriculum Mathematik (S I) Klasse Inhaltsbezogene Prozessorientierte 1. Natürliche Zahlen Große Zahlen; Römische Zahlzeichen; Anordnung auf dem Zahlenstrahl; Graphische Darstellung; Methode: Selbsttest Vermehrt soll Gruppen- und

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel,

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1 Curriculum MATHEMATIK Sekundarstufe I Klasse Inhalte Fertigkeiten Sonstiges 5 Natürliche Zahlen und Größen Große Zahlen Stellentafel Zweiersystem; Römische Zahlzeichen Zahlenstrahl Runden von Zahlen Bilddiagramme

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung

Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung Hinweise: Liebe Schülerinnen und Schüler, der Eingangstest ist überstanden. Wenn Sie alle Aufgaben lösen konnten, so bringen Sie

Mehr

Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 bis 10 Klasse 9 Lambacher Schweizer 8 Klettbuch

Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 bis 10 Klasse 9 Lambacher Schweizer 8 Klettbuch Klasse 9 Lambacher Schweizer 8 Klettbuch 978-3-12-734781-4 Lambacher Schweizer Klasse 8 unterschiedliche Verfahrensweisen und Darstellungsformen zur Problemlösung nutzen Lösen von linearen Gleichungen

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag Ziele -1- Der Unterricht in der Sekundarstufe I soll mathematisches Denken als wichtigstes Mittel zur rationalen Erkenntnis und Gestaltung unserer Welt durch Erstellung und Nutzung entsprechender Modelle

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1 Lösen von Gleichungen 1 Allgemein: Klammern auflösen, wenn sinnvoll (z. B. nicht sinnvoll, wenn im Nenner eines Bruchs bereits ein Produkt steht). Gleichartige Terme zusammenfassen (z. B. x bzw. x ausklammern).

Mehr

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016 Stoffplan Mathematik G9 Stand 5/2016 Klasse 5 Zahlen natürliche Zahlen, Anordnung auf dem Zahlenstrahl. Vorgänger, Nachfolger. Stellenwertsystem. Grundrechenarten, schriftliche Verfahren. Begriffe: Summand/Summe,

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Zahlen. Grundwissenskatalog G8-Lehrplanstandard

Zahlen. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -

Mehr

Curriculum Mathematik am HJK mit Methoden

Curriculum Mathematik am HJK mit Methoden Curriculum Mathematik am HJK mit Jahrgangsstufe 5 natürliche Zahlen große Zahlen Runden Stellenwertsysteme Diagramme als Darstellung großer Zahlen Fakultativ: Römische Zahlen, Dualsystem Rechnen 4 Grundrechenarten

Mehr

...für Dummies. Algebra für Dummies. von Mary Jane Sterling, Eva Steffen. 2., überarbeitete Auflage. Wiley-VCH Weinheim 2011

...für Dummies. Algebra für Dummies. von Mary Jane Sterling, Eva Steffen. 2., überarbeitete Auflage. Wiley-VCH Weinheim 2011 ...für Dummies Algebra für Dummies von Mary Jane Sterling, Eva Steffen 2., überarbeitete Auflage Wiley-VCH Weinheim 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70792 8 Zu Leseprobe schnell

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

9. Klasse TOP 10 Mathematik 09 Gesamtes Grundwissen mit Übungen G

9. Klasse TOP 10 Mathematik 09 Gesamtes Grundwissen mit Übungen G www.strobl-f.de/grund9g.pdf 9. Klasse TOP 0 Mathematik 09 Gesamtes Grundwissen mit Übungen G Grundwissen Mathematik 9. Klasse: Die 0 wichtigsten Themen auf jeweils einer Seite! Zum Wiederholen kann man

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Grundwissen 9-1. Aufgabe Seite 1. Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c.

Grundwissen 9-1. Aufgabe Seite 1. Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c. Grundwissen 9-1. Aufgabe 23.01.2016 Seite 1 Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c. Grundwissen 9-1. Lösung 23.01.2016 Seite 2 Weil f(x) und g(x) äquivalent

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

BOS - MATHEMATIK. Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule.

BOS - MATHEMATIK.  Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule. BOS - MATHEMATIK Eine Zusammenfassung über die Grundlegenden Themen im Fach Mathematik für die Vorbereitung zur Berufsoberschule (Klasse 12). Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Leitprogramm Funktionen

Leitprogramm Funktionen 3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Inhaltsbezogene Kompetenzen. Die Schülerinnen und Schüler...

Inhaltsbezogene Kompetenzen. Die Schülerinnen und Schüler... I Quadratische Funktionen und quadratische Gleichungen 1. Aufstellen von Funktionsgleichungen stellen quadratische Funktionen mit eigenen Worten, in Wertetabellen, Graphen und in Termen dar, wechseln zwischen

Mehr

9. Klasse TOP 10 Mathematik 09 Gesamtes Grundwissen mit Übungen G

9. Klasse TOP 10 Mathematik 09 Gesamtes Grundwissen mit Übungen G www.strobl-f.de/grund9g.pdf 9. Klasse TOP 0 Mathematik 09 Gesamtes Grundwissen mit Übungen G Grundwissen Mathematik 9. Klasse: Die 0 wichtigsten Themen auf jeweils einer Seite! Zum Wiederholen kann man

Mehr

SINUS Sekundarstufe I in Rheinland-Pfalz

SINUS Sekundarstufe I in Rheinland-Pfalz 1 SINUS Sekundarstufe I in Rheinland-Pfalz Welche Inhalte sollen in unserer Schule zum Grundwissen gezählt werden? Ein Fragenkatalog zum Grundwissen Vorbemerkungen 1. Aufgabe und Bedeutung des zu erstellenden

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Schulinterner Lehrplan Klasse 10

Schulinterner Lehrplan Klasse 10 Schulinterner Lehrplan Klasse 10 Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) 1. Verpackungen (E-Kurs S. 41 S. 58; G-Kurs S. 19 S. 34) Oberfläche und Volumen von Pyramide und Kegel Projektarbeit Kugel:

Mehr

Arbeitsplan Mathematik Klasse 10 RS Schüttorf 2012/13 Nr. (Zeitrahmen)

Arbeitsplan Mathematik Klasse 10 RS Schüttorf 2012/13 Nr. (Zeitrahmen) Medieneinsatz: Taschenrechnernutzung (Trigonometrie) (a) Trigonometrische Beziehungen => Physik WPK (Astronomie), Erdkunde (Landvermessung?) 1. (ca.45 16 h) 03.09. 05.10. Modellieren/Problemlösen: Entnehmen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

Schulinterner Plan 10

Schulinterner Plan 10 Schulinterner Plan 10 PA Partnerarbeit SV Schülervortrag SK Sachkompetenz SoK Sozialkompetenz Zeit Thema und inhaltliche Schwerpunkte Kernmethode/ Arbeitsform 28h 2h Funktionen und ihre Anwendungen 1.

Mehr

Inhaltsverzeichnis. Grundwissen und Übungsaufgaben 4. Vorwort 1

Inhaltsverzeichnis. Grundwissen und Übungsaufgaben 4. Vorwort 1 Inhaltsverzeichnis Vorwort 1 Grundwissen und Übungsaufgaben 4 1 Algebra 5 1.1 Wichtige Grundlagen................................ 5 1.1.1 Umgang mit Klammern.......................... 5 1.1.2 Ausmultiplizieren

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr