bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

Größe: px
Ab Seite anzeigen:

Download "bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke"

Transkript

1 Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem Abschnitt: systematische Behandlung der technischen Realisierung der Grundrechenarten Addition, Subtraktion, Multiplikation und Division für Binärzahlen Bedeutung: Letztlich werden alle Operationen eines Computers auf das binäre Rechnen zurückgeführt (daher "Rechner"!). Kern jedes Prozessors: Rechenwerk bzw. arithmetisch-logische Einheit (engl.: arithmetic-logical unit, ALU) zunächst: Diskussion verschiedener Varianten der Zahlendarstellung im Rechner und der zugehörigen Additions- und Subtraktionsmethoden Lektüre: Oberschelp/Vossen Kapitel 5 22 Prof. Dr. Rainer Manthey Informatik II 2

2 Darstellung positiver ganzer Zahlen bisher: nur positive ganze (d.h. natürliche) Zahlen in Binärcodierung Darstellung im Rechner durch Register aus Speicherzellen mit je zwei Zuständen: Worte der Länge n über B = {, } 2 n bei direkter Interpretation des Registerinhalts als Binärzahl: darstellbarer Zahlbereich [.. 2 n -] üblich: Zusammenfassung von 8 Bits zu einem Byte Wortlängen stets Vielfache von 2 3 : 8, 6, 24, 32, Bit 22 Prof. Dr. Rainer Manthey Informatik II 3 Vorzeichen/Betrag-Darstellung Konvention zur Darstellung negativer ganzer Zahlen: ein Vorzeichenbit (ganz links aussen), 2 n- Betragsbits Kodierung des Vorzeichens ebenfalls binär: einfachste Form der Darstellung ganzer Zahlen: Vorzeichen kombiniert mit "normal" kodierter Binärzahl, also z.b. bei 4 Bit-Wort: 5 5 Vorzeichen/Betrag- Darstellung diverse Nachteile: zwei verschiedene Darstellungen für Null: gravierender: eigene Schaltung zum Subtrahieren nötig besondere "Steuerlogik" zum Unterscheiden von Addition und Subtraktion bei unterschiedlichen Vorzeichen 22 Prof. Dr. Rainer Manthey Informatik II 4

3 Komplementdarstellung Verzicht auf eigenes Subtrahierwerk möglich, wenn Betragsanteil für negative Zahlen durch Komplementbildung dargestellt wird: 5 5 mit komplementiert dargestellten Zahlen: Subtraktion durch stellenweise Addition mit Übertrag 5 6 = (5) ( 6) 5 6 6: Übertrag: Summe: : 22 Prof. Dr. Rainer Manthey Informatik II 5 Übertragsrückführung bei -Komplement Bezeichnung für diese Form der Komplementdarstellung: -Komplement Nachteil: Bei positivem Resultat einer Subtraktion entsteht ein Übertrag in die n-te Stelle, der noch nachträglich aufaddiert werden muss, um das korrekte Resultat zu erhalten: 5 3 = (5) ( 3) Übertrag: 5 3 3: Summe: 2 22 Prof. Dr. Rainer Manthey Informatik II 6

4 2-Komplement Vermeidung einer potentiellen Übertragsrückführung nach jedem Additions- bzw. Subtraktionsschritt: Addieren von nur einmal pro Zahl bereits beim Komplementieren Bezeichnung der so entstehenden Darstellungsform: 2-Komplement Bsp.: 3: bitweise Komplementieren Aufaddieren von 3: 22 Prof. Dr. Rainer Manthey Informatik II 7 Subtraktion bei 2-Komplement bei Verwendung des 2-Komplements: Überträge können wegfallen! 5 3 = (5) ( 3) Übertrag: 5 3 Summe: 2 kann ignoriert werden 22 Prof. Dr. Rainer Manthey Informatik II 8

5 Subtraktion bei 2-Komplement (2) 6 im 2-Komplement: 6: 5 6 = (5) ( 6) 5 6 Übertrag: Summe: kann wieder ignoriert werden : 22 Prof. Dr. Rainer Manthey Informatik II 9 Alternative Darstellungsformen für ganze Zahlen Komplemente eindeutige Null identisch 22 Prof. Dr. Rainer Manthey Informatik II

6 Zahlenbereich bei 2-Komplementdarstellung wegen diverser Vorteile: 2-Komplement wird vorwiegend verwendet! einzige "Irregularität" bei 2-Komplement-Darstellung: mehr negative als positive Zahlen darstellbar (wg. eindeutiger Null!) mit Wortlänge n darstellbarer Zahlbereich bei 2-Komplement: [ - 2 n-,...., 2 n- - ] also z.b. bei n=4: [ -8,...., 7 ].... -(2 n- - ) - 2 n- 2 n Prof. Dr. Rainer Manthey Informatik II 2-Komplement bei Wortlänge Prof. Dr. Rainer Manthey Informatik II 2

7 Überlaufproblematik bei Addition/Subtraktion Wird bei Addition die Summe zweier darstellbarer Zahlen grösser als die Obergrenze des Zahlbereichs, entsteht ein mit der gegebenen Wortlänge nicht mehr darstellbares Resultat: Überlauf (engl.: "overflow") Bsp.: n = 4, d.h. darstellbarer Zahlenbereich [ 8, 7] Übertrag: = 3 = 6 = 7 Überlauferkennung durch "Abfangen" solcher Überträge und Ablegen in eigenem Überlaufregister, das durch Anwendungsprogramme abgefragt werden kann. 9: falsches Resultat, wenn Übertrag in Vorzeichenstelle auftritt 22 Prof. Dr. Rainer Manthey Informatik II 3 BCD-Darstellung 2-Komplementdarstellung ist die am häufigsten verwendete Form der Repräsentation ganzer Zahlen im Rechner. ebenfalls gebräuchlich, wenn auch hinsichtlich der Rechnerarithmetik nicht so vorteilhaft: BCD-Darstellung (engl.: "binary coded decimal") Exzess-Darstellung BCD-Darstellung: Jede Dezimalziffer wird durch 4-Bit-Wort kodiert, z.b.: offenbar: Nur von 6 Bitfolgen werden zur Zifferndarstellung genutzt. Vorzeichendarstellung i.a. durch zwei weitere 4-Bit-Worte: 22 Prof. Dr. Rainer Manthey Informatik II 4

8 Exzess-Darstellung insbesondere bei Gleitkommazahlen noch gebräuchlich: Exzess-Darstellung Prinzip: Zu jeder Zahl wird (bei Wortlänge n) der feste Betrag 2 n- (genannt Exzess, dt.: Überschuss) addiert. Negative Zahlen werden dadurch in den positiven Bereich verschoben. Vorzeichen werden wie üblich mit einem Bit kodiert. z.b.: n = 8 Exzess = 2 7 = 28 38: 8: Nach Durchführung arithmetischer Operationen wird die Verschiebung wieder analog rückgängig gemacht. Addition/Subtraktion sind einfach, Multiplikation/Division relativ aufwändig durchzuführen. 22 Prof. Dr. Rainer Manthey Informatik II 5 Multiplikation ganzer Zahlen grundsätzliches Vorgehen bei der Multiplikation ganzer Zahlen in Binärdarstellung wie bei dezimaler Multiplikation : Rückführung auf ziffernweise Multiplikation und Additionsschritte mit Stellenverschiebung in der Schulmathematik gebräuchlich Notationsform: Multiplikand Multiplikator Teilprodukte Links-Rechts-Abarbeitung des Multiplikators und Rechtsverschiebung der Teilprodukte Produkt = Summe der Teilprodukte 22 Prof. Dr. Rainer Manthey Informatik II 6

9 Binäre Multiplikation alternative, äquivalente Notation: Rechts-Links-Abarbeitung des Multiplikators und Linksverschiebung der Teilprodukte analoge Übertragung auf Binärzahlen: ziffernweise Multiplikation: AND Prof. Dr. Rainer Manthey Informatik II 7 Multiplikation formal diese Folie: W. Oberschelp, G. Vossen 22 Prof. Dr. Rainer Manthey Informatik II 8

10 Schaltung zur Multiplikation Akku Ergebnisregister (doppelt so lang wie Operandenregister, oder Beschränkung der Operanden auf halbe Wortlänge eines Registers) Addierer Rechtsshift Y Multiplikator X Multiplikand Linksshift zur sukzessiven Addition der Teilergebnisse diese Folie: W. Oberschelp, G. Vossen 22 Prof. Dr. Rainer Manthey Informatik II 9 Optimierungsmöglichkeit beim Multiplizieren mit Shift Direkte Umsetzung des "Multiplizierens nach der Schulmethode" wäre im binären Fall offenbar ineffizient, da die beiden Fälle der ziffernweisen Multiplikation Spezialfälle sind, die gesondert behandelt werden können:. Multiplikation des Multiplikanden mit : Aufaddieren des Multiplikanden auf das Ergebnis (Multiplikation mit = Identität) 2. Multiplikation mit : Verschieben des Ergebnisses ohne Additionsschritt (Multiplikation mit : keine -Bits im Teilprodukt) dazu erforderlich: zusätzliche "Schaltlogik" zum Testen des jeweils führenden Bits des Multiplikators weiterer Schritt zur Systematisierung des Vorgehens: Statt das Ergebnis zu verschieben, verschiebe den Multiplikanden bitweise nach links! 22 Prof. Dr. Rainer Manthey Informatik II 2

11 Multiplikationsschaltung am Beispiel Ergebnis Addierer Multiplikator Multiplikand 22 Prof. Dr. Rainer Manthey Informatik II 2 Multiplikationsschaltung am Beispiel (2). Schritt: Addition des Multiplikanden zum Ergebnis Test durch "Steuerlogik": Addition erforderlich 22 Prof. Dr. Rainer Manthey Informatik II 22

12 Multiplikationsschaltung am Beispiel (3) 2. Schritt: Verschieben der Operandenbits 22 Prof. Dr. Rainer Manthey Informatik II 23 Multiplikationsschaltung am Beispiel (4) 3. Schritt: erneute Addition des verschobenen Multiplikanden Test durch "Steuerlogik": Addition erforderlich 22 Prof. Dr. Rainer Manthey Informatik II 24

13 Multiplikationsschaltung am Beispiel (5) 4. Schritt: Schieben beider Operanden 22 Prof. Dr. Rainer Manthey Informatik II 25 Multiplikationsschaltung am Beispiel (6) 5. Schritt: keine Addition wegen -Bit im Multiplikator! Test durch "Steuerlogik": Addition nicht erforderlich 22 Prof. Dr. Rainer Manthey Informatik II 26

14 Multiplikationsschaltung am Beispiel (7) 6. Schritt: Schieben 22 Prof. Dr. Rainer Manthey Informatik II 27 Multiplikationsschaltung am Beispiel (8) 7. Schritt: erneutes Aufaddieren des verschobenen Multiplikanden Test durch "Steuerlogik": Addition erforderlich 22 Prof. Dr. Rainer Manthey Informatik II 28

15 Multiplikationsschaltung am Beispiel (9) Schlusskonstellation: Ergebnis im Akkumulator, Multiplikandenregister leer 22 Prof. Dr. Rainer Manthey Informatik II 29 Multiplikation-Division bei Multiplikation: separate Vorzeichenbehandlung durch entsprechendes Schaltnetz vorgestelltes Multiplikationsprinzip: serielle Multipikation (geringer Schaltungsaufwand, aber viele Takte erforderlich) Effizienzsteigerung durch Verwendung schneller Addierer (siehe Oberschelp/Vossen S. 48/49 für Carry-Save-Addierer) Parallele Multiplikation: deutlich schneller, aber viel höherer Aufwand bei der Realisierung (z.b. bei 4 Bit: je 4 Voll- und Halbaddierer, 6 AND-Gatter) Division: ebenfalls analog zur "Schulmethode" durch stellenweises Vergleichen von Dividend und Divisor und Subtraktionsschritte (separates Register für Divisionsrest erforderlich) 22 Prof. Dr. Rainer Manthey Informatik II 3

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

1 : Die Rechnungsarten

1 : Die Rechnungsarten 1 von 22 23.10.2006 14:08 0 : Inhalt von Kapitel DAT 1 : Die Rechnungsarten 2 : Die Worte 3 : Hilfsprozessoren 4 : Binäre Zahlendarstellung 5 : Interpretationen 6 : Division mit Rest 7 : Horner Schema

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch "inkonsistentem" Verhalten!

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch inkonsistentem Verhalten! Schaltwerke Schaltwerke 22 Prof. Dr. Rainer Manthey Informatik II Schaltwerke: Übersicht generelles Problem grösserer Schaltnetze: Länge der Laufzeiten wird relevant Notwendigkeit der Zwischenspeicherung

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

D A T E N... 1 Daten Micheuz Peter

D A T E N... 1 Daten Micheuz Peter D A T E N.....! Symbole, Alphabete, Codierung! Universalität binärcodierter Daten! Elementare Datentypen! Speicherung binärcodierter Daten! Befehle und Programme! Form und Bedeutung 1 Daten Micheuz Peter

Mehr

Alexander Halles. Zahlensysteme

Alexander Halles. Zahlensysteme Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71) Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Teil I Informationsdarstellung in Rechenanlagen

Teil I Informationsdarstellung in Rechenanlagen Teil I Informationsdarstellung in Rechenanlagen 1.2 Darstellung von Zahlen Themen Notation von Zahlen Zahlensysteme, Dezimalsystem und Binärsystem Konvertierung Rechnen mit Binärzahlen positive ganze Zahlen

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Fehlerkorrektur Bild 3.190 Demoprozessor

Fehlerkorrektur Bild 3.190 Demoprozessor 7 Prozessor 3 0 Flags C V N Z A IP 0 SP AB 8 MS W/R DB 4 00h..6Fh Daten Speicher 70h..70h PA 71h..71h PB 72h..73h PC 74h..76h PD 80h..FFh Programm Speicher Fehlerkorrektur Bild 3.190 Demoprozessor Die

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Leseprobe. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch): 978-3-446-42231-5. ISBN (E-Book): 978-3-446-42964-2

Leseprobe. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch): 978-3-446-42231-5. ISBN (E-Book): 978-3-446-42964-2 Leseprobe Matthias Sturm Mikrocontrollertechnik Am Beispiel der MSP430-Familie ISBN (Buch): 978-3-446-42231-5 ISBN (E-Book): 978-3-446-42964-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42231-5

Mehr

Binäre Multiplikations- und Divisionswerke

Binäre Multiplikations- und Divisionswerke Binäre Multiplikations- und Divisionswerke Herleitung, Entwurf und Optimierung 1. Juli 2008 Joscha Drechsler joscha_d@rbg.informatik.tu-darmstadt.de FB Informatik FG Rechnerarchitektur 1 Inhaltsverzeichnis

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, stiller@ifi.uzh.ch Fabio Hecht, Telefon:

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Eine Einführung in Aufbau, Funktionsweise, Programmierung und Nutzen von Mikroprozessoren Teil II: Wat iss ene Bit, Byte un Word?

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

Füllstandsregelung. Technische Informatik - Digitaltechnik II

Füllstandsregelung. Technische Informatik - Digitaltechnik II Füllstandsregelung Kursleiter : W. Zimmer 1/18 Zwei Feuchtigkeitsfühler (trocken F=0; feucht F=1) sollen zusammen mit einer geeigneten Elektronik dafür sorgen, dass das Wasser im Vorratsbehälter niemals

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge.

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge. Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 24. Oktober 2008 1 / 1 2 / 1 Ein Alphabet Σ ist eine endliche Menge. hat mehrere Bedeutungen: (das Erstellen von Programmcode) die Darstellung

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Die Umwandlung einer Dualzahl in eine Dezimalzahl ist ein sehr einfacher Vorgang.

Die Umwandlung einer Dualzahl in eine Dezimalzahl ist ein sehr einfacher Vorgang. 2. Zahlensysteme und Codes 2.1 Dualzahlen Bereits in den Anfängen der Datenverarbeitung hat es sich gezeigt, daß das im Alltagsleben verwendete Zahlensystem auf der Basis der Zahl 10 (Dezimalsystem) für

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

Halblogarithmische Zahlendarstellung (Z3-Modell) Timm Grams, Fulda, 19. März 2012 (aktualisiert: 04.07.13)

Halblogarithmische Zahlendarstellung (Z3-Modell) Timm Grams, Fulda, 19. März 2012 (aktualisiert: 04.07.13) Konrad-Zuse-Museum: Die frühen Computer (Z1-Z4) Einführung in die moderne Rechentechnik 1 Rechnen mit Dualzahlen 2 Das Z1-Addierermodell 3 Rechnerarchitektur 4 Halblogarithmische Zahlendarstellung Halblogarithmische

Mehr

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen 2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr