Darstellung von Informationen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Darstellung von Informationen"

Transkript

1 Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement Darstellung Gleitpunktzahlen (floating point) Darstellung von Zeichen (SII, ISO, Unicode) Diskretisierung und Digitalisierung stetiger Daten 2 Temperatur Zeit Figure : naloge Temperaturkurve Temperatur Zeit Figure 2: Diskretisierte Temperaturkurve Zeit 5: 6: 7: 8: 9: : : 2: 3: 4: 5: 6: 7: Temperatur Figure 3: Digitalisierte Darstellung Dezimalzahlen brauchen Ziffern. Ein omputer speichert nur zwei Ziffer Binärsystem

2 Morse lphabet für den Telegraf (837) Texte und Dezimalzahlen lassen sich mit nur zwei Morsezeichen Punkt und Strich (+ Pause) wie folgt darstellen. 3 Punkt und Strich können durch bzw. ersetzt werden. Pause als Trennen. Z.B für EIS. Binärzeichen und Boolesche Operationen 4 Die Menge {, } heißt binäres lphabet. Die Zeichen und heißen Bits (binary digits). uf dem Binäralphabet definiert man folgenden Boolesche Operationen: ND x y x y OR x y x y XOR x y x y NOT x x. Die Operationen haben folgenden Eigenschaften: ssoziativ: a (b c) = (a b) c und a (b c) = (a b) c Kommutativ: a b = b a und a b = b a Distributiv: a (b c) = (a b) (a c) und a (b c) = (a b) (a c) De Morgansche Regeln: (x y) = ( x) ( y) und (x y) = ( x) ( y) 2. Die Struktur ({, },,, ) ist eine Boolesche lgebra. 3. Die Operationsmenge {, }, {, } und { } sind vollständig. (lle Boolesche Funktion f : {, } n {, } lassen sich durch Operationen einer vollständigen Operationesmenge definieren.)

3 Gatter und Bezeichnungen Boolescher Operationen 5 ND OR NOT B B B B Die Gatter werden durch Transistoren realisiert. (Ein Transistor heutiger höchstintegrierter Schaltungen hat eine Größe von,35 Mikrometer ( 6 M)). Die Gatter heißen auch Verknüpfungsschaltungen. us Gattern können zwei rten von Schaltungen aufgebaut werden: Schaltnetze: ohne Speicherverhalten, verarbeitet Bits (berechnet Boolesche Funktion). Schaltwerke: mit Speicherverhalten, verarbeitet und speichert Bits. Beispiele von Schaltnetz und Schaltwerk 6 x f(x,y,z) y z Figure 3: Ein Schaltnetz für f(x, y, z) := x (y z) x z y NB: Flipflop berechnet keine Funktion. Figure 4: Ein Schaltwerk (Flipflop)

4 Flipflop einer -Bit-Speicher 7 x= z= x= z= y= y= Figure 5: Stabiler Zustand z= oder z= x= z= x= z= y= y= Setzen des Speichers auf Rücksetzen des Speichers auf Das Schaltwerk Flipflop kann ein Bit speichern. Register und rbeitsspeicher 8 Ein Register ist einen Speicher für eine nzahl logisch zusammengehöriger Bits und besteht aus unverbundenen Flipflops. Typische nzahl von Bits in einem Register ist 8 oder vielfach von 8. Eine Zeichenkette von 8 Bits heißt ein Byte, z.b.,,, usw. Eine Speicherzelle ist ein Register mit einer zugehörigen dresse. Der rbeitsspeicher (oder Hauptspeicher) eines omputers besteht aus linear angeordneten Speicherzellen. Jede Speicherzelle kann über ihre dresse gleich schnell angesprochen werden. (wahlfreier Zugriffsspeicher, RM Random ccess Memory). Der rbeitsspeicher ist flüchtig. Beim usschalten geht der Inhalt verloren. Der rbeitsspeicher ist relativ schnell und teuer. Die Größe eines rbeitsspeichers wird durch folgenden Größordnung gemessen. KB (Kilobyte) = 2 = 24 Bytes MB (Megabyte) = 2 2 = Bytes GB (Gigabyte) = 2 3 = Bytes TB (Terabyte) = 2 4 = Bytes

5 Darstellung natürlicher Zahlen 9 In einem Stellenwertsystem zur Basis B wird jede natürliche Zahl n dargestellt in der Form n = (a m a m a 2 a a ) B = a m B m + a m B m + + a B + a B = m (a i B i ) i= wobei gilt: a i < B für alle i. (Römische Zahlen bilden kein Stellenwertsystem: XXIV = 24 ) Beispiel: 3758 in Dezimalsystem 3758 = Vier Stellenwertsysteme werden in der Informatik benutzt: das Dezimalsystem (Basis = ) das Binärsystem (Basis = 2) das Hexadezimalsystem (Basis = 6) das Oktalsystem (Basis = 8) Binärsystem Das Binärsystem (Dualsystem) besitzt folgende wichtige Eigenschaften: Basis = 2, Menge der Ziffern = {, }, Stellenwerte: Potenzen von 2. Hilfstabelle: Zweierpotenzen n n Umrechnung von Binär nach Dezimal: Summe der Zweierpotenzen bilden. = = = 23 = = = Die Binärdarstellung einer natürlichen Zahl kann einfach als Bit-Kette im Rechner gespeichert werden.

6 Umrechnung von Dezimal nach Binär Methode: Fortgesetzte Division durch 2 mit Rest Gegeben sei eine Dezimalzahl (763). Suche ihre Binärdarstellung. 763:2 = 38 Rest 38:2 = 9 Rest 9:2 = 95 Rest 95:2 = 47 Rest 47:2 = 23 Rest 23:2 = Rest :2 = 5 Rest 5:2 = 2 Rest 2:2 = Rest :2 = Rest Die Binärzahl lautet: Die Divisionsreste von unten nach oben notiert ergeben die gesuchte Binärzahl. Hexadezimalsystem 2 Basis = 6, Stellenwerte: Potenzen von 6 Menge der Ziffern = {,, 2, 3, 4, 5, 6, 7, 8, 9,, B,, D, E, F } Hexadezimalziffer B D E F Dezimaler Wert Hilfstabelle: Sechzehnerpotenzen n n Umrechnung von Hexadezimal nach Dezimal: Summe der Sechzehnerpotenzen bilden. E3 6 = = = 483 F F E 6 = = = 4554 Die Umrechnung von Dezimal nach Hexadezimal ist ähnlich wie bei der Umrechnung von Dezimal nach Binär, d.h., Fortgesetzte Division durch 6 mit Rest. Das Oktalsystem kann analog definiert werden (Übungsaufgabe).

7 Umrechnung zwischen Binär und Hexadezimal 3 Umrechnung zwischen Binäre Zifferbündel und Hexadezimalziffern Binär Hexadezimal Binär Hexadezimal 8 9 B D E F Umrechnung von Binär nach Hexadezimal: 4er Bündelung Beispiel: () 2 F 5 3 B 4 E Umrechnung von Hexadezimal nach Binär: 4er Entbüdelung Beispiel: (47EDB9) E D B 9 a a a a a a a a a 2 + a 2 = (a a 8 2 )6 2 + (a a a a 4 2 )6 + (a a a 2 + a 2 )6 Rechnen im Binärsystem 4 Beispiel: Berechnung der Summe () 2 + () 2 += += += += Summand ddendum + Übertrag Summe Die ddition zweier Binärzahlen lässt sich leicht durch Schaltnetz im Rechner realisieren. Die Subtraktion kann durch ddition ersetzt werden wegen x y = x + (K y) K für ein geeignetes K (Komplement-Minuend). Für K = 2 n werden negative ganze Zahlen y (zwischen und 2 n ) als 2 n y dargestellt. Diese Darstellung heißt Zweierkomplement.

8 Rechnerinterne Darstellung von ganzen Zahlen (Zweierkomplement) In einem n-bit-system können 2 n verschiedene Zahlen (von 2 n bis 2 n ) dargestellt werden. 5 Positive Zahl x: ein Vorzeichen folgt mit der (n )-stelligen Binärzahl (x) 2 Negative Zahl x: die Darstellung von x invertieren und ein addieren. Z.B. (9) = () 2 invertiert = () 2 addieren = ( 9) = () 2 Beispiel für n = 8: ( x entspricht 2 8 x) Zahl x 27(2 7 ) Binärmuster Zahl x (2 7 ) invertiert x Binärmuster Beispiel für Subtraktion =( 23) Tabelle des Zweierkomplements für n = 4 6 Zahl B.Muster negative Zhalen Figure 6: Zahlenkreis für Zwei-Komplement positive Zahlen

9 Darstellung gebrochener Zahlen (Gleitkommazahlen oder Gleitpunktzahlen) Im Binärsystem kann eine reelle Zahl x wie folgt auf Basis 2 dargestellt werden: x = (±a n a n a a, a a 2 a m ) 2 = n i= m a i 2 i = (±, a n a n a a a a 2 a m ) 2 2 n+ = (Vorzeichen ±)(Mantisse) 2 Exponent (, 625) = = (, ) 2 = (, ) = (, ) 2 2 () 2 (, 7875) = = (, ) 2 = (, ) = (, ) 2 2 ( ) 2 7 Rechnerinterne Darstellung (für einen Speicher von 2 Bytes) Vz ( Bit) Exponent (4 Bits) Mantisse ( Bits) (, 625) : (, 7875) : NB: Exponent wird im Zweierkomplement gespeichert. Für die Mantisse wird nur der Teil nach dem Komma als binäre ganze Zahl gespeichert. Zeichencode 7 Bit SII 8 Ein Zeichencode ordnet einer Menge von Schriftzeichen umkehrbar eindeutig eine Menge von Binärzahlen zu. 7 Bit SII (merican Standard ode for Information Interchange) stellt mit 7 Bit 28 Schriftzeichen dar. Die odes sind 2 2 bzw. 27 bzw. 6 F F 6. Beispiel Zeichen Dezimalcode Binärcode Hexadezimalcode Z 9 5 a 97 6 z 22 7 $ 36 24? 63 3F

10 Zeichencode 7 Bit SII 9 The SII Table Dec Hex har Dec Hex har Dec Hex har Dec Hex har NUL 32 2 SP SOH 33 2! a 2 2 STX " B b 3 3 ETX # c 4 4 EOT $ D 64 d 5 5 ENQ % E 65 e 6 6 K & 7 46 F 2 66 f 7 7 BEL G 3 67 g 8 8 BS 4 28 ( H 4 68 h 9 9 HT 4 29 ) I 5 69 i LF 42 2 * 74 4 J 6 6 j B VT 43 2B B K 7 6B k 2 FF 44 2, 76 4 L 8 6 l 3 D R 45 2D D M 9 6D m 4 E SO 46 2E. 78 4E N 6E n 5 F SI 47 2F / 79 4F O 6F o 6 DLE P 2 7 p 7 D Q 3 7 q 8 2 D R 4 72 r 9 3 D S 5 73 s 2 4 D T 6 74 t 2 5 NK U 7 75 u 22 6 SYN V 8 76 v 23 7 ETB W 9 77 w 24 8 N X 2 78 x 25 9 EM Y 2 79 y 26 SUB 58 3 : 9 5 Z 22 7 z 27 B ES 59 3B ; 9 5B [ 23 7B { 28 FS 6 3 < 92 5 \ D GS 6 3D = 93 5D ] 25 7D } 3 E RS 62 3E > 94 5E ^ 26 7E ~ 3 F US 63 3F? 95 5F _ 27 7F DEL Figure 7: 28 Zeichen, Nummer bis 27 cht Bit ISO ISO (International Organization for Standardization) (latin) für Westeuropa ? À 28 Ð 224 à 24 ð 29? ± 93 Á 29 Ñ 225 á 24 ñ ² 94 Â 2 Ò 226 â 242 ò ³ 95 Ã 2 Ó 227 ã 243 ó Ä 22 Ô 228 ä 244 ô µ 97 Å 23 Õ 229 å 245 õ Æ 24 Ö 23 æ 246 ö Ç ç È 26 Ø 232 è 248 ø ¹ 2 É 27 Ù 233 é 249 ù ª 86 º 22 Ê 28 Ú 234 ê 25 ú «87» 23 Ë 29 Û 235 ë 25 û ¼ 24 Ì 22 Ü 236 ì 252 ü 4? 57? ½ 25 Í 22 Ý 237 í 253 ý ¾ 26 Î 222 Þ 238 î 254 þ 43? Ï 223 ß 239 ï 255 ÿ Figure 8: Weitere 28 Zeichen, Nummer 28 bis 255 Mit dem 6 Bit ode kann Unicode bis verschiedene Zeichen kodieren.

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Skript. EDV Grundlagen

Skript. EDV Grundlagen PAUL-EHRLICH-SCHULE Frankfurt-Höchst Berufs-, Fach-, Fachoberschule Informatik FOS FS Skript EDV Grundlagen Datum: Name: Klasse: 1. Daten die Welt der Bits und Bytes Daten begegnen uns im Alltag in vielfältiger

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION Auf diesem Computerschirm sieht man verschiedene Arten von Information dargestellt. Wie wird sie eigentlich im Computer abgespeichert. Was man sieht, ist nur eine Graphik! EIN NEUES KAPITEL EIN NEUES KAPITEL:

Mehr

Grundlagen der Informationstechnik

Grundlagen der Informationstechnik Grundlagen der Informationstechnik 2 Um die Funktionsweise der Computernetze zu verstehen, ist ein grundlegendes Verständnis der Informationstechnik (IT) nötig. Bei diesen Grundlagen handelt es sich um

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 30 Einstieg in die Informatik mit Java Datentypen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 30 1 Überblick 2 Ganzzahlige Typen 3 Gleitkommatypen 4 Zeichen, char

Mehr

Daten und Informationen

Daten und Informationen Daten und Informationen Vorlesung vom 17. Oktober 2016 Birger Krägelin Inhalt Repräsentation und Abstraktion Zahlendarstellung Stellenwertsysteme Rechnen mit Zahlen Gleitkommazahlen, Rundungsproblematik

Mehr

Daten und Informationen

Daten und Informationen Daten und Informationen Vorlesung vom 23. Oktober 2017 Birger Krägelin Inhalt Repräsentation und Abstraktion Zahlendarstellung Stellenwertsysteme Rechnen mit Zahlen Gleitkommazahlen, Rundungsproblematik

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Grundlagen der Informationstechnik

Grundlagen der Informationstechnik Grundlagen der Informationstechnik 2 Um die Funktionsweise der Computernetze zu verstehen, ist ein grundlegendes Verständnis der Informationstechnik (IT) nötig. Bei diesen Grundlagen handelt es sich um

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation

Mehr

Thema 1 -- Fortsetzung. Computersystem, Informationsdarstellung

Thema 1 -- Fortsetzung. Computersystem, Informationsdarstellung Thema 1 -- Fortsetzung Computersystem, Informationsdarstellung Codierung! Bei der Codierung erfolgt eine eindeutige Zuordnung der Zeichen eines Zeichenvorrates (Urmenge, Quellalphabet) zu denjenigen eines

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Literalkonstanten Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Ganzzahlige Konstanten 2 Gleitkommakonstanten 3 Zeichenkonstanten

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Was sind primitive Datentypen? Bits und Bytes. Primitive Datentypen. Sommersemester 2014

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Was sind primitive Datentypen? Bits und Bytes. Primitive Datentypen. Sommersemester 2014 Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 1 Einführung Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München 2 Grundlagen von Algorithmen

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Wie werden die Barcode Prüfziffern berechnet?

Wie werden die Barcode Prüfziffern berechnet? KB Consult; K. Bögli Bergwiesenstrasse 3 CH88 Weisslingen Telefon: [] 05 / 38 6 96 Fax: [] 05 / 38 5 0 EMail: kurt.boegli@kbconsult.ch Wie werden die Barcode Prüfziffern berechnet? Nachfolgend die Beschreibung

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Literalkonstanten Übersicht 1 Ganzzahlige Konstanten 2 Gleitkommakonstanten 3 Zeichenkonstanten 4 Zeichenketten 5 Boolsche Konstanten 6 null Referenz Literalkonstanten Literalkonstanten

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

3. Informationsdarstellung

3. Informationsdarstellung Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 204/205 3. Informationsdarstellung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 3 Informationsdarstellung Bitfolgen

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen

Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen Institut für Computerphysik Universität Stuttgart Wintersemester 2017/18 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Wie werden die Barcode Prüfziffern berechnet?

Wie werden die Barcode Prüfziffern berechnet? KB Consult; K. Bögli Bergwiesenstrasse 23 CH-8484 Weisslingen Telefon: [41] 052 / 384 16 96 Fax: [41] 052 / 384 25 20 E-Mail: kurt.boegli@kbconsult.ch Wie werden die Barcode Prüfziffern berechnet? Nachfolgend

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Was ist Wirtschaftsinformatik?

Was ist Wirtschaftsinformatik? 1. Grundlagen, 1.1 Grundverständnis der Wirtschaftsinformatik Was ist Wirtschaftsinformatik? BWL Betriebswirtschaftliche Problemstellung: Wie kann IT im Unternehmen angewendet werden, z.b. im Bereich Beschaffung

Mehr

D A T E N... 1 Daten Micheuz Peter

D A T E N... 1 Daten Micheuz Peter D A T E N.....! Symbole, Alphabete, Codierung! Universalität binärcodierter Daten! Elementare Datentypen! Speicherung binärcodierter Daten! Befehle und Programme! Form und Bedeutung 1 Daten Micheuz Peter

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche Zahlensysteme Wie Computer Zahlen darstellen und mit ihnen rechnen 16.10.2004 Peter Ziesche ahlen Natürliche Zahlen 1, 2, 3,... Ganze Zahlen..., -3, -2, -1, 0, 1, 2, 3,... Rationale Zahlen -2, -1/2, -1/3,

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

Dualzahlen

Dualzahlen Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7

Mehr

Einführung in Informatik 1

Einführung in Informatik 1 Einführung in Informatik Prof. Dr.-Ing. Andreas Penningsfeld Zahlensysteme Allgemein: Zahl b := zn * bn +... + z * b + z ( ) * b (-) +... + z (-m) * b (-m) ; zi: Koeffizienten b: Basis Dezimalsystem Dualsystem

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

X = {x 1,x 2,...} sei ein Symbolalphabet eines Kodes. In diesem Kode sind card(x) = X Sachverhalte darstellbar

X = {x 1,x 2,...} sei ein Symbolalphabet eines Kodes. In diesem Kode sind card(x) = X Sachverhalte darstellbar 3. Kodierung Wir wollen Kodierung nicht als Verschlüsselung zum Zwecke der Geheimhaltung auffassen, sondern als Mittel zur Darstellung von Sachverhalten so, daß eine Rechner mit diesen Sachverhalten umgehen

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt

Mehr

Escape-Sequenzen. Dr. Norbert Spangler

Escape-Sequenzen. Dr. Norbert Spangler Escape-Sequenzen Einzelzeichen Bedeutung ASCII- ASCII-Code \a alert BEL 07 \b backspace BS 08 \t horizontal tab HT 09 \n line feed LF 0A \v vertical tab VT 0B \f form feed FF 0C \r carriage return CR 0D

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1 Lektion 1: Zahlensysteme und Binärdarstellung Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1: Zahlensysteme 1-1 Übersicht

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten?

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten? Herzlich Willkommen zur Informatik I Bits und Bytes Zahlen im Computer: Binärzahlen, Hexadezimalzahlen Text im Computer: ASCII-Code und Unicode Quelle: http://www.schulphysik.de/rgb.html Bit: eine binäre

Mehr

Informatikgrundlagen I Grundlagen der Informatik I

Informatikgrundlagen I Grundlagen der Informatik I Informatikgrundlagen I Grundlagen der Informatik I Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 Fachbereich Automatisierung

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf Seite 1 von 11

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf  Seite 1 von 11 Kapitel 11 Zeichenverarbeitung Seite 1 von 11 Zeichenverarbeitung - Jedem Zeichen ist ein Zahlencode zugeordnet. - Dadurch wird ermöglicht, zwischen verschiedenen Systemen Texte auszutauschen. - Es werden

Mehr

Darstellung von Zeichen und Zahlen

Darstellung von Zeichen und Zahlen und Zahlen [Technische Informatik Eine Einführung] Univ.-Prof. Dr. Paul Molitor Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg 1. November 2005 1

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Organisatorisches. Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Definition Datenstruktur. Nächste Woche keine Vorlesung!

Organisatorisches. Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Definition Datenstruktur. Nächste Woche keine Vorlesung! Organisatorisches Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Nächste Woche keine Vorlesung! Es

Mehr

Programmieren in C Einführung

Programmieren in C Einführung Programmieren in C Einführung Aufbau eines Programms Einfache Programme Datentypen und Vereinbarungen Das Entwicklungswerkzeug Seite Einfache Programme Kugeltank-Berechnung #include void main

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000. Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Einführung in die Programmierung Wintersemester 2008/09

Einführung in die Programmierung Wintersemester 2008/09 Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund : Darstellung von Information Inhalt Einfache Datentypen

Mehr

Zahlensysteme Dezimal-System

Zahlensysteme Dezimal-System Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

1.10 Das Zweiersystem (Dualsystem)

1.10 Das Zweiersystem (Dualsystem) 8 1 Die natürlichen Zahlen 1.10 Das Zweiersystem (Dualsystem) Im Dinoland Alle reden von den Dinos. Doch kaum jemand weiß, dass die Dinos auch rechnen konnten. Sie benutzten jedoch nicht wie wir Menschen

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr