c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende."

Transkript

1

2 VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit ²² für. Für welchen Wert von t schließt das Schaubild der entsprechenden Funktion mit der x-achse eine Fläche der Größe Flächeneinheiten ein? / 4 Sobald Sie diesen Pflichtteil abgegeben haben, können Sie Ihren grafikfähigen Taschenrechner (GTR) für die Bearbeitung des Wahlteils verwenden.

3 Wahlteil Klausur Nr. 1 Krümmungen untersuchen, Funktionenscharen Verwendung des GTR ist gestattet, bitte alle Lösungen auf den Doppelbogen. Name: 4. Gegeben ist die Funktionenschar mit 2 für, 0. Bestimmen Sie alle Wendepunkte und ihre Ortskurve. VP / 4 5. Jemand beobachtet von einer 30m hohen Düne einen Strand. Der Querschnitt der Düne kann bei geeigneter Wahl des Koordinatensystems im ersten Quadranten bis zum Erreichen der Meereshöhe näherungsweise durch den Graphen der Funktion mit 30 Eine Längeneinheit entspricht einem Meter. beschrieben werden. a) Zeichnen Sie den Querschnitt der Düne und des Strandes für 0;60. b) Bestimmen Sie näherungsweise den Bereich der Düne, der vor neugierigen Blicken geschützt ist, wenn man von einer Augenhöhe des Beobachters von 1,80m ausgeht. c) In welcher Höhe müssten sich die Augen mindestens befinden, damit der komplette Hang eingesehen werden kann? Geben Sie diese auf Dezimeter gerundet an. / 8 6. Angenommen, eine ganzrationale Funktion mit ³² mit 0, 0 und 0 besitze genau zwei Nullstellen. a) Zeigen Sie, dass für diese Nullstellen gilt: 0 und b) Erläutern Sie ohne Rechnung, dass der Graph von die x-achse an einer der Nullstellen nur berührt und nicht schneidet. c) Weisen Sie durch Rechnung nach, dass es sich bei genau einem der beiden gemeinsamen Punkte mit der x-achse um einen Berührpunkt handelt. / 6 Notenschlüssel siehe Erwartungshorizont siehe Viel Erfolg! Schule Notengebung m11_3_1011_kruemmungen-funktionenscharen.pdf von 34 VP Rückgabe am 23. Februar 2011 Note: mündlich: Arithmetisches Mittel:

4

5 VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. Die Aussage ist wahr, denn nur an den Stellen 2 und 1 liegen Extremstellen der ersten Ableitung von f und damit Wende- stellen von f vor. (2 VP) c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. Die Aussage ist wahr, denn die erste Winkelhalbierende hat die Stei- gung 1 und die Steigung von f im Schnittpunkt mit der y-achse den größeren Wert (2 VP) 3. Gegeben ist die Funktionenschar mit ²² für. Für welchen Wert von t schließt das Schaubild der entsprechenden Funktion mit der x-achse eine Fläche der Größe Flächeneinheiten ein? / 4 Zunächst alle Nullstellen bestimmen: 0, d.h. ²² 0, also Dann eine Stammfunktion bestimmen: 2 Die beschriebene Fläche berechnet sich: Dieser Term nimmt für 1 den Wert an. Sobald Sie diesen Pflichtteil abgegeben haben, können Sie Ihren grafikfähigen Taschenrechner (GTR) für die Bearbeitung des Wahlteils verwenden.

6 Aufgabe 4 Erwartungshorizont Wahlteil Bilden der ersten beiden Ableitungen der Funktionenschar: 3 2² bzw. 62² mit, 0 Notwendige Bedingung für Wendestellen: 0, also 62²0, d.h. Hinreichende Bedingung 0 und 0, deshalb 60 für alle t, also auch Die y-koordinate des Wendepunktes erhält man durch Einsetzen: Die Wendepunkte haben also die Koordinaten Elimination des Parameters für die Ortskurve: Wegen gilt 3 und somit für die y-koordinate: Die gesuchte Ortskurve lautet. Aufgabe 5 a) siehe Abbildung (2 VP) b) Der Sehstrahl verläuft durch den Punkt (0/31,8), die Geradengleichung lautet demnach 31,8 wobei m die Steigung von f im gemeinsamen Punkt von Sehstrahl und dem Graph von f ist. Daher kann man den Berührpunkt bestimmen, indem man gemeinsame Punkte von f und yf x x 31,8 sucht.

7 Der GTR liefert im ersten Quadranten näherungsweise zwei Punkte:,, und B 20,066 9,300. Der zweite Punkt kommt nicht in Frage (da man dann durch die Düne durchsehen müsste). Für die Steigung des Sehstrahls gilt: mf 4,7690,8324. Der Sehstrahl schneidet die x-achse wegen 0,8324 x 31,80 bei,. Antwort: Der dem Bereich des Schaubilds von f zwischen und 38,2 0 entsprechende Bereich der Düne ist nicht einsehbar. c) Damit die gesamte Düne eingesehen werden kann, müssen die Augen minde- stens auf Höhe des Schnittpunktes der Wendetangente mit der y-achse liegen. Bilden der zweiten Ableitung: f x x x x f x x x Notwendige Bedingung: f x0 Zwei Nullstellen der zweiten Ableitung: x und x 40. Aufgrund der Skizze kommt nur x in Frage. Den y-achsenabschnitt der Wendetangente erhält man aus dem Ansatz fx f x x c Der GTR liefert auf eine Nachkommastelle gerundet c35,6. Aufgabe 6 a) An der Nullstelle nimmt die Funktion f den Wert Null an: 0 ³² 0 x(ax²+bx+c)=0, Satz vom Nullprodukt liefert und ²0, also ; da nur noch eine Nullstelle fehlt muss die Diskriminante 40 sein, b) Bei der Funktion handelt es sich um eine ganzrationale Funktion dritten Grades, dies bedeutet: Der Graph von besitzt 2 Extrempunkte da die Koeffizienten a, b und c alle von Null verschieden sind, im günstigsten Fall schneidet der Graph der Funktion deshalb genau dreimal die x-achse, nämlich vor, zwischen und hinter den beiden Extremstellen.

8 Hat der Graph nur zwei gemeinsame Punkte mit der x-achse, so ist er so verschoben, das der Schnittpunkt zwischen den Extremstellen wegfällt. Einer der gemeinsamen Punkte mit der Achse ist dann ein Extrempunkt, d.h., der Graph verläuft in der nahen Umgebung dieses Punktes auf derselben Seite der x-achse und berührt sie somit nur. c) Am Berührungspunkt mit der x-achse ist die Steigung der Tangente Null, die Tangente an einen Schnittpunkt hat eine von Null verschiedene Steigung. Erster Kandidat 0: , da laut Voraussetzung gilt c 0. Es handelt sich hier um eine echte Schnittstelle des Graphen mit der x-achse. Zweiter Kandidat : a 2a 0 wegen 40 An dieser Stelle besitzt der Graph der Funktion eine waagerechte Tangente, somit handelt es sich bei dem zugehörigen Punkt um einen Extrempunkt, der Graph berührt hier die x-achse aber schneidet sie nicht.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 3 Generalprobe mit allen Themen Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Einführung analytische Geometrie Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur Aufgabe 1: Gegeben ist die Funktion f mit 1 f x = x x x + x R 8 3 2 ( ) = ( 3 9 + 27);. a) Untersuchen sie das Schaubild K von f auf Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte. Zeichnen

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen:

Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Aufgabe I Gegeben sind die Schaubilder und die Funktionsterme zweier Funktionen f und g: 4 2 f ( x) = x x + 8

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn) Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

4. Klassenarbeit Mathematik

4. Klassenarbeit Mathematik Name: 30. Mai 2007 Klasse 11A 4. Klassenarbeit Mathematik Thema: Differentialrechnung Allgemeine Bearbeitungshinweise: Die Bearbeitung muss von einer geeigneten Dokumentation begleitet werden. Hierzu gehören:

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

4. FUNKTIONSANPASSUNGEN

4. FUNKTIONSANPASSUNGEN 4. FUNKTIONSANPASSUNGEN 04. Da die Funktion einen Hoch- und einen Tiefpunkt besitzt, muss sie mindestens dritten Grades sein. Eine kurzfristige Prognose ist mit dieser Funktion wahrscheinlich möglich,

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

A.22 Schnittwinkel zwischen Funktionen

A.22 Schnittwinkel zwischen Funktionen A.22 Schnittwinkel 1 A.22 Schnittwinkel zwischen Funktionen A.22.01 Berühren und senkrecht schneiden ( ) Wenn sich zwei Funktionen berühren, müssen sie im Berührpunkt den gleichen y-wert haben. Wenn sich

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Lösungen Kapitel A: Funktionen

Lösungen Kapitel A: Funktionen Lösungen Kapitel A: Funktionen Arbeitsblatt 01: Abhängigkeiten entstehen a) Zu Beginn des Tages befinden sich 10 Besucher am Strand. Bis um 4 Uhr nachts haben alle den Strand verlassen. Um 6 Uhr sind bereits

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades Analysis Funktionsgleichungen aufstellen So genannte Steckbriefaufgaben für ganzrationale Funktionen Teil 2: Ganzrationale Funktionen 3. Grades Lösungen teilweise auch mit ausführlicher Beschreibung des

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

2) Allg. Ansatz: f(x) = ax²+c. 3) Ableitungen: f (x) = 2ax. f (x) = 2a. 4) Bedingungen: 5) Gleichungssystem: 6) Ergebnis: f(x) = 0,00125x² + 0,6

2) Allg. Ansatz: f(x) = ax²+c. 3) Ableitungen: f (x) = 2ax. f (x) = 2a. 4) Bedingungen: 5) Gleichungssystem: 6) Ergebnis: f(x) = 0,00125x² + 0,6 Name: Rene Heinz Parameteraufgabe 07.03.2008 Klasse: 645 Nr. 21 a) : Bei einem Versuchswagen zur Erzielung möglichst geringer Verbrauchswerte werden folgende Beachtungen gemacht: Der Verbrauch (in Liter/100km)

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen 1 Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1 Der Laderaum eines Lastkahns ist

Mehr

Abiturprüfung Baden-Württemberg 2003

Abiturprüfung Baden-Württemberg 2003 c 2003 by Rainer Müller - http://www.emath.de 1 Lösung Abiturprüfung Baden-Württemberg 2003 Leistungskurs Mathematik - Analysis 1 Die Skizze oben zeigt den vertikalen Schnitt längs der Rotationsachse eines

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen 1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe I 1 Die Abbildung zeigt den Verlauf

Mehr

Mathematik im Berufskolleg I

Mathematik im Berufskolleg I 1 Bohner Ott Deusch Mathematik im Berufskolleg I Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 2016 ISBN 978-3-8120-0234-9 Das Werk und seine Teile sind urheberrechtlich geschützt.

Mehr

Vergleichsklausur 2004

Vergleichsklausur 2004 Vergleichsklausur 00 Termin:.Juni 00,. und. Stunde reine Arbeitszeit: 90 min Die erste und zweite Aufgabe sind von allen Schülerinnen und Schülern zu bearbeiten. Von den Aufgaben -5 wird eine Aufgabe vom

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 2 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 2016 1 Aufgabe

Mehr

Abiturprüfung Analysis Pflichtaufgaben: Funktionenkompetenz

Abiturprüfung Analysis Pflichtaufgaben: Funktionenkompetenz Abiturprüfung Analysis Pflichtaufgaben: Funktionenkompetenz In den Texten 70100 und 71111 stehen Pflichtaufgaben zur Abiturprüfung in Analysis. Dazu gehören auch Aufgaben mit dem Inhalt, Zusammenhänge

Mehr

Mathematik im Berufskolleg II

Mathematik im Berufskolleg II Bohner Ott Deusch Mathematik im Berufskolleg II Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 6 ISBN 978--8-- Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Die Summen- bzw. Differenzregel

Die Summen- bzw. Differenzregel Die Summen- bzw Differenzregel Seite Kapitel mit Aufgaben Seite WIKI Regeln und Formeln Level Grundlagen Aufgabenblatt ( Aufgaben) Lösungen zum Aufgabenblatt Aufgabenblatt (7 Aufgaben) Lösungen zum Aufgabenblatt

Mehr

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften 195 7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften In der Kurvenuntersuchung werden von einer gegebenen Funktionsgleichung ausgehend die Graphen von Funktionen auf ganz bestimmte

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um.

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um. 1.Schularbeit 7b Klasse 1a) Gegeben ist die Gleichung z 2 + pz + (33 + 47i) = 0 mit der Lösung z 1 = 4-9i. Berechne den Koeffizienten p sowie die 2. Lösung der Gleichung. b) Berechne die Lösungen der Gleichung

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Beispielaufgabe zur Untersuchung ganzrationaler Funktionen

Beispielaufgabe zur Untersuchung ganzrationaler Funktionen Beispielaufgabe zur Untersuchung ganzrationaler Funktionen 3 Gegeben ist die Funktion f mit der Gleichung: f ( x ) = x,75 x + 6 x. 3 Die Abbildung zeigt den Graphen der Ableitungsfunktion f '. f (x)'(

Mehr