13.1 Differentialgleichung der Biegelinie

Größe: px
Ab Seite anzeigen:

Download "13.1 Differentialgleichung der Biegelinie"

Transkript

1 79 13 Begelne Neben dem Versgen enes Butels uf Grund zu hoher Snnungen snd häufg uch de Verformungen be der Auslegung zu berückschtgen. Dbe snd nsbesondere de Durchbegungen von Getrebe- oder Rotorwellen von Bedeutung, d dese den Zhnengrff verändern bzw. zum Anstrefen des Rotors führen können. Berets us der Snnungsberechnung st beknnt, dss Begemomente enen Blken krümmen. Dese Krümmungen lssen sch für klene Durchbegungen uf zwete Abletungen der Auslenkungen zurückführen, worus sch Dfferentlglechungen zweter Ordnung für de Begelne ergeben. Be der Integrton entstehen zwe Integrtonskonstnten, de über de gerung des Blkens festgelegt snd. In enfchen Fällen snd de Begelnen n Hndbüchern des schnenbus tbellert. ässt sch de zu untersuchende Belstung uf dese enfchen Fälle zurückführen, knn de Durchbegung uch drekt durch Sueroston gefunden werden.

2 80 13 Begelne 13.1 Dfferentlglechung der Begelne Annhmen Belstung des Blkens n Rchtung ener Hutchse des Querschntts us Stereosttk berets beknnt: Streckenlst Querkrftverluf omentenverluf () Q() ()d F 0 0 () Q()d 0 0 O z () F Rene Begung: y () const. Ergebns des omentenglechgewchts: () E R I y oder 1 R EI y ( c, w c ) Kresbezehungen: ( c ) (w w c ) R (1) R durch Dfferentton bez. : ( c ) (w w c )w 0 () w (w w c )w 0 (3) O us (3): (w w c ) 1 w w (): ( c ) w 1 w w (1): R w 1 1 w 1 w 3 w w 1 w 3 R () w w 1 w 3 EI y

3 13 Begelne 81 Verenfchung für klene Durchbegungen: Annhme: klene Durchbegungen w w dw d 1 Dmt verenfcht sch de Dfferentlglechung der Begelne zu 0 w() w() EI y w Gerde Begung: y () const. Im Flle der gerden Begung lässt sch de Begelne jewels lokl durch enen Krümmungskres nnähern. Dher lässt sch ds Ergebns der renen Begung uf de gerde Begung übertrgen: O R() EI y w () () Begestefgket Dfferentlglechung der Begelne (Begelne omenten Bezehung)

4 8 13 Begelne 13. Berechnung der Begelne Allgemenes Vorgehen zur Ermttlung der Begelne 1) Berechnung des Begemomentenverlufs () entsrechend dem Vorgehen zur Berechnung nnerer Belstungen (Föl Notton emfehlenswert!) Anmerkung: Im Flle sttsch unbestmmter Probleme, können unbeknnte Rektonskräfte verbleben. ) ösung der Dfferentlglechung EI y w () () für w() durch sukzessve Integrton bez., wobe zwe Integrtonskonstnten entstehen, z.b. C 1 und C. 3) Bestmmung der Integrtonskonstnten C 1, C sowe redundnter Rektonen us Rnd- und Übergngsbedngungen. 4) Bestmmung der mmlen Durchbegungen entweder n den Rändern (w(0)мoderмw()) oder ls lokle m w( *) mt w( *) 0. Bemerkung: Anstelle der Begelne omenten Bezehung können uch folgende Glechungen benutzt werden: Querkrftbezehung: nenlst: EI y w () () Q() EI y w IV () Q() () Rnd- und Übergngsbedngungen Rndbedngungen: Enschränkung der Durchbegung und/oder deren Abletung durch ger, z.b. w(0) 0 w() 0 w(0) 0 w(0) 0

5 13 Begelne 83 Komtbltätsbedngungen: Verträglchketsbedngungen zwschen elstschen Butelen, z.b. elstsches Sel elstscher Blken w() u Kontnutätsbedngungen: Übergngsbedngungen zwschen verschedenen Abschntten des Blkens, z.b. A B w A () w B () w A () w B ()

6 84 13 Begelne 13.3 Suerostonsmethode Suerostonsrnz ässt sch ene Belstung () n Telbelstungen () zerlegen, deren zugehörge Begelnen w () beknnt snd, dnn berechnet sch de Gesmtdurchbegung ls Summe der Telbegungen: () () w() w () Enfche Belstungsfälle für sttsch bestmmte Blken Belstung Begelne E, I F w() F 6EI [3 3 3 ] w() EI [ ] w() 4EI [ ] F w() F 6EI [( ) ] 1 w() w() 6EI [ ] 4EI [ 1 ( 1 ) ] Wetere Belstungsfälle s. Hndbücher des schnenbus, z.b. DUBBE oder Hütte

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

1. März Korrektur

1. März Korrektur nsttut für Technsche und Num. Mechnk Technsche Mechnk V Prof. Dr.-ng. Prof. E.h. P. Eberhrd WS 010/11 K 1. März 011 Klusur n Technscher Mechnk V Nchnme Vornme Aufgbe 1 (6 Punkte) n enem bestmmt gelgerten

Mehr

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung ..1 Enkuelvorgng Der schemtsche ufbu ener Rebkulung zegt ds Bld.45. Bld.45 Schemtscher ufbu ener mechnschen Rebkulung Ene ulung wndelt de Drehzhl durch Schluf während des uelvorgnges, ds Drehmoment st

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

1. Die Spielpartie wird vorzeitig abgebrochen.

1. Die Spielpartie wird vorzeitig abgebrochen. Ds Telunsroblem Jüren Zumdck Ene Glücksselrte mt zwe Selern erfordert n Gewnnsele. De Whrschenlchket, en enzelnes Sel zu ewnnen, se für jeden Seler. De Selrte wrd vorzet bebrochen. We st der Gewnn ( e,

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

9 Integration von Funktionen in mehreren Variablen

9 Integration von Funktionen in mehreren Variablen 9 Integrton von Funktonen n mehreren Vrlen 9 9 Integrton von Funktonen n mehreren Vrlen Der Integrlegrff für Funktonen n mehreren Vrlen st wesentlch velfältger ls der e Funktonen n ener Vrlen. Dem unestmmten

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

QUADRATUR Numerische Integration. 9. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Quadratur

QUADRATUR Numerische Integration. 9. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Quadratur QUADRATUR umersche Integrton 9. Üungsenhet 1 Üerscht In wssenschftlchen Prolemen treten oft Integrle uf, welche numersch erechnet werden müssen. In deser Üungsenhet wollen wr de m häufgsten verwendeten

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Die Sätze von Castigliano (Alberto Castigliano, )

Die Sätze von Castigliano (Alberto Castigliano, ) De Säte on Cstgno (erto Cstgno, 87 88) De Verformung enes Butees (Bkens) knn.b. mt der Begene estmmt werden. De wrd de Deformton s unkton ener Koordnte, de der Bkenängschse fogt, eschreen. Es knn de Verformung

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Kurzzusammenfassung wichtiger mathematischer Formeln

Kurzzusammenfassung wichtiger mathematischer Formeln Enführung n de theoretsche Physk II, Sommersemester 205 mrtn.ecksten@mpsd.cfel.de Kurusmmenfssung wchtger mthemtscher Formeln Krummlnge Koordntensysteme m R n Ene dfferenerbre, umkehrbr endeutge Abbldung

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fchberech Mthemtk Algebr und Zhlentheore Chrstn Curll Grundbldung Lnere Algebr und Anltsche Geometre (LPSI/LS-M) Bltt 1 SoSe 011 - C. Curll/ B. Jnssens Präsenzufgben (P1) Mch Se sch be den folgenden Glechungssstemen

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnk Telübung: nbelsteter Spnnungsteler Gruppentelnehmer: jnovc, Pcr Abgbedtum: 25.01.2006 jnovc, Pcr Inhltsverzechns 2HEA INHALTSVEZEICHNIS 1. Aufgbenstellung...

Mehr

Jan Auffenberg. b) Maschenregel: Längs einer geschlossenen Schleife ist die Summe aus Quellenspannung und Spannungsabfällen an den Widerständen Null.

Jan Auffenberg. b) Maschenregel: Längs einer geschlossenen Schleife ist die Summe aus Quellenspannung und Spannungsabfällen an den Widerständen Null. Protokoll zu Versuch E1: Glech- und Wechselstrom 1. Enletung Be desem enführenden Versuch n de Elektrodynmk sollen grundlegende Dnge, we z.b. ds ohmsche Gesetz oder de Krchhoffschen egeln, nhnd von enfchen

Mehr

Grundlagen der Wärme- und Stoffübertragung

Grundlagen der Wärme- und Stoffübertragung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fkultät für Verfhrens- und Systemtechnk Insttut für Strömungstechnk und Thermodynmk Prof Dr-Ing E Specht Vorlesungsmnuskrpt Grundlgen der Wärme- und Stoffübertrgung

Mehr

2 Rohrleitungsnetzberechnung

2 Rohrleitungsnetzberechnung Vorlesungsskrpt Hydrulk II - Rohrletungsnetzberechnung. Krchhoffsche Regeln En Netz besteht us mehreren Rohsträngen, de n mehreren Punkten mtennder hydrulsch verbunden snd. (Sehe Abb. -) Abb. -: Rohrletungsnetz

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1 Stehn Brumme, SST,.FS, Mtrelnr. 7 5 44 Aufge... Zegen Se, dss de Folge onvergert und der Grenwert st, d.h. es glt lm Es st u egen, dss ene Nullfolge st D ene Nullfolge st, stellt ene onvergente Folge mt

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Einführung in die Methode der Finiten Elemente

Einführung in die Methode der Finiten Elemente Enührung n de Methode der Fnten Elemente Hrro Schmelng Geophys. Semnr 11. 5. 04 Hstore - Ingeneurwssenschten, Strukturmechnk - Mthemtk/Physk: llg. Theore, nwendbr u belebge prtelle Derentlglechungen PDG

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSAENASSUNG) Baustatk (aster) Arbetsblatt. ALLGEEINES. Sstem und Belastung Längsanscht: q( x) z, w x, u Begestefgket EI h Bettung c l Querschnttsdarstellung: q( x) q ( x) ( verschmert) z h Bettung c

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Aufgabe 7.1 (Aufgabe 5, SS 1999, VWL B, [2. Wdh. vom WS 1998/99])

Aufgabe 7.1 (Aufgabe 5, SS 1999, VWL B, [2. Wdh. vom WS 1998/99]) Aufgben zu Kptel 7 Aufgbe 7. (Aufgbe 5, SS 999, VWL B, 4.07.999 [. Wdh. vom WS 998/99]) Ene Unternehmung mt der Produktonsfunkton f ( x, x ) 5x x stellt den Output y 700 her. De Fktorprese betrgen 6 und

Mehr

5. Mehrkomponentensysteme - Gleichgewichte

5. Mehrkomponentensysteme - Gleichgewichte 5. Mehrkomonentensysteme - lechgewchte 5.1 Phsenglechgewchte Enfluss gelöster Stoffe osmotscher ruck Trennung zweer Lösungen durch sem-ermeble Membrn, de nur für ds Lösungsmttel durchlässg st (z.. Schwensblse,

Mehr

12 Technische Biegelehre

12 Technische Biegelehre 71 1 Technsche Begelehre De Begung st en wchtger und für querbelastete schlanke Bautele we Wellen, chsen und Balken häufg krtscher Belastungsfall. De dadurch entstehenden Spannungen überwegen. llg. de

Mehr

9. Übungsblatt Mechanische und thermische Dehnungen von Stäben WS 2013/2014

9. Übungsblatt Mechanische und thermische Dehnungen von Stäben WS 2013/2014 Unv. Prof. Dr. rer. nt. Wofgng H. Müer echnsche Unverstät Bern Fkutät V Lehrstuh für Kontnuumsmechnk und Mtertheore - LKM, Sekr. MS nstenufer 5, 0587 Bern 9. Übungsbtt Mechnsche und thermsche Dehnungen

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

5.6 Zwei- und mehrdimensionale Zufallsvariablen

5.6 Zwei- und mehrdimensionale Zufallsvariablen 5.6 Zwe- und mehrdmensonle Zufllsvrblen Wr betrchten jetzt den Fll, dss mehrere Zufllsvrblen glechzetg nlsert werden. Allgemen st ene n-dmensonle Zufllsvrble durch ds n-tupel (,,, n ) gegeben. Wr beschränken

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante Lösung Übung 9 Aufgabe: eglerauslegung mt blnearer Transformaton n s In der kontnuerlchen egelungstechnk wrd für gewöhnlch en PI-egler verwendet, um de größte Zetkonstante zu kompenseren bzw. be IT-Strecken

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Schule für Gitarre. Warm Up. E i n s p i e l ü b u n g e n u n d T e c h n i s c h e S t u d i e n. Rechte Hand. Thomas Reuther

Schule für Gitarre. Warm Up. E i n s p i e l ü b u n g e n u n d T e c h n i s c h e S t u d i e n. Rechte Hand. Thomas Reuther RAE R e u t h e r E d t o n s Schule für Gtrre Wr U E n s e l ü b u n g e n u n d T e c h n s c h e S t u d e n Rechte Hnd Thos Reuther www.reuther-edtons.de Zu Gebruch des Wr U De vorberetenden und technschen

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Beschreibung von Vorgängen durch Funktionen

Beschreibung von Vorgängen durch Funktionen Beschrebung von Vorgängen durch Funktonen.. Splnes (Sete 6) a +b c Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende

Mehr

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab Lösungen zu Übungsufgben Angewndte Mthemtk MST Bltt Mtlb Prf.Dr.B.rbwsk Zu Aufgbe ) Errbeten Se sch begefügtes Mterl zur Trpezmethde und zur Smpsnschen Fssregel! (us Ppul, Mthemtk für Ingeneure, Bnd Kp.V.)

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Terme und Formeln Komplexe Zahlen

Terme und Formeln Komplexe Zahlen Terme und Formeln Komplexe Zhlen e ϕ + = 0 Rchrd Feynmn nnnte dese Glechung n senem Notzbuch de bemerkenswerteste Formel der Welt ; ndere nennen se de schönste Formel der Mthemtk. De Eulersche Identtät

Mehr

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014 4. ndexzahlen 5.1 Grundlagen 5.2 Presndzes 5.3 ndexzahlenumrechnungen 1 4.1 Grundlagen Als Messzahlen werden de Quotenten bezechnet, de aus den Beobachtungswerten bzw. den Maßzahlen zweer Telmengen derselben

Mehr

2. Stationäre Wärmeleitung

2. Stationäre Wärmeleitung Sttonäre Wärmeletung Von ttonärer Wärmeletung prcht mn, fll ch de Temperturen nur mt dem Ort, jedoch ncht mt der Zet ändern Der Wärmetrom t dnn bezüglch Ort und Zet kontnt ( Q ɺ kontnt) De Wärmetromdchte

Mehr

Manhattan-Metrik anhand des Beispiels

Manhattan-Metrik anhand des Beispiels Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.

Mehr

elektrische Ladung Coulomb [C] A s elektr.spannung elektr. Potential Volt [V] kg m 2 s -3 A -1 J A -1 s -1 Energie / Ldg

elektrische Ladung Coulomb [C] A s elektr.spannung elektr. Potential Volt [V] kg m 2 s -3 A -1 J A -1 s -1 Energie / Ldg SI Bss Energe (Arbet Joule [J] kg m s - J Krft. Weg Krft Newton [N] kg m s - J m - Msse. Beschleungung Lestung Wtt [W] kg m s -3 J s - Energe / Zet elektrsche Ldung Coulomb [C] A s elektr.spnnung elektr.

Mehr

5. Das Finite-Element und die Formfunktion

5. Das Finite-Element und die Formfunktion 5. Ds Fnte-lement nd de Formfnkton Prof. Dr.-Ing. Uwe Renert Fcherech Prof. Dr.-Ing. Mschnen Uwe Renert telng Mschnen HOCHSCHU BRMN 5. Bespel des ensetg engespnnten nd f Zg ensprchten Blkenelements Bestmmng

Mehr

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose)

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose) Chrstan Wdlng, Georg Deres Versuch Nr. 6 Chemsche Knet Atverungsenerge (Inverson von Saccharose) Zel des Versuchs: Das Zel des Versuches st de Bestmmung der Atverungsenerge der Reaton von Saccharose (S)

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Merkblatt Fenster. Kanton Bern Erziehungsdirektion Denkmalpflege. Stadt Bern Präsidialdirektion Denkmalpflege

Merkblatt Fenster. Kanton Bern Erziehungsdirektion Denkmalpflege. Stadt Bern Präsidialdirektion Denkmalpflege Knton Bern Erzehungsdrekton Denkmlpflege Stdt Bern Präsdldrekton Denkmlpflege Merkbltt Fenster A Grundsätzlches Fenster prägen de äussere Erschenung enes Gebäudes mss gebend und snd oft en ntegrler Bestndtel

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Kapitel 6: Codierung Diskreter Quellen

Kapitel 6: Codierung Diskreter Quellen Kptel 6: Zele des Kptels e Entrope ls Informtonsmss für de Güte enes odes Begrff der tenkompresson Endeutg deoderre odes Mttlere odelänge knn nht klener ls Quellenentrope sen Krft she Unglehung. Shnnon'shes

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

erfüllen. In diesem Fall ist dies auch die komplexe Ableitung. = f x (a).

erfüllen. In diesem Fall ist dies auch die komplexe Ableitung. = f x (a). Dfferenzerbrket 6.2 125 zwr lner n h, ber ncht lner n h und ds st en wesentlcher Untersched. Ds sehen wr glech noch genuer nhnd der Cuchy-Remnn- Glechungen..Ò De Cuchy-Remnn-Glechungen We berets erwähnt,

Mehr

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013 Physkalsche Cheme II (PCII) Thermodynamk/Elektrocheme Vorlesung und Übung (LSF#105129 & LSF#101277) - SWS: 4 + 2 SoSe 2013 Prof. Dr. Petra Tegeder Ruprecht-Karls-Unverstät Hedelberg; Fachberech Cheme,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Aus Kapitel 3. Technische Mechanik. Aufgaben. = F x+ F ( x l a l i. = M III (x)+f (l a x) = 0. = F x+ M I (x) =0

Aus Kapitel 3. Technische Mechanik. Aufgaben. = F x+ F ( x l a l i. = M III (x)+f (l a x) = 0. = F x+ M I (x) =0 ufgben Kp. us Kpte ufgben.. erechnen Se de Schnttgrößen Q() und M() n ener durch zwe gech große Kräfte besteten syetrschen -Punkt-egeprobe der Längenbessungen und.. Zechnen Se de Grfen von Q() und M().

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion)

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion) Gymnsum Strhlenstz, Zentrsche Streckung, Verstreckenstz 1. Berechne us den jewels gegebenen Größen de gesuchten Streckenlängen: Gegeben: ) AB = cm ; ZA = 3cm ; ZA ' = 5cm A 'B' Gesucht: b) ZA = 3,5cm ;

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens De relevnen Csh Flows n der Unernehmensbewerun us der Sch des Rechnunswesens Edwn O Fscher rl-frnzens-unversä rz Oober 26 DCF-Bssmodelle Percen of Sles-Mehode Fllsude Übersch o onsner Verschuldunsrd o

Mehr

Baudynamik und Erdbebeningenieurwesen

Baudynamik und Erdbebeningenieurwesen Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Zugkraftbedarf für das Richten von Draht mit Rollenrichtapparaten

Zugkraftbedarf für das Richten von Draht mit Rollenrichtapparaten Zugkraftbedarf für das Rchten von Draht mt Rollenrchtaaraten Marcus Paech Verfügbare Berechnungsmethoden zur Ermttlung des Zugkraftbedarfs für das Rchten mt Rollenrchtsystemen lefern m Verglech mt Messergebnssen

Mehr