Der Gauß - Algorithmus

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Der Gauß - Algorithmus"

Transkript

1 R Brinkmnn Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei Gleichungen x x + 4x = 5 mit drei Vriblen 4x + x x = Rechenschem: Die Umformung soll ergeben: x x x x x x 7 5 * * * * 4 5 * * * 4 * * Es wird zeilenweise gerbeitet. Zeilen drf mn: - vertuschen - mit einer Zhl multiplizieren - durch eine Zhl dividieren - ddieren - subtrhieren * bedeutet irgendeine Zhl Splten dürfen ebenflls vertuscht werden, wenn die Vrible x i mitgenommen wird x x x II + I III + I 8 48 : : : III + II Ermittlung der Lösung durch Rückwärtseinsetzen 4x = 4 x = x + = x = x = 7x + 5 = 7x = 7 x = L = ; ; Probe: 7 (-) + 5 = ( w) ( ) + 4 = 5 ( w) 4 ( ) + = ( w) Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

2 R Brinkmnn Seite 7..9 Hinweis für blutige Anfänger: Die Vorgehensweise knn in einzelne kleine Schritte zerlegt werden.. Brüche vermeiden durch zeilenweise Multipliktion mit dem Huptnenner.. Die erste Zhl in der ersten Zeile soll positiv sein (ev. mit - multiplizieren).. Sorgen Sie durch Multipliktion oder Division dfür, dss in der ersten Splte lle Zhlen den gleichen Betrg hben. In Zeile und soll die erste Zhl negtiv sein. 4. Addiere zur. und zur. Zeile jeweils die erste. Ddurch entstehen in der ersten Splte Nullen. 5. Die zweite Zhl in der. Zeile soll positiv sein (ev. mit - multiplizieren). 6. Sorgen Sie durch Multipliktion oder Division dfür, dss b der. Zeile in der zweiten Splte lle Zhlen den gleichen Betrg hben. In Zeile soll die zweite Zhl negtiv sein. 7. Addieren Sie zur. Zeile die. Zeile. Ddurch entsteht in der. Zeile die. Null. 8. Ermittlung der Lösung durch Rückwärts einsetzen. Die gleiche Vorgehensweise knn uch uf Systeme mit mehr ls drei Gleichungen übertrgen werden. Die Umformungen knn mn uch nders durchführen. Ds wie ist gnz dem Geschick des Mthemtikers überlssen. Erst durch intensive Übung gelngt mn zu einem optimlen Weg. Brüche sind möglichst zu vermeiden um keine unnötigen Fehler zu riskieren. Wer fit ist, knn uch mehrere Umformungen gleichzeitig mchen, ddurch ist weniger zu schreiben, die Fehlerquote steigt ber. tusche: x x x I II II - 7 I 4 III + 4 I : III + II Ermittlung der Lösung durch Rückwärtseinsetzen x = x = x + = y = x = x + 4 = 5 x = 7 x = L = ; ; Probe: 7 ( ) + 5 = ( w) ( ) + 4 = 5 ( w) 4 ( ) + = ( w) Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

3 R Brinkmnn Seite 7..9 Beispiel : (leicht) x x + 4x = 8 x + 4x 5x = 4 4x 6x + x = x x x : II - I 8 9 III - I Ermittlung der Lösung durch Rückwärtseinsetzen 5x = 45 x = 4x 44 = 64 4x = 68 x = x + 4 = 8 x = x = L = ; ; Probe: + = + = + = ( w) 4 8 w w 4 6 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

4 R Brinkmnn Seite Beispiel : (mittelschwer) x + x 4x = 4x 5x + x = 9 8x + 7x 9x = x x x : II - I III - I : II III : : 5 5 III + II Ermittlung der Lösung durch Rückwärtseinsetzen 48x = 88 x = 6 x + 6 = x = 5 x = x = x = 4 L = 4 ; 5 ; 6 Probe: + = = 9 ( w) + = w w Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 4 von 6

5 R Brinkmnn Seite Beispiel : (schwer) 4 x x + x = x+ x + x = x x + x = Ermittlung der Lösung durch Rückwärtseinsetzen 58x = 4 x = 4 6x 9 4 = 6 6x = 5 x = x = 6 x = x = L = ; ; 4 Probe: = = 4( w) = = ( w ) = = 8 w x x x : II - I III - I : : : III - II Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 5 von 6

6 R Brinkmnn Seite Anwendung des Guß- Algorithmus zur Berechnung der Funktionsgleichung einer gnzrtionlen Funktion von der 4 Punkte beknnt sind. G Ausführlicher Guß- Algorithmus f x = x + x + x+ P 4 f = = 4 P f = = P 4 4 f 4 = = 4 P 5 f 5 = = II I III I IV I III II IV 4 II 4 7 = = = = = 6 : 6 = = 8+ 7 = = + = = IV III = = 4 4 = f x = x 6x + 9x Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 6 von 6

7 R Brinkmnn Seite G Ausführlicher Guß- Algorithmus f x = x + x + x+ P f() = = 9 9 P f = + + = P 8 f = = P4 f ( ) = = II I III I IV I 4 4 : : : III + II IV + II IV III = 4 = 4 = 4 = + 4 = : = + = + = = : = = + + = 7 = + 7 = 4 : = f( x) = x + x 6x Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 7 von 6

8 R Brinkmnn Seite G Ausführlicher Guß- Algorithmus f x = x + x + x+ P 6 f = + + = 6 P f = = P 4 f 4 = = P 6 9 f 6 = = II I III I IV I : : :7 6 9 III II 5 IV II IV III = 8 = + = 8 + = 8 = 8 : = = 9 9+ = 9 6 = = 5 + = = 6 5 = = 9 f x = x 9x + 5x+ 9 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 8 von 6

9 R Brinkmnn Seite G4 Ausführlicher Guß- Algorithmus f x = x + x + x+ P 7 f = + + = 7 P 6 f = = 6 P f = = P f = = II I 9 7 III I 9 7 IV I III + 4 II IV II 7 7 = = = 7 = = 6 : = + 7 = 7 = 5 = + 5 = 4 : = 4 + = 7 = 7 + = 7 = 4 Die Funktionsgleichung: f ( x) = x x 4x + 4 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 9 von 6

10 R Brinkmnn Seite 7..9 G5 Ausführlicher Guß- Algorithmus f x = x + x + x+ P f = = P 4 44 f 4 = = 44 P 4 4 f 4 = = 4 P 8 4 f 8 = = = 7 = II I III I = IV I 48 4 = = 7 : 48 = III + II IV II IV III = = + 4 = 4 = 8 : = = = + = = Die Funktionsgleichung: f ( x) = x + x + 9x 4 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

11 R Brinkmnn Seite 7..9 G6 Ausführlicher Guß- Algorithmus f x = x + x + x+ P f = = P f = + + = P 6 f = = 6 P 4 f = = 4 4 II I III I IV I 5 = 5 = + = III + II + = 5 = = = : = = 8 4 :8 5 IV III = + + = + 4 = 4 = 4 f x = x + x 4 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

12 R Brinkmnn Seite 7..9 G7 Ausführlicher Guß- Algorithmus f x = x + x + x+ P f = = P f = = P 4 f = = 4 P 9 f = = 9 4 = = 4 8 II I III I + = IV I + = = : = 7 9 III+ II = IV II + 7 = + 4 = 4 = = IV III 5 + = 6 5 = + 5 = 6 7 f x = x x 5x+ 6 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

13 R Brinkmnn Seite 7..9 G8 Ausführlicher Guß- Algorithmus f x = x + x + x+ P 6 f = = 6 P 4 f = = P f 8 = + + = P 4 f 8 = + + = = = II I 7 = III 8 I + 7 = IV 8 I = : = = 6 9 III + 6 II = 5 5 IV + II 4 = = 4 : = : = : = = 6 + = IV III f( x) = x 5x + x Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: von 6

14 R Brinkmnn Seite G9 Ausführlicher Guß- Algorithmus f( x) = x + x + x+ 9 9 P f() = = P f = + + = 5 5 P f ( ) 7 9 = = P 4 8 f 8 = + + = II I III I IV I : : : : III + II IV II : : IV III = : = + 6 = + 6 = 6 = : = 4 4 = 4 4 = = 4 : 4 = = 9 + = 9 = 9 + = 4 : = f( x) = x x 6x+ Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 4 von 6

15 R Brinkmnn Seite G Ausführlicher Guß- Algorithmus f x = x + x + x+ P 5 f = = 5 P 49 f = + + = 49 P 7 f = = 7 P 5 5 f 5 = = II I III I IV I III+ II IV+ II IV III = 48 = = = = 96 : 8 = = 74 = 74 + = 7 : = = = = 5 5 = f x = x x + 6x Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 5 von 6

16 R Brinkmnn Seite Aufgben zur Übung Zur Ergebniskontrolle ist die Probe durchzuführen x + x + x = 8 x + x + x = L = ;5 ;7 x + x + x = x + x x = 7 x x + x = L = 5;; x + x + x = 7 x + x + x = 9 x + x + 4x = 5 L= 5;; x + x + 9x = x + x x + x = 7 4 x + x 4x 5x = 6 4 x x + x = 6 x + 4x 6x + x = 4 x + x 4x + x = 9 4 x + 4x 8x + x = 4 x 6x x + x = 4 x = x + x + x = x + x + x = L = ; ; x + x + 4x = 4x + x x = 8 5x + 4x 6x = 8 L = ; ;,5 x + x + 4x = 9 x + x + x = 9 x x x x x + x + x = 4 L= 5;; x + x + 6x = L = ; ;; x x x x L = ; ;;5 6 5 Erstellt von R Brinkmnn p guss_lg.doc 7..9 : Seite: 6 von 6

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Michael Buhlmann Mathematik > Lineare Gleichungssysteme

Michael Buhlmann Mathematik > Lineare Gleichungssysteme Michel Buhlmnn Mthemtik > Linere Gleichungssysteme Crl Friedrich Guß Der Mthemtiker und Gelehrte Crl Friedrich Guß (*1777-1855) studierte nch Schulusbildung und Abitur m Collegium Crolinum Brunschweig

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Repetitionsaufgaben Logarithmusgleichungen

Repetitionsaufgaben Logarithmusgleichungen Kntonle Fchschft Mthemtik Repetitionsufgben Logrithmusgleichungen Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Repetition Logrithmen D) Logrithmusgleichungen 4 E) Aufgben mit Musterlösungen 5 A)

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6.1. Matrizenrechnung

6.1. Matrizenrechnung 6 Mtrizenrechnung 6 Mtrizen und Vektoren Definition Eine Tbelle in der Drstellung A (m,n) n n m m mn heißt m,n-mtrix ( n ) ( ) mit den Zeilenvektoren ( m m mn ) und den Sltenvektoren m, m,, n n mn Mtrizen

Mehr

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner Abiturvorbereitung Mthemtik Linere Algebr / Anlytische Geometrie Copyright 2013 Rlph Werner 1 Linere Gleichungssysteme Ein lineres Gleichungssystem (LGS) besteht us einer Anzhl linerer Gleichungen. (m,n)-lgs

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Facharbeit. Darstellung und Vergleich: Gaußsches Eliminationsverfahren Cramersche Regel. unter besonderer Beachtung der Benutzbarkeit und Grenzen

Facharbeit. Darstellung und Vergleich: Gaußsches Eliminationsverfahren Cramersche Regel. unter besonderer Beachtung der Benutzbarkeit und Grenzen Gustv-Heinemnn-Gesmtschule, Alsdorf Fchrbeit Drstellung und Vergleich: Gußsches Elimintionsverfhren Crmersche Regel unter besonderer Bechtung der Benutzbrkeit und Grenzen des GTR Von: Crsten Filz Leistungskurs

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnbrück WS 2015/2016 Linere Algebr und nlytische Geometrie I Vorlesung 4 In der lineren Algebr wird stets ein Körper K zugrunde gelegt, wobei mn dbei grundsätzlich n die reellen Zhlen

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

6c 4b 5a. 6c 4b + 5a.

6c 4b 5a. 6c 4b + 5a. Bltt Nr.0 Mthemtik Online - Übungen Bltt Klsse Bltt Kpitel Terme Addition Terme und Gleichungen Nummer: 0 0000 Kl: X Grd: Zeit: 0 Quelle: eigen W Aufgbe..: Fssen Sie den folgenden Bruchterm zusmmen und

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache Wirsberg-Gymnsium Grundwissen Mthemtik. Jhrgngsstue Lerninhlte Fkten-Regeln-Beispiele Proportionlität Gehört bei einer Zuordnung zum r-chen der einen Größe ds r-che der nderen Größe, so spricht mn von

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Einführung in das Rechnen mit Zahlen. (elementare Algebra)

Einführung in das Rechnen mit Zahlen. (elementare Algebra) Ausgbe 2008-05 Einführung in ds Rechnen mit Zhlen (elementre Algebr) Algebr ist ein Teilgebiet der Mthemtik und beschäftigt sich mit der Verknüpfung von Zhlen durch Rechenopertionen 1. Rechenregeln der

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt:

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt: 1 Determinnten Die Determinnte einer qudrtischen Mtrix ist eine reelle Zhl. Sie ermöglicht insbesondere eine Aussge über die Existenz der inversen Mtrix bzw. über die Lösbrkeit von lineren leichungssystemen.

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Effiziente Algorithmen und Komplexitätstheorie Vorlesung Ingo Wegener Vertretung Thoms Jnsen 10042006 1 Ws letzten Donnerstg geschh Linere Optimierung Wiederholung der Grundbegriffe und Aussgen M konvex

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch:

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch: LÖSUNG AUFGABE 5 ZUR INDUSTRIEÖKONOMIK SEITE VON 5 Aufgbe 5 (Linere Nchfrgefunktion): Gegeben sei die (ggregierte) Nchfrgefunktion des Gutes durch: ( = b, > 0, b > 0. Dbei bezeichnen den Preis des Gutes

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

R. Brinkmann Seite f 2 ( x)

R. Brinkmann  Seite f 2 ( x) R. Brinkmnn http://brinkmnn-du.de Seite 08.0.0 Löungen linere Funktionen Teil XII Ergebnie: E Aufgbe f = + ;P( );D = { 0 6} Die Gerde mit der Funktion f () wird von einer zweiten Gerden mit der Funktion

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Lineare Gleichungssysteme lösen

Lineare Gleichungssysteme lösen Linere Gleichungssysteme lösen Eine Gleichung, die nur eine Unbeknnte ht, knn mn (in llen euch beknnten Fällen) nch dieser Unbeknnten uflösen und somit die Lösungsmenge bestimmen. Unter der Lösungsmenge

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet.

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet. 5 Polynome 5.1 Definitionen Definition 8 Monom Ein Monom ist ein Produkt us einer reellen Zhl dem Koeffizienten) und beliebig vielen ntürlichen Potenzen von Vriblen dem Nmen des Monoms). Ist ds Monom nur

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr