Lineare Gleichungssysteme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Gleichungssysteme"

Transkript

1 Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4 Nicht eindeutig lösbare LGS und LGS mit Parametern 7 1

2 1 Grundlagen Beispiel 1.1: Eine Gruppe, die aus Protestanten und Katholiken besteht, betritt ein Restaurant, um ein vorbestelltes Menü einzunehmen. Es stehen ein Fischgericht (7 Euro) und ein Fleischgericht (6 Euro) zur Auswahl. Da dies an einem Freitag geschieht, wählen alle Katholiken das Fischgericht. Die Protestanten entscheiden sich hingegen für das Fleischgericht. Es sind doppelt so viele Katholiken wie Protestanten in der Gruppe. Die Gesamtrechnung (ohne Getränke) beträgt am Ende 260 Euro. Frage: Wie viele Katholiken, wie viele Protestanten sind in der Gruppe? Um diese Aufgabe zu lösen, muss sie zunächst in eine mathematische Form überführt werden. Es gibt zwei unbekannte Größen (Zahl der Protestanten und der Katholiken), daher führen wir zwei Variablen ein: x: Anzahl der Katholiken y: Anzahl der Protestanten Zwei Aussagen sind zu diesen Größen gegeben: ˆ Es gibt doppelt so viele Katholiken wie Protestanten, also x = 2y. ˆ Alle zusammen haben 260 Euro bezahlt. Unter Berücksichtigung der Einzelpreise ergibt sich also 7x + 6y = 260. Beide Gleichungen zusammengenommen, x = 2y 7x + 6y = 260 (das -( und -)Zeichen kann dabei auch fortfallen) bilden ein Gleichungssystem. In diesem einfachen Fall findet man die Lösung durch das Einsetzungsverfahren : Für x setzt man 2y in die zweite Gleichung ein und erhält Aus der ersten Gleichung folgt 7 2y + 6y = y = 260 y = 13. x = 2y = 2 13 = 26. Es sind also 26 Katholiken und 13 Protestanten. Bemerkung 1.1: Bei komplizierten Gleichungssystemen empfiehlt es sich, zunächst die Gleichungen so zu ordnen, dass links in einer festen Reihenfolge die Variablen untereinander und rechts die Konstanten stehen. Beim Beispiel 1 wäre also die erste Gleichung umzuformen: x 2y = 0 7x + 6y = 260. Diese Form heißt Normalform des Gleichungssystems. 2

3 Definition 1.1: Es seien m, n 1, a ij R für 1 i m, 1 j n und b i R für 1 i m. Ferner seien x 1,..., x n Variablen. Dann wird der Ausdruck a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b a m1 x 1 + a m2 x a mn x n = b m ( ) lineares Gleichungssystem (LGS) 1 (in Normalform) mit m Gleichungen und n Variablen genannt. Man spricht auch kurz vom (m, n)-lgs. Ist m = n, so heißt das LGS quadratisch. Die Faktoren a ij werden Koeffizienten genannt. Beispiel 1.2: Der Ausdruck 2x + 4y 2 = 3 x + 2y = 1 ist zwar ein Gleichungssystem, aber kein lineares, da y in der ersten Gleichung zum Quadrat vorkommt. Funktionsterme wie x k oder sin y sind beim LGS nicht zugelassen. Definition 1.2: Es seien r 1,..., r n reelle Zahlen. Der Ausdruck (r 1 ;... ; r n ) wird n-tupel genannt (speziell für n = 2: [geordnetes] Paar, für n = 3: Tripel). Ein n-tupel (r 1 ;... ; r n ) heißt Lösung des (m, n)-lgs ( ), wenn für 1 i m gilt a i1 r 1 + a i2 r a in r n = b i, d. h. wenn sich nur wahre Aussagen ergeben, sofern man die Zahlen des Tupels für die Variablen einsetzt. Beispiel 1.1 (Fortsetzung): Die (einzige) Lösung des gegebenen (2,2)-LGS ist (26;13). Man sagt auch: Das LGS hat die Lösung (nicht: die Lösungen) x = 26, y = 13. Für die Lösungsmenge gilt L = {(26; 13)}. Beispiel 1.3: Das Gleichungssystem 7x + 6y = 260 7x + 6y = 280 ist nicht lösbar. Die beiden Gleichungen widersprechen einander, denn derselbe Term (7x+6y) kann nicht gleichzeitig verschiedene Werte besitzen ( die Rechnung kann nicht sowohl 260 als auch 280 Euro betragen ). Es gilt also L = (leere Menge). Beispiel 1.4: Das Gleichungssystem x 2y = 0 3x 6y = 0 ist zwar lösbar, aber die Lösung ist nicht eindeutig. Die zweite Gleichung geht aus der ersten durch Multiplikation mit 3 hervor. Sie ist damit zur ersten äquivalent, bietet daher keine 1 Präziser wäre der Begriff System linearer Gleichungen, da nicht das System, sondern die Gleichungen linear sind. 3

4 weiteren Informationen und ist eigentlich überflüssig. Lösungen sind alle (x; y)-paare mit x = 2y, also z. B. (0; 0), (2; 1), (4; 2) usw. Es gilt L = {(2y; y) y R}. Die Variable y ist also frei wählbar, und für jede reelle Zahl y gibt es eine Lösung. Satz 1.1: Ein LGS hat entweder keine, genau eine oder unendlich viele Lösungen. Beweis: Siehe Satz 1.10, Skript Vektorräume und Matrizen. 2 Das Lösungsverfahren von Gauß Definition 2.1: Ein LGS hat obere Dreiecksform, wenn für die Koeffizienten a ij gilt: Sind in einer Zeile die ersten k Koeffizienten gleich 0, sind in der folgenden Zeile zumindest die ersten k + 1 Koeffizienten gleich 0. (Insbesondere sind die Koeffizienten links unten unterhalb der Hauptdiagonale gleich 0.) Beispiel 2.1: Das LGS 3x 2y + 4z = 12 4y + 2z = 14 5z = 25 hat obere Dreiecksform. Es lässt sich leicht lösen, indem erst nach der letzten Zeile z, dann nach der vorletzen y und schließlich x bestimmt wird: 5z = 25 z = 5, 4y + 2z = 14 4y = 14 2z = = 4 y = 1, 3x 2y + 4z = 12 3x = y 4z = = 8 x = 2. Wir erhalten also das Lösungstripel ( 2; 1; 5). Bemerkung 2.1: Dieses Lösungsverfahren wird Aufrollen von unten nach oben genannt. Offenbar ist jedes LGS in oberer Dreiecksform auf diese Weise einfach zu lösen. Der Gauß sche Algorithmus 2 besteht nun darin, ein beliebiges LGS in ein solches in oberer Dreiecksform zu verwandeln, ohne dass sich dabei die Lösungsmenge ändert. Definition 2.2: Zwei LGS mit n Variablen heißen äquivalent, wenn sie dieselbe Lösungsmenge besitzen. Satz 2.1: Zwei (m, n)-lgs sind äquivalent, wenn das zweite aus dem ersten durch einen der folgenden Schritte entstanden ist: 1. Zwei Gleichungen werden vertauscht, 2. eine Gleichung wird mit einer reellen Zahl k 0 multipliziert, 3. zu einer Gleichung wird das k-fache einer anderen Gleichung addiert oder von ihr subtrahiert. 2 Carl Friedrich Gauß, einer der bedeutendsten Mathematiker,

5 Bemerkung 2.2: Beim Gauß schen Algorithmus wird das LGS ( ) durch eine Kette von elementaren Umformungen in ein äquivalentes in oberer Dreiecksform umgewandelt. Dabei werden zunächst die Koeffizienten der ersten Spalte unterhalb von a 11 eliminiert, dann die der zweiten Spalte unterhalb des neu entstandenen Koeffizienten ã 22 usw. Beispiel 2.2: Das folgende LGS soll gelöst werden. Zur besseren Übersicht werden ab jetzt die Gleichungen mit römischen Zahlen nummeriert. II 3x 2y + 2z = 15 III 4x + 2y + 3z = 7 Die eingerahmten Summanden passen nicht in die obere Dreiecksform und sollen daher schrittweise eliminiert werden. Im ersten Schritt soll das 3x in der Gleichung II durch elementare Umformungen verschwinden. Dies geschieht durch geschickte Verknüpfung mit der ersten Gleichung. Zunächst werden beide Gleichungen so multipliziert, dass beide denselben x-koeffizienten haben: 3 II 3x 2y + 2z = 15 2 I 6x + 12y 3z = 39 II 6x 4y + 4z = 30 Subtraktion der ersten von der zweiten Gleichung ergibt II 16y + 7z = 69. Damit ist die Variable x aus der zweiten Gleichung eliminiert. Diese Schritte kann man auch zusammenfassen als Subtraktion des Dreifachen der ersten Gleichung vom Doppelten der zweiten Gleichung, kurz: 2 II 3 I. Die Äquivalenzumformung sieht also folgendermaßen aus: II 3x 2y + 2z = 15 2 II 3 I III 4x + 2y + 3z = 7 II 16y + 7z = 69 III 4x + 2y + 3z = 7 Entsprechend muss jetzt die Variable x aus der dritten Gleichung eliminiert werden. Der Vergleich der beiden eingerahmten Terme ergibt: Dies erreichen wir, wenn wir das Doppelte der ersten Gleichung von der dritten Gleichung abziehen (III 2 I). Wir erhalten II 16y + 7z = 69 III 6y + 5z = 33. Die Dreiecksform wird erreicht, wenn noch y aus der dritten Gleichung eliminiert wird. Hierzu muss diese Gleichung mit der zweiten Gleichung verknüpft werden, nicht mit der ersten, da sonst x wieder erscheinen könnte. Das kleinste gemeinsame Vielfache von 6 und 16 ist 5

6 48(= 8 6 = 3 16), so dass man etwa das 3fache der zweiten vom 8fachen der dritten Gleichung abziehen könnte. Insgesamt erhalten wir II 16y + 7z = 69 III 19z = 57 Rollt man dieses Gleichungssystem von unten nach oben auf, erhält man nacheinander z = 3, y = 3, x = 1. Die Probe ergibt, dass dies auch eine Lösung des ursprünglichen LGS ist. 3 Kurzschreibweise und Zeilensummenkontrolle Bemerkung 3.1: Um die Schreibarbeit zu verringern, kann man das Gleichungssystem ( ) auch wie folgt kurz zusammenfassen: I a 11 a a 1n b 1 II a 21 a a 2n b (m) a m1 a m2... a mn b m. Ein quadratisches LGS in oberer Dreiecksform hätte dann die Gestalt I a 11 a a 1n b 1 II 0 a a 2n b (n) a nn b n. Beispiel 3.1: In dieser Kurzschreibweise sieht die Lösung des LGS aus Beispiel 2.2 wie folgt aus: I II II 3 I III III 2 I I II III III 3 II I II III Nach Rückübersetzung dieser Darstellung in Gleichungen wird das LGS wie oben durch Aufrollen gelöst. Definition 3.1: s i := a i1 + + a in + b i heißt Zeilensumme der i-ten Gleichung im LGS ( ). Satz 3.1 (Zeilensummenkontrolle): Wird eine elementare Umformung entsprechend auf die Zeilensumme angewandt, so ist die entstandene Zahl gleich der Zeilensumme der durch die Umformung entstandenen Gleichung. 6

7 Beispiel 3.1 (Fortsetzung): In die Berechnung wird eine Spalte Zeilensumme eingefügt: ZS I II II 3 I III III 2 I I II III III 3 II I II III Zum Beispiel ist die eingerahmte Zahl 60 dadurch entstanden, dass auf die Zeilensummen der Gleichungen I und II im ersten System dieselbe Rechenvorschrift angewandt wurde wie in den übrigen Spalten ( ( 8) = 60). Sie muss aber gleichzeitig der Zeilensumme in der neuen Gleichung entsprechen (60 = ). Durch diese Kontrolle können Rechenfehler entdeckt werden. 4 Nicht eindeutig lösbare LGS und LGS mit Parametern Beispiel 4.1: Auf das folgende LGS wird das Gauß-Verfahren angewandt: I 3x + 5y 2z = 10 II 2x + 8y 5z = 6 3 II 2 I III 4x + 2y + z = 8 3 III 4 I I 3x + 5y 2z = 10 II 14y 11z = 2 III 14y + 11z = 16 II + III I 3x + 5y 2z = 10 II 14y 11z = 2 III 0 = 18 Die letzte Gleichung ist immer eine falsche Aussage, egal, welche Werte für x, y und z eingesetzt werden. Das Gleichungssystem ist damit nicht lösbar, die Lösungsmenge ist die leere Menge (L = ). Beispiel 4.2: Auf das folgende LGS wird das Gauß-Verfahren angewandt: I 2x + 2y + 2z = 6 II 2x + y z = 2 I II III 4x + 3y + z = 8 III 2 I I 2x + 2y + 2z = 6 II y + 3z = 4 III y 3z = 4 II + III I 2x + 2y + 2z = 6 II y + 3z = 4 III 0 = 0 7

8 Die letzte Gleichung bildet stets eine wahre Aussage. Sie kann daher weggelassen werden. Übrig bleibt ein Gleichungssystem mit drei Variablen und zwei Gleichungen: I 2x + 2y + 2z = 6 II y + 3z = 4 Eine Gleichung, die etwa z eindeutig bestimmt, fehlt. Daher kann z als frei wählbar angesehen werden, wir setzen z = c R. y und x werden dann wie üblich durch Aufrollen bestimmt: y = 4 3c, 2x = 6 2y 2z = 6 2(4 3c) 2c = 4c 2 x = 2c 1. Wir erhalten eine unendliche Lösungmenge: L = {(2c 1; 4 3c; c) c R}. Bemerkung 4.1: Die hierbei anzuwendenden Regeln kann man wie folgt zusammenfassen: 1. Entsteht beim Lösen eines LGS die Gleichung 0 = k für ein k 0, so ist das LGS nicht lösbar. 2. Entsteht beim Lösen eines LGS die Gleichung 0 = 0, so kann diese Gleichung weggelassen werden. 3. Besitzt die letzte Gleichung eines LGS in oberer Dreiecksform mehrere Variablen, so sind diese bis auf eine als Parameter frei wählbar. Beispiel 4.3 (LGS mit einem Parameter): Auf das folgende Gleichungssystem, das in der ersten Gleichung den reellen Parameter a enthält, wird der Gauß sche Algorithmus angewandt: I 2x + ay + 3z = 3 II 3x + 2y + z = 7 3 I 2 II III x y + 2z = 4 I 2 III I 2x + ay + 3z = 3 II (3a 4)y + 7z = 5 III (a + 2)y z = 5 Um in der bekannten Weise die obere Dreiecksform zu erhalten, müssten wir etwa die dritte Gleichung mit 3a 4 multiplizieren und von dieser Gleichung dann das (a + 2)-fache der zweiten Gleichung abziehen. Das ist nicht nur kompliziert, sondern bringt auch noch die Schwierigkeit, dass wir eine Gleichung nicht mit 0 multiplizieren dürfen, da sich sonst die triviale Gleichung 0 = 0 ergäbe. Wäre a = 4 3, so wäre aber eben dies der Fall. Diesem Problem können wir entgehen, indem wir in der dritten Gleichung nicht y, sondern z eliminieren. Wir wenden daher die Umformung II + 7 III auf die dritte Gleichung an und erhalten I 2x + ay + 3z = 3 II (3a 4)y + 7z = 5 III (100)y = 40 Division der dritten Gleichung durch 10 liefert ()y = 4. Ist a 1, so liefert uns das 4 Aufrollen von unten nach oben y = a+1, 7z = 5 (3a 4)y = 5 + 4(3a 4) = 5() + 4(3a 4) 8 = 7a 21 z = a 3,

9 2x = 3 ay 3z = 3+ 4a 3) 3(a {( Damit ist L = 2a+6 a+1, 4 a+1, a 3 a+1 )}. 3 = 3() + 4a 3(a 3) = 42 x = 2a + 6. Dies gilt aber nur für a 1, da wir zur Bestimmung von y durch dividiert haben und nicht durch 0 teilen dürfen. Im Falle a = 1 wird die letzte Gleichung im System zu 0 = 40, was eine falsche Aussage bedeutet. In diesem Fall ist also L =. Beispiel 4.4 (LGS mit zwei Parametern): wird das Gauß-Verfahren angewandt: Es seien a, b R. Auf das folgende LGS Hier sind mehrere Fälle zu unterscheiden: I x + y = 1 II x + ay = b II I I x + y = 1 II (a 1)y = b 1 1. Ist a 1, so können wir durch a 1 dividieren, wobei die Gleichung y = b 1 a 1 entsteht. Für x folgt aus I: x = 1 b 1 a 1. Es gibt damit eine eindeutige Lösung, und es ist L = {(1 b 1 a 1 ; b 1 a 1 )}. 2. Ist a = 1 und b = 1, so besagt Gleichung II 0 = 0 und kann daher weggelassen werden. Für Gleichung I gibt es mit y = c die unendliche Lösungsmenge L = {(1 c; c) c R}. 3. Ist a = 1 und b 1, so behauptet Gleichung II 0 = b 1, was der Voraussetzung widerspricht. In diesem Falle ist L =. 3 Man beachte, dass a und kein frei wählbarer, sondern {( ein fest vorgegebener ) Parameter } ist. Es liegt daher 2a+6 keine unendliche Lösungmenge vor, d. h. es gilt nicht L =, 4, a 3 a R. a+1 a+1 a+1 9

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1 LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 5 Verwandle große Schwierigkeiten in kleine und kleine in gar keine Chinesische Weisheit Das Lösen von

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

8 Lineare Gleichungssysteme

8 Lineare Gleichungssysteme $Id: lgs.tex,v 1.6 2010/12/20 12:57:04 hk Exp $ $Id: matrix.tex,v 1.3 2010/12/20 13:12:44 hk Exp hk $ 8 Lineare Gleichungssysteme In der letzten Sitzung hatten wir mit der Besprechung linearer Gleichungssysteme

Mehr

Lösungen zum 5. Aufgabenblatt

Lösungen zum 5. Aufgabenblatt SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1)

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1) 1 von 5 21.05.2015 14:30 Zusammenfassung: Eine Ungleichung ist die "Behauptung", dass ein Term kleiner, größer, kleiner-gleich oder größer-gleich einem andereren Term ist. Beim Auffinden der Lösungsmenge

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen Bearbeitet von Michael Knorrenschild 1. Auflage 2004. Buch. 176 S. Hardcover ISBN 978 3 446 22818 4 Format (B x L): 14,6 x 21,2 cm Gewicht: 259 g Weitere

Mehr

12 Lineare Gleichungssysteme

12 Lineare Gleichungssysteme 12 12.1 Einführung Ein lineares Gleichungssystem besteht aus mehreren linearen Gleichungen, die verschiedene Variablen enthalten können. Wir werden uns im Wesentlichen auf Gleichungssysteme mit zwei Variablen

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke, Universität Augsburg 15.10.2013 Alexander Lytchak 1 / 14 Organisation Alle wichtigen organisatorischen Information

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum:

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum: Name: Klasse: Datum: 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y

Mehr

Institut für Stochastik, Fernstudienzentrum

Institut für Stochastik, Fernstudienzentrum Institut Stochastik, Fernstudienzentrum Vorkurs Mathematik die Fachrichtung Wirtschaftswissenschaften im Herbst 01 Präsenzwoche Übungsaufgaben zum Thema Zahlbereiche Aufgabe 7 Im Yellowstone Nationalpark

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen Mathematik Lineare Gleichungsssteme Grundwissen und Übungen Stefan Gärtner 00-00 Gr Mathematik Lineare Gleichungsssteme Seite Lineare Gleichung: a + b c ( a,b R) ist eine lineare Gleichung mit zwei Variablen

Mehr

Lineare Gleichungen Lösungen

Lineare Gleichungen Lösungen 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y = 6 6x 3y = -9 A(3

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Gleichungssysteme mit zwei Variablen

Gleichungssysteme mit zwei Variablen Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Terme und Aussagen und

Terme und Aussagen und 1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass

Mehr

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix. LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

AB2 Lineare Gleichungssysteme (LGS)

AB2 Lineare Gleichungssysteme (LGS) AB2 Lineare Gleichungssysteme (LGS) 1) An der Kinokasse 2) In der Kneipe Wie hoch ist der Preis für die Kinokarte eines Erwachsenen, wie viel Dollar kostet die Kinderkarte? Schreibe deinen Lösungsweg auf.

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt roger.burkhardt@fhnw.ch

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Download. Basics Mathe Gleichungen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Michael Franck

Download. Basics Mathe Gleichungen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Michael Franck Download Michael Franck Basics Mathe Gleichungen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen Einfach und einprägsam

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme Eine Aufgabe aus einem alten chinesischen Rechenbuch (600 v. Chr.) In einem Käfig sind Hasen und Hühner eingesperrt. Die Tiere haben zusammen 5 Köpfe und 94 Füße. Wie viele

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr