Algorithmen II Vorlesung am

Größe: px
Ab Seite anzeigen:

Download "Algorithmen II Vorlesung am"

Transkript

1 Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum II Wintersemester 0/0 in der Helmholtz-Gemeinschaft

2 Schnitte minimalen Gewichts: MinCut Algorithmen II Wintersemester 0/0

3 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt Algorithmen II Wintersemester 0/0

4 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt. S V \ S c(s, V \ S) = Algorithmen II Wintersemester 0/0

5 Schnittberechnung mittels Flussalgorithmus Bemerkung: Dualität zu maximalem Fluss (Bemerkung.) Zu gegebenen s, t V kann ein minimaler s-t-schnitt mit einem Flussalgorithmus (z.b. Ford & Fulkerson, Goldberg & Tarjan) berechnet werden. Das Minimum über alle Paare s, t V liefert einen global minimalen Schnitt. ( ) V Θ( V ) Flussberechnungen. Da im minimalen Schnitt jeder Knoten von irgendeinem anderen getrennt wird, kann man stattdessen s V auch festhalten und t V \ {s} wähle. V Flussberechnungen. Heute: Effizientere Berechnung eines minimalen Schnittes ohne Flussalgorithmus. Algorithmen II Wintersemester 0/0

6 Stark verbundene Knoten Definition: Am stärksten verbundene Knoten (Definition.) Zu S V und v V \ S sei c(s, v) = {u, v} E u S c({u, v}). Den Knoten v V \ S, für den c(s, v) maximal wird, nennen wir auch den am stärksten mit S verbundenen Knoten. S c(s, ) = + = 5 c(s, ) = c(s, 8) = Knoten ist am stärksten mit S verbunden. Algorithmen II Wintersemester 0/0

7 Verschmelzen zweier Knoten Definition: Verschmelzen zweier Knoten (Definition.) Seien s, t V. Dann können s und t wie folgt verschmolzen werden. s und t werden durch einen neuen Knoten x s,t ersetzt. Alle Kanten die vorher zu s oder t inzident waren sind jetzt zu x s,t inzident (abgesehen von {s, t}, falls s und t adjazent waren). Mehrfachkanten werden aufgelöst indem Kantengewichte addiert werden , 7 8 Algorithmen II Wintersemester 0/0 Verschmelzen der Knoten und 7. 5, 7 5 8

8 Algorithmus von Stoer & Wagner Überblick Der Algorithmus von Stoer & Wagner besteht V Phasen. In jeder Phase i wird ein Schnitt in einem Graphen G i = (V i, E i ) berechnet, der Schnitt der Phase i. G i entsteht aus G i durch Verschmelzen geeigneter Knoten, wobei G = G. Ergebnis des Algorithmus ist der minimale Schnitt aller Schnitte der einzelnen Phasen i (für i V ). Ablauf einer Phase i Starte mit S i = {a}, wobei a ein beliebiger Startknoten in G i ist. Füge iterativ den am stärksten zu S i verbundenen Knoten zu S i hinzu. Seien s und t die als vorletztes bzw. als letztes zu S i hinzugefügten Knoten. Der Schnitt der Phase i ist (V i \ {t}, {t}). G i+ entsteht aus G i durch Verschmelzen von s und t. Algorithmen II Wintersemester 0/0

9 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} (beliebig gewählter Startknoten) Algorithmen II Wintersemester 0/0

10 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) Algorithmen II Wintersemester 0/0

11 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) Algorithmen II Wintersemester 0/0

12 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} Algorithmen II Wintersemester 0/0

13 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} Algorithmen II Wintersemester 0/0

14 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } Algorithmen II Wintersemester 0/0

15 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} Algorithmen II Wintersemester 0/0

16 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} S = {,,, 7, 8,, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 s t Algorithmen II Wintersemester 0/0

17 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, } S = {,,, 7, 8,, 5} S = {,,, 7, 8,, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 Verschmelzen von s und t ergibt G s t, Algorithmen II Wintersemester 0/0

18 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

19 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

20 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

21 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

22 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

23 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } S = {, {, 5},,,, 7} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

24 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, } S = {, {, 5},, } S = {, {, 5},,, } S = {, {, 5},,,, 7} S = {, {, 5},,,, 7, 8} (beliebig gewählter Startknoten) s t, Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Verschmelzen von s und t ergibt G, 5 7, 8 Algorithmen II Wintersemester 0/0

25 Algorithmus von Stoer & Wagner Beispiel Phase Schnitt der Phase: {V \ {}, {}} Gewicht 5 Phase Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Phase Schnitt der Phase: {V \ {{7, 8}}, {{7, 8}}} Gewicht 7 Phase Schnitt der Phase: {V \ {{, 7, 8}}, {{, 7, 8}}} Gewicht 7 Phase 5 Schnitt der Phase: {V 5 \ {{,, 7, 8}}, {{,, 7, 8}}} Gewicht Phase Schnitt der Phase: {V \ {{, 5}}, {{, 5}}} Gewicht 7 Phase 7 Schnitt der Phase: {V 7 \ {}, {}} Gewicht 9 siehe Skript Der Schnitt aus Phase 5 ist minimal unter den Schnitten der einzelnen Phasen. Der Algorithmus von Stoer & Wagner gibt diesen Schnitt aus (Beweis, dass der so bestimmte Schnitt immer ein minimaler Schnitt ist folgt später.) Algorithmen II Wintersemester 0/0

26 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Algorithmen II Wintersemester 0/0

27 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

28 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O( V log V + E ) O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t O( E ) Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

29 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) O( V log V + E ) MIN-SCHNITT(G, c, a) G G for i = to V do MINSCHNITTPHASE(G i, c, a) if SCHNITT-DER-PHASE ist kleiner als MIN-SCHNITT then speichere SCHNITT-DER-PHASE als MIN-SCHNITT Gib MIN-SCHNITT aus. O( V log V + V E ) O() O( V log V + V E ) O( V log V + E ) O() O() Lemma: Laufzeit des Algorithmus von Stoer & Wagner Der Algorithmus von Stoer & Wagner hat eine Laufzeit von O( V log V + V E ). Zum Vergleich: Der Flussalgorithmus von Goldberg & Tarjan hat eine Laufzeit von O( V E log( V / E )) Algorithmen II Wintersemester 0/0

30 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Für s, t V, s t nenne den Schnitt (S, V \ S) mit s S und t V \ S einen s-t-schnitt. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Dann ist (S, V \ S) minimal unter allen s-t-schnitten, wobei s und t vorletzter bzw. letzter betrachteter Knoten ist. Algorithmen II Wintersemester 0/0

31 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Für s, t V, s t nenne den Schnitt (S, V \ S) mit s S und t V \ S einen s-t-schnitt. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Dann ist (S, V \ S) minimal unter allen s-t-schnitten, wobei s und t vorletzter bzw. letzter betrachteter Knoten ist. Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

32 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

33 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S Definition: Für v V \ {a} sei S v Menge der Knoten vor v. Sei weiter V v = S v {v} sowie S v = S V v. a v s t a v s t S S V \ S V \ S v {v} V v \ S v Betrachte Einschränkung von G auf V v für aktiven Knoten v. Zeige: c(s V, {v}) c(s v, V v \ S v ) (zeigt genau das gewünschte für v = t) S v S S Algorithmen II Wintersemester 0/0

34 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Algorithmen II Wintersemester 0/0

35 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Beweis: Induktion über V. Induktionsanfang: V = ist trivial. Induktionsschritt: V Betrachte Phase mit vorletztem bzw. letztem Knoten s und t. Fall : G hat einen nichttrivialen minimalen Schnitt, der s von t trennt. Schnitt der ersten Phase ist ein nichttrivialer minimaler Schnitt. Fall : G hat keinen nichttrivialen minimalen Schnitt, der s von t trennt. In jedem nichttrivialen minimalen Schnitt liegen s und t auf der gleichen Seite. Verschmilzt man s und t, so induziert ein minimaler Schnitt im resultierenden Graph G einen in minimalen Schnitt in G. Laut Induktionsvoraussetzung liefert der Algorithmus einen minimalen Schnitt für G. Algorithmen II Wintersemester 0/0

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Minimale Schnitte und Schnittbäume

Minimale Schnitte und Schnittbäume Minimale Schnitte und Schnittbäume Studienarbeit von Myriam Freidinger Betreuer: Prof. Dr. Dorothea Wagner, Robert Görke ITI Prof. Dr. Dorothea Wagner, Universität Karlsruhe 23. Februar 2007 Danksagung

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 24.01.2013 Online Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Geradlinige Zeichnungen planarer Graphen 6. Vorlesung Sommersemester 2013 (basierend auf Folien von Marcus Krug und Tamara Mchedlidze, KIT) 2 Planare Graphen: Charakterisierung,

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 12. Vorlesung 12.07.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Aufbau Viceroy Knoten in Viceroy

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 30. November 2011 Wiederholung Baumzerlegung G = (V, E) Eine Baumzerlegung von G ist ein Paar {X i i V T }, T, wobei T Baum mit Knotenmenge

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

DATENSTRUKTUREN UND ALGORITHMEN

DATENSTRUKTUREN UND ALGORITHMEN DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-)

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-) Datenstrukturen (DS) Sommersemester 2015 Prof. Dr. Georg Schnitger Dipl-Inf. Bert Besser Hannes Seiwert, M.Sc. Institut für Informatik AG Theoretische Informatik Übung 0 Ausgabe: 14.04.2015 Abgabe: - Wenn

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis Tobias Ludes 02.07.07 Inhalt Einführung Algorithmen Modifikation der Gomory-Hu Methode Einführung Nach Gomory-Hu nur n-1 Netzwerk-Fluss- Berechnungen

Mehr

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr