Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Größe: px
Ab Seite anzeigen:

Download "Lösungen Serie 6 (Vektorräume, Skalarprodukt)"

Transkript

1 Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9 1. Aufgabe Überprüfe ob die angegebenen Vektoren eine Basis des R 3 sind: (a) v 1 (1, 1, 1) v 2 (1, 1, 5) Da R 3 die Dimension drei hat (dim R 3 3) muss jede Basis genau aus drei Vektoren bestehen. Somit können die Vektoren v 1 und v 2 sicher keine Basis des R 3 sein. (b) v 1 (1, 1, 1) v 2 (1, 2, 3) v 3 (2, 1, 1) Da dim R 3 3gilt, müssen wir nur zeigen, dass die obigen drei Vektoren linear unabhängig sind (wieso?). Dies führt auf das folgende lineare Gleichungssystem: x + y +2z x +2y z x +3y + z Da dieses System nur die triviale Lösung besitzt, sind die drei Vektoren linear unabhängig und bilden somit eine Basis für den R 3. (c) v 1 (1, 1, 2) v 2 (1, 2, 5) v 3 (5, 3, 4) Gleiches Vorgehen wie in der vorigen Aufgabe. Das Gleichungssystem: x + y +5z x +2y +3z 2x +5y +4z Hier erhalten wir unendlich viele Lösungen und daher sind die drei Vektoren linear abhängig und bilden somit keine Basis des R Aufgabe Es sei W ein Unterraum des R 4, erzeugt durch die Vektoren v 1 (1, 2, 5, 3) v 2 (2, 3, 1, 4) v 3 (3, 8, 3, 5) Gib eine Basis und die Dimension von W an. 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

2 Name: Seite: 2 Wir überprüfen, ob die drei Vektoren linear unabhängig sind: x +2y +3z 2x +3y +8z 5x + y 3z 3x 4y 5z Obiges Gleichungssystem hat die L {(x, y, z) :(z, 2z, z)} Es gibt also unendlich viele Lösungen und die drei Vektoren sind linear abhängig. Weiter können wir obige Lösung in der Linearkombination einsetzen und erhalten so: zv 1 2zv 2 + zv 3 z R Setzen wir z 1ein, so können wir z.b. nach v 3 auflösen: v 3 2v 2 v 1 Der Vektor v 3 lässt sich also als Linearkombination der beiden anderen Vektoren schreiben (eindeutig). Dieser Vektor ist daher überflüssig (er liefert keine Information, die nicht auch durch die anderen beiden Vektoren geliefert werden kann). Daher bilden nun die beiden linear unabhängigen (wieso?) Vektoren v 1 und v 2 eine (von vielen) Basis von W und somit gilt dim (W )2. 3. Aufgabe (a) Es sei V R 3.Zeige,dassV mit den folgenden Operationen kein reeller Vektorraum ist: (a, b)+(c, d) (a + c, b + d) λ (a, b) (λa, ) Wir müssen zeigen, dass eines der acht Gesetze nicht erfüllt ist. Da die Addition der normalen Addition entspricht, gelten die Gesetze (A1)-(A4). Die Multiplikation wird in diesem Fall mindestens ein Gesetz verletzen. Betrachten wir zum Beispiel (S4), so sehen wir: 1(a, b) (a, ) (a, b) (b) Es sei der folgende Vektorraum V R 2 2 gegeben. Ist die Menge W der oberen Dreiecksmatrizen a b A a, b, c R c ein Unterraum von V ist. Wir müssen zeigen, dass die Menge bezüglich der Addition und der Multiplikation mit einem Skalar abgeschlossen ist, d.h. dass die Summe zweier Dreiecksmatrizen wieder eine Dreiecksmatrix ist und dass das Produkt einer Dreiecksmatrix mit einer reellen Zahl wieder eine Dreiecksmatrix ist. Addition: a1 b 1 a2 b + 2 a1 + a 2 b 1 + b 2 W c 1 c 2 c 1 + c 2 Multiplikation mit einem Skalar: a b λa λb λ W c λc 4. Aufgabe (a) Es sei V der Vektorraum der reellen Polynome. Bestimme die Dimension von U L 1+x + x 5,x 2 + x 4, 1 x 2 + x 3 x 5,x x 3 x 4 +2x 5 Wenn die vier Polynome linear unabhängig sind, ist die Dimension dieses Unterraums vier. Andernfalls reduziert sich die Dimension. So überprüfen wir, ob die vier Vektoren linear unabhängig sind, d.h. ob es nur die triviale Linearkombination gibt um das Nullpolynom zu erzeugen: a 1+x + x 5 + b x 2 + x 4 + c 1 x 2 + x 3 x 5 + d x x 3 x 4 +2x 5 (a c +2d) x 5 +(b d) x 4 +(c d) x 3 +(b c) x 2 +(a + d) x +(a + c) 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

3 Name: Seite: 3 Dies führt auf das lineare Gleichungssystem: a c +2d b d c d b c a + d a + c Wir finden unendlich viele Lösungen: L (a, b, c, d) R 4 :( c, c, c, c) Da wir in der Lösung des linearen Gleichungssystem eine frei wählbare Variable haben, können wir einen der Vektoren weglassen. Die restlichen drei Vektoren sind dann linear unabhängig und bilden somit eine Basis von U. Daher gilt: dim (U) 3 (b) Es sei V der Vektorraum der reellen 2 3 Matrizen und U U L,, ein Unterraum von V mit dim (U) 3. Weiter sei A U Finde einelinearkombination A λ 1 + λ Das Gleichsetzen führt auf ein lineares Gleichungssystem: λ 1 + λ λ λ1 + λ 2 λ 1 +2λ 2 +3λ 3 3λ 2 +3λ 3 λ 2 + λ 3 λ 1 2λ 2 λ 3 λ 1 + λ 3 λ 1 + λ 2 1 λ 1 +2λ 2 +3λ 3 9 3λ 2 +3λ 3 6 λ 2 + λ 3 2 λ 1 2λ 2 λ 3 1 λ 1 + λ 3 5 Die Lösung des Gleichungssystems lautet: L (λ 1, λ 2, λ 3 ) R 3 :(2, 1, 3) Also gilt: A λ Es gibt nur eine Linearkombination. Gib dafür eine Begründung an. Da die Dimension des Unterraums drei ist, sind die drei gegebenen Matrizen eine Basis des Unterraums. Mit einer Basis lassen sich nun alle Elemente des Raumes eindeutig als Linearkombination der Basis beschreiben. 5. Aufgabe Überprüfe, ob die folgende Beziehung ein Skalarprodukt im R 2 darstellt: u, v (x 1,y 1 ), (x 2,y 2 ) x 1 y 1 x 1 y 2 x 2 y 1 +3x 2 y 2 Wir müssen zeigen, dass die folgenden drei Eigenschaften erfüllt sind: 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

4 Name: Seite: 4 Bilinearität:., v (x, y), (a, b) xy xb ay +3ab ist keine lin. Abb.! u,. (a, b), (x, y) ab ay bx +3xy ist keine lin. Abb.! Die Bilinearität ist somit nicht erfüllt. Die restlichen Eigenschaften müssten wir nicht mehr überprüfen! Symmetrie: u, v v,u (x 1,y 1 ), (x 2,y 2 ) (x 2,y 2 ), (x 1,y 1 ) x 1 y 1 x 1 y 2 x 2 y 1 +3x 2 y 2 x 2 y 2 x 2 y 1 x 1 y 2 +3x 1 y 1 x 1 y 1 x 2 y 2 Die Symmetrie ist ebenfalls nicht erfüllt! Positive Definitheit: u, u > (x, y), (x, y) xy xy xy +3xy 2xy Ist für x, y Werte mit ungleichem Vorzeichen nicht erfüllt! 6. Aufgabe Es sei V der Vektorraum der Polynome mit dem Skalarprodukt f,g 1 t f (t) g (t) dt Weiter seien die folgenden Polynome gegeben: f (t) t +2 g (t) t 2 2t 3 Bestimme: (a) f,g? (b) f,g 1 t 1 1 f (t) g (t) dt (t +2) t 2 2t 3 dt t 3 7t 6 dt 1 4 t t2 6t 37 4 f?, g? f f,f 1 f (t) f (t) dt t 1 (t +2) 2 dt 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

5 Name: Seite: (t +2) g g, g 1 g (t) g (t) dt t 1 (t 2 2t 3) 2 dt 1 (t 4 4t 3 2t 2 +12t +9)dt 1 5 t5 t t3 +6t 2 +9t (c) 1 (f,g)? 1 f,g (f,g) a cos fg a cos Aufgabe Ist (v 1,v 2,..., v r ) ein Orthonormalsystem in einem Vektorraum V und bezeichnet U L (v 1,v 2,...,v r ) den von dem Orthonormalsystem aufgespannten Untervektorraum, so lässt sich jeder beliebige Vektor v V eindeudig als Summe v u + w mit u U und w/ U schreiben. Dabei gilt: r u v, v i v i w v r v, v i v i u, w Beweise die obige Beziehung. Wir zeigen nur, dass die Vektoren u und v orthogonal zueinander stehen: r r u, w v, v i v i,v v,v i v i r r v, v i v i,v v, v i v i, r v, v i v i u 1 Winkel zwischen den beiden Polynomen. 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

6 Name: Seite: 6 r v,v i v i,v u 1. Studienjahr Lösungen Serie 6 (Vektorräume, Skalarprodukt) HS 28/9

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

Lösungen Test 1 - Lineare Algebra

Lösungen Test 1 - Lineare Algebra Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Test - Lineare Algebra Dozent: R. Burkhardt Büro: 4. Klasse:. Studienjahr Semester: Datum: HS 8/9 Bemerkung Alle Aufgaben

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen)

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen) Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 22.5.217 (Teil 1, Lösungen) 1. Mai 217 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 217 Steven Köhler 1. Mai 217

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lösungen Serie 5 (Determinante)

Lösungen Serie 5 (Determinante) Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 5 (Determinante) Dozent: R Burkhardt Büro: 463 Klasse: Studienjahr Semester: Datum: HS 2008/09 Aufgabe Bestimme

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5 PROF DR-ING RAINER CALLIES DR THOMAS STOLTE DIPL-TECH MATH KATHRIN RUF DIPL-TECH MATH KARIN TICHMANN WS / HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt Zentralübung Z Bezüglich eines kartesischen Koordinatensystems

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B.

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Lineare Algebra WS2/22 Übungsblatt Übung. Von einem Parallelogramm ABD sind die Punkte A =(, 5), =(3, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Übung 2. Stelle rechnerisch fest, ob das Viereck A

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4.

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Aufgabe 2.1 (8 Punkte) Es sei K ein Körper, n N, V ein 2n-dimensionaler K -Vektorraum und U

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8 D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8. Kern von A: Die Spalten der Matrix A sind Vielfache voneinander, also sind sie linear abhängig und A hat Rang. Somit hat

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

H. Stichtenoth WS 2005/06

H. Stichtenoth WS 2005/06 H. Stichtenoth WS 25/6 Lösungsvorschlag für das. Übungsblatt Aufgabe : Der gesuchte Unterraum U ist die lineare Hülle von v und v 2 (siehe Def. 5. und Bsp. 5.5b), d. h. U : Spanv,v 2 } v R : v λ v + λ

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Lösung zum 9. Tutorium

Lösung zum 9. Tutorium MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 5 Blatt 9 9.6.5 Lösung zum 9. Tutorium. Staatsexamensaufgabe Frühjahr 8 Die Vektoren v = 3, und v = 3 R4 spannen einen Unterraum U

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr