Ferienaufgaben Mathematik 8. Klasse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ferienaufgaben Mathematik 8. Klasse"

Transkript

1 Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet. b Jeder natürlichen Zahl werden alle Zahlen zugeordnet, die betragsmäßig den gleichen Wert haben. c d Die abgebildeten Gefäße werden mit gleichmäßig zufließendem Wasser gefüllt. Die Graphen veranschaulichen den Zusammenhang zwischen Zeit und Füllhöhe des Gefäßes. Ordne die Gefäße den passenden Graphen zu! Begründe Deine Wahl! I II III 8.A. Lineare Funktionen Bestimme die Schnittpunkte der Funktion y = x 6 mit den Koordinatenachsen! Zeichne den Graphen von f(x = ½ x -,5 und g(x = -,5x + in ein Koordinatensystem. Bestimme den Schnittpunkt der beiden Graphen und überprüfe Dein Ergebnis durch Rechnung! Gib die Zuordnungsvorschrift der linearen Funktion an, die parallel zur x-achse verläuft und den Punkt P( enthält. 4 Ermittle die Funktionsgleichung der linearen Funktion, die durch die Punkte A(- 4 und B( -8 festgelegt ist. 8.A. Direkte und indirekte Proportionalität Bestimme die fehlenden Werte der vorliegenden direkten Proportionalität: x y Bestimme die fehlenden Werte der vorliegenden indirekten Proportionalität: x y Entscheide jeweils, ob die Aussage stimmt. Gib bei einer falschen Aussage ein Gegenbeispiel an! Erhöht sich bei einer direkten Proportionalität die eine Größe um 0, so wird auch die andere um 0 größer. b Verdreifacht sich bei einer direkten Proportionalität die eine Größe, so erhöht sich die andere um das Doppelte. c Halbiert sich bei einer indirekten Proportionalität die eine Größe, so erhöht sich die andere um 00% ihres Werts. d Vermindert sich bei einer indirekten Proportionalität die eine Größe um 0, so erhöht sich die andere um 0.

2 8.A.4 Gebrochen-rationale Funktionen und Bruchgleichungen Gegeben sei die Funktion f ( x = + x + 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach. Bestimme ihre Definitionsmenge und gib die Gleichungen ihrer waagrechten und senkrechten Asymptoten an! Skizziere anschließend den Graphen von f in ein sinnvoll gewähltes Koordinatensystem! ± Gegeben ist der Funktionsgraph einer Funktion der Art g ( x = + b (vgl. Abb. unten. x c Bestimme aus der Zeichnung ihre Definitionsmenge und gib die Gleichungen ihrer waagrechten und senkrechten Asymptote an! Ermittle dann die Parameter b, c und das richtige Vorzeichen im Zähler des Bruchs! Gegeben ist der Graph der Funktion y = + (vgl. Abb. unten. x + Leider sind in der Zeichnung die Asymptoten und die Koordinatenachsen verschwunden. Zeichne sie an der richtigen Stelle ein und beschrifte sie passend! (Einheit: Kästchen y O - x - Abb. : zu Aufgabe Abb. : zu Aufgabe 4 Ermittle jeweils die Lösungsmenge der Bruchgleichung! 5x + + = + x x + ( x( x 8x 5 b = ( x ( x + x x + 5 c 4x + x = x + ( x + 8.B Lineare Gleichungssysteme Löse graphisch! (I x + y = 5 (II x y = Ermittle jeweils die Lösungsmenge! (I x + y = - c (I y x = 5 (II x 8y = 0 (II 6x + 5 = y b (I x = y 4 d (I 6y + 7x = 0 (II x = 6 y (II 00 5x = 0y Zwei Zahlen unterscheiden sich um. Das Quadrat der größeren Zahl ist um 54 kleiner als das Produkt der Zahlen, die man erhält, wenn man die größere Zahl um verkleinert und die kleinere Zahl um 45 vergrößert. Wie heißen die beiden Zahlen? Stelle ein Gleichungssystem auf! 4 Die Zehnerziffer einer zweistelligen Zahl ist doppelt so groß wie die Einerziffer. Vertauscht man die Ziffern, so ist die neue Zahl um 6 größer als die Hälfte der ursprünglichen Zahl. Wie heißt diese? Stelle ein Gleichungssystem auf! 5 Eine Frau verteilt Bonbons unter Kinder. Gibt sie jedem Kind Bonbons, so bleiben 7 Bonbons übrig. Würde sie aber jedem Kind 5 Bonbons geben, dann fehlten ihr 44 Stück. Wie viele Bonbons verteilt die Frau an wie viele Kinder? Stelle ein Gleichungssystem auf!

3 8.C Strahlensatz Berechne a, b und c! (Skizzen nicht maßstabsgetreu! 4 8 a b c 0 Berechne jeweils x und y! Ein Detektiv steht in der Mitte einer Hauseinfahrt verborgen (s. Skizze. Wie viele Meter der gegenüber liegenden Straßenseite kann er überblicken? m m 4 m 8.D Ähnlichkeit Begründe wahre Aussagen bzw. widerlege falsche Aussagen durch ein Gegenbeispiel. Welche Figuren sind ähnlich? zwei rechtwinklige Dreiecke b zwei gleichschenklige Dreiecke c zwei gleichseitige Dreiecke d zwei Rauten e zwei Trapeze f zwei gleichschenklige Trapeze g zwei Kreise h zwei kongruente Dreiecke i zwei Quadrate k zwei Rechtecke l zwei Sechsecke m zwei regelmäßige Sechsecke Antje hat ein cm breites und 9 cm hohes Foto auf eine Breite von 0,5 m vergrößern lassen. Das vergrößerte Foto hängt sie in einem Rahmen, dessen Leisten 6 cm breit sind, auf. Um welchen Faktor wurde das Foto vergrößert? b Welche Außenmaße hat der Rahmen? c Sind das (Umfangs-Rechteck des Rahmens und das des Bildes ähnlich? d Unter welcher Voraussetzung sind das (Umfangs-Rechteck des Rahmens und das des Bildes ähnlich? Die Strecke BC ist parallel zu DE. Zeige, dass die Dreiecke ABC und ADE ähnlich sind. 4 Das Dreieck ABC ist rechtwinklig. Die Höhe h c teilt es in die zwei Teildreiecke AFC und FBC. zu Aufgabe zu Aufgabe 4 Zeige, dass die Dreiecke ABC, AFC und FBC ähnlich sind.

4 8.E Zufall und Wahrscheinlichkeit Ein Glücksrad ist in sieben gleich große Sektoren aufgeteilt. Diese sind mit den Ziffern bis 7 beschriftet. Es wird einmal gedreht. Gib den Ergebnisraum des Zufallsexperiments an. b Mit welcher Wahrscheinlichkeit zeigt das Rad nach dem Drehen A: die Ziffer 5? B: eine Ziffer größer als 5? C: maximal die Ziffer 5? D: mindestens die Ziffer 5? E: höchstens die Ziffer 5? F: nicht die Ziffer 5? Im Folgenden ist der Sektor mit der Ziffer 5 doppelt so groß wie die der anderen Ziffern. c Warum handelt es sich jetzt nicht mehr um ein Laplace-Experiment? d Mit welchen Wahrscheinlichkeiten treten die einzelnen Ergebnisse jetzt auf? e Wie groß sind die Wahrscheinlichkeiten der Ereignisse A-F aus Teilaufgabe b nun? Die Klasse 8a wird von 8 Schülern und Schülerinnen besucht. Als zweite Fremdsprache haben 4 Mädchen Französisch gewählt. Für Latein wird von gleich vielen Schülerinnen und Schülern besucht. Am Schulfest wird für jede Klasse ein DBG-T-Shirt verlost. Mit welcher Wahrscheinlichkeit wird es an einen Jungen, b ein Mädchen das Latein gewählt hat, c einen Jungen der nicht Latein gewählt hat, d an einen jungen oder ein Mädchen das Französisch gewählt hat, verlost? Fertige zu Deiner Lösung eine Vier-Felder-Tafel an. Max und Moritz werfen Zahlen : Zuerst werfen sie eine Laplace-Münze. Diese entscheidet über das Vorzeichen der Zahl. Anschließend werfen sie einen Würfel zweimal. Die geworfenen Augenzahlen geben die Zehnerziffer bzw. die Einerziffer an. Wie viele Ergebnisse enthält der Ergebnisraum? Mit welcher Wahrscheinlichkeit b ist die Zahl durch teilbar? c wird eine gerade positive Zahl geworfen? d ist die Zahl durch teilbar? e ist die Zahl kleiner als? f ist positiv und hat die Zahl eine gerade Quersumme? g hat der Betrag der Zahl eine ungerade Quersumme? 4 Alex, Bernd und Claus führen ihre Freundinnen ins Kino aus. Am Eingang ist eine Drehtüre durch die nur eine Person gehen kann. Wie viele Möglichkeiten gibt es, wenn sie nacheinander b die Paare nacheinander c zuerst die Damen d die Herren direkt nacheinander e zuerst Alex und als letztes Bernd f Claus hinter Bernd und Bernd hinter Alex durch die Drehtüre gehen? 8.F Potenzen mit ganzzahligen Exponenten Wandle die Größen in die in eckigen Klammern angegebene Einheit um. Gib das Ergebnis auch in Gleitkommadarstellung an. km [m] b 500 m [cm] c 0 hl [l] d,6 ha [m²] e 0 a [m²] f 47 cm [m] g 5,6 dm [km] h 640 cm³ [l] i,6 t [g] k 0 ml [hl] l 80 m² [a] m 0,7 mg [g] Vereinfache: 5 0 a a a a b x x x x c 8 4 d b ( b 4b e 8ab ( a b ab + a b Vereinfache: ( b ( c ( g ( a h ( a i ( d ( e ( k ( x x x 4 6 a f ( a ( ( 0, 0, l ( 0,0 m (

5 4 Löse die Klammern auf: ( 6a b ( 4 g ( a + h ( Vereinfache: e 4 x x x c ( a d ( ax i ( a x b ( ( 4 5 0, 0, Dietrich-Bonhoeffer-Gymnasium Oberasbach e ( a 4 f ( + k ( + l ( + b 4 x x x c f 69: ( i 4a : ( 0,5a k g a b x x d 7 6a a x 5 a b + b a h ( ( 7a : 9a x x l m Fasse zusammen soweit möglich und schreibe das Ergebnis mit positiven Exponenten x y 4 z b 4 a b c 5 c b a 8.G Berechnungen am Kreis c 4 ( x y 4 ( y ( x d ( a 4b a e 6 a b 5 a b (c Die abgebildeten Quadrate haben alle die Kantenlänge a. Berechne die schraffierte Fläche in Abhängigkeit von a. Was fällt Dir bei den Ergebnissen auf? Kannst Du dies begründen? Berechne Fläche und Umfang des eingefärbten Flächenstücks Berechne den Inhalt und den Umfang der schraffierten Fläche: 0 4 Heidi bindet ihren Geißbock Gustav im Sommer an einen Pfosten auf der Alm. Am ersten Tag macht sie die Leine m lang. Gustav grast das ganze Gras in seiner Reichweite ab. Es ist gerade eine Tagesration für ihn. An jedem weiteren Tag verlängert sie die Leine um einen Meter. Wird Gustav jeden Tag satt? 5 Luigi verkauft Riesenpizzas mit einem Durchmesser von mindestens 5 cm. Bei den DBGlern sind sie der Renner für die Mittagspause. Frank stellt fest, dass seine Pizza einen Umfang von einem Meter hat. Um wie viel Prozent ist die Pizza größer oder kleiner als angegeben?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Grundwissen Mathematik 8. Klasse

Grundwissen Mathematik 8. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 8. Klasse Wissen Aufgaen/Beispiele Lösungen Funktionale Zusammenhänge Eindeutige Zuordnungen nennt man in der Mathematik Funktionen. Bei einer Funktion

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Fit für den Mathematik-Lehrgang? Teste dich selbst!

Fit für den Mathematik-Lehrgang? Teste dich selbst! Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte. JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Aufgaben zum Basiswissen 10. Klasse

Aufgaben zum Basiswissen 10. Klasse Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

@ GN GRUNDWISSEN MATHEMATIK für die Jahrgangsstufe 8. . Ferner: a 0 = 1. =1 : 1 4 = = 4 1 = =

@ GN GRUNDWISSEN MATHEMATIK für die Jahrgangsstufe 8. . Ferner: a 0 = 1. =1 : 1 4 = = 4 1 = = 1 Potenzen 1. Definition: (vgl. Grundwissen Klasse 5 Nr. 1.5) Für a Q {0} und n N gilt: a n 1 a n 1 a a a n Faktoren 1 a 1 a n Faktoren. Ferner: a 0 1. (1) 4 1 1 4 (3) 3 4 (2) 1 1 4 1 3 3 3 3 1 81 1 1

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

Grundwissen Jahrgangsstufe 8

Grundwissen Jahrgangsstufe 8 Grundwissen Jahrgangsstufe 8 GM 8. Direkt proportionale und indirekt proportionale Größen DIREKT PROPORTIONALE GRÖSSEN Definition Zwei Größen und y heißen zueinander direkt proportional, wenn sie quotientengleich

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie E Alle Kopfübungen der Serie E beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g Themenbereich : Proportionalitätszuordnungen Benzinmenge in Abhängigkeit von dem Preis: Proportionale Zuordnungen Wenn eine Größe verdoppelt wird, führt dies zur Verdoppelung der Anderen Die Zuordnungsvorschrift

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23 Inhalt Algebra-Wiederholung...................................... 5. Termumformungen: Rechengesetze... 6.2 Termumformungen: Ausmultiplizieren, binomische Formeln............ 8 Abschlusstest............................................

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort: Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 8 Direkte Proportionalität Zwei Größen, Q heißen zueinander direkt proportional (~), wenn das -Fache von dem -Fachen von

Mehr

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 1998 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - 0 GM1. INFINITESIMALRECHNUNG x

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Taschenrechner TI 30, Formelsammlung Fundamentum

Taschenrechner TI 30, Formelsammlung Fundamentum Ergänzungsprüfung Pädagogik - Lösungen Mathematik Bemerkungen Alle Berechnungen müssen in nachvollziehbaren Einzelschritten aufgeführt sein. Ungültiges ist durchzustreichen. Lösen Sie jede Aufgabe direkt

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Formen Sie (3 2x)²

Mehr

Anzahl der Fahrschüler Bild 1

Anzahl der Fahrschüler Bild 1 Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft.

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Blatt 1 Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Berechne: 1 n + x 1 x+ 1 C Formuliere den Höhensatz h A B Frau Huber zahlt am 21.01.2005

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

Tag der Mathematik 2010

Tag der Mathematik 2010 Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Grundwissen 8 - Lösungen

Grundwissen 8 - Lösungen Grundwissen 8 - Lösungen Bereich 1: Proportionalität 1) Die in den Tabellen dargestellten Größen sind in beiden Fällen proportional. Entscheide, welche Art von Proportionalität jeweils vorliegt und vervollständige

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Mathematik Seite 1 Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2005 Mathematik Seite 2 Hinweise für Schülerinnen

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Ferienaufgaben Mathematik 6. Klasse

Ferienaufgaben Mathematik 6. Klasse Ferienaufgaben Mathematik 6. Klasse 6.A Bruchzahlen 6.A. Brüche ) Welcher Bruchteil a) aller Figuren sind Kreise, b) aller Figuren sind Vierecke, c) aller Figuren sind schwarz, d) aller Figuren sind weiß,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr