2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

Größe: px
Ab Seite anzeigen:

Download "2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R."

Transkript

1 Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x und f 2 (x) = 3x 4 + x sind in diesem Vektorraum enthalten. Um zu zeigen, dass es sich tatsächlich um einen Vektorraum handelt, müssten wir alle Eigenschaften für Vektorräume nachweisen. Wir wollen lediglich folgende Eigenschaften überprüfen: a) Gilt f 1 + f 2 V? b) Wie lautet das neutrale Element bezüglich der Addition n(x)? c) Wie lautet das inverse Element von f 1? d) Gilt 5 f 1 V? a) Ja, da f 1 + f 2 = 5x 4 + 3x V b) n(x) = 0? c) 2x 4 2x 2 2 d) Ja, da 5 f 1 = 10x x V? 2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. a) Zeigen Sie, dass die Menge B = { 2x 4 ; x 4 x 2 ; 2 } eine Basis des Vektorraums darstellt. Welche Dimension hat die Basis B und somit der Vektorraum? b) Zeigen Sie, dass die Menge C = { 2x 4 ; x 4 x 2} keine Basis des Vektorraums darstellt. Sie können das Ergebnis von 2a) verwenden. c) Zeigen Sie, dass die Menge D = { 2x 4 ; x 4 x 2 ; 2x 4 2x 2} keine Basis des Vektorraums darstellt. d) Zeigen Sie, dass die Menge E = { 2x 4 ; x 4 x 2 ; 2; x 4 + x } keine Basis des Vektorraums darstellt. Sie können das Ergebnis von 2a) verwenden. 1

2 a) Zu zeigen: die drei Vektoren sind linear unabhängig und jeder Vektor kann dargestellt werden durch diese drei Vektoren. Lineare Unabhängigkeit: λ 1 2x 4 + λ 2 (x 4 x 2 ) + λ 3 2 = 0 x 4 (2λ 1 + λ 2 ) + x 2 ( λ 2 ) + 1(2λ 3 ) = 0 hat nur die Lösung λ 1 = λ 2 = λ 3 = 0 (Koeffizientenvergleich), daher linear unabhängig. Erzeugendensystem: λ 1 2x 4 + λ 2 (x 4 x 2 ) + λ 3 2 = ax 4 + bx 2 + c x 4 (2λ 1 + λ 2 ) + x 2 ( λ 2 ) + 1(2λ 3 ) = ax 4 + bx 2 + c hat die Lösung λ 3 = c 2, λ 2 = b und λ 1 = a+b 2, daher kann jeder Vektor dargestellt werden. Daher handelt es sich um ein Erzeugendensystem mit linear unabhängigen Vektoren und somit um eine Basis. B enthält 3 Vektoren, daher ist die Dimension der Basis und des Vektorraums 3 (Wir hatten 3 frei wählbare Koeffizienten a, b und c. Dies deutet ebenfalls auf die Dimension hin). b) Lässt man von einer Basis einen Vektor weg, kann es sich nicht mehr um eine Basis handeln (eine Basis ist ein minimales Erzeugendensystem) c) Die Vektoren können nicht linear unabhängig sein, da 2 (x 4 x 2 ) = 2x 4 2x 2 d) Zur Basis wurde ein Vektor hinzugefügt, daher kann es keine Basis mehr sein (die lineare Unabhängigkeit geht verloren) 3) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 3 + bx 2 + cx + d mit a, b, c, d R. a) Zeigen Sie, dass die Menge B = { x 3 ; x 2 + 1; x 2 + x; x } eine Basis des Vektorraums darstellt. Welche Dimension hat die Basis B und somit der Vektorraum? b) Ist die Menge C = { x 3 ; x 3 + x 2 + x + 1; x 2 + x + 1; 1 } eine Basis des Vektorraums? a) Zu zeigen: die drei Vektoren sind linear unabhängig und jeder Vektor kann dargestellt werden durch diese drei Vektoren. Lineare Unabhängigkeit: λ 1 (x 3 ) + λ 2 (x 2 + 1) + λ 3 (x 2 + x) + λ 4 (x) = 0 x 3 (λ 1 ) + x 2 (λ 2 + λ 3 ) + x(λ 3 + λ 4 ) + 1(λ 2 ) = 0 2

3 hat nur die Lösung λ 1 = λ 2 = λ 3 = λ 4 = 0 (Koeffizientenvergleich), daher linear unabhängig. Erzeugendensystem: λ 1 (x 3 ) + λ 2 (x 2 + 1) + λ 3 (x 2 + x) + λ 4 (x) = ax 3 + bx 2 + cx + d x 3 (λ 1 ) + x 2 (λ 2 + λ 3 ) + x(λ 3 + λ 4 ) + 1(λ 2 ) = ax 3 + bx 2 + cx + d hat die Lösung λ 1 = a, λ 2 = d, λ 3 = b d und λ 4 = c b + d, daher kann jeder Vektor dargestellt werden. Daher handelt es sich um ein Erzeugendensystem mit linear unabhängigen Vektoren und somit um eine Basis. B enthält 4 Vektoren, daher ist die Dimension der Basis und des Vektorraums 4 (Wir hatten 4 frei wählbare Koeffizienten a, b, c und d. Dies deutet ebenfalls auf die Dimension hin). b) λ 1 (x 3 ) + λ 2 (x 3 + x 2 + x + 1) + λ 3 (x 2 + x + 1) + λ 4 (1) = 0 x 3 (λ 1 + λ 2 ) + x 2 (λ 2 + λ 3 ) + x(λ 2 + λ 3 ) + 1(λ 2 + λ 3 + λ 4 ) = 0 hat z.b. die Lösung λ 1 = 1, λ 2 = 1, λ 3 = 1 und λ 4 = 0, daher sind die Vektoren linear abhängig und bilden keine Basis. Alternativ könnte man argumentieren, dass der zweite Vektor von C als Summe von Vektor eins und Vektor drei dargestellt werden kann. 4) Wir betrachten den Vektorraum P 2 (Menge aller Polynome f(x) = ax 2 + bx + c vom Grad höchstens 2). a) Geben Sie die Koordinaten des Vektors g(x) = 3x 2 + x + 1 in der Basis B = { x 2 ; x 2 + x; x + 2 } an und stellen Sie g(x) als Linearkombination der Basisvektoren dar. 1 b) Gegeben sei nun der Vektor h(x) = 2 in der Basis B. Bestimmen Sie die 5 B Darstellung dieses Vektors in der kanonischen Basis K = { x 2 ; x; 1 }. 2, 5 a) g(x) = 0, 5, g(x) = 2, 5 (x 2 ) + 0, 5 (x 2 + x) + 0, 5 (x + 2) 0, 5 B 1 b) g(x) = 7, g(x) = x 2 + 7x K 3

4 5) Wir betrachten den Vektorraum P 1 im Intervall [0; 5] (Menge aller Polynome f(x) = ax + b vom Grad höchstens 1, wir nennen diese Polynome auch affin lineare Funktionen). Ein Skalarprodukt ist definiert durch f 1 ; f 2 := 5 0 f 1 (x) f 2 (x) dx. Für die Vektoren f 1 (x) = 2x + 1 und f 2 (x) = x berechnen Sie a) f 1 ; f 2, b) f 1 = f 1 ; f 1, c) f 2 = f 2 ; f 2, d) den Abstand zwischen f 1 und f 2, d.h. f 1 f 2 = f 1 f 2 ; f 1 f 2 e) den Winkel zwischen f 1 und f 2. Stehen diese beiden Vektoren orthogonal aufeinander? a) 95, 8 3 b) 14, 89 c) 6, 45 d) 8, 47 e) 0, 075 rad bzw. 4, 307 6) In vielen naturwissenschaftlichen Anwendungen werden sogenannte Differenzialgleichungen verwendet. Dies sind Gleichungen, bei denen Ableitungen von Funktionen vorkommen. Die Lösungen solcher Gleichungen sind ebenfalls wieder Funktionen. Wir betrachten die Differenzialgleichung f (t) = 0 a) Rechnen Sie nach, dass f 0 (t) = t + c mit c R eine Lösung der Gleichung ist. b) Zeigen Sie, dass jede Funktion der Form f(t) = k f 0 (t) mit k R eine Lösung darstellt. c) Geben Sie eine Lösung an, die nicht die Form k f 0 (t) hat. d) Beweisen Sie weiter, dass mit zwei Lösungen f 1 (t) und f 2 (t) auch jede Linearkombination f(t) = λ 1 f 1 (t) + λ 2 f 2 (t) mit λ 1, λ 2 R eine Lösung darstellt. e) Welche strukturelle Aussage lässt sich über die Lösungsmenge vermuten? 4

5 a) einsetzen und nachrechnen b) einsetzen und nachrechnen c) f(t) = const 0 d) Sie bildet einen Vektorraum 7) Im Intervall [ 1; 1] kann die Sinusfunktion (Einheit in Radiant!) h(x) = sin(x) brauchbar durch die Polynomfunktion p(x) = x x3 6 approximiert werden. h liegt in einem Vektorraum (dieser interessiert uns hier nicht weiter) mit dem Skalarprodukt f; g := 1 1 f(x) g(x) dx. a) Lassen Sie beide Funktionen vom Computer zeichnen. b) Berechnen Sie den Fehler unserer Approximation im Punkt x = 0, 5. c) Berechnen Sie den Abstand von h(x) zu p(x), d.h. h p = h p; h p (um das Integral zu berechnen können Sie ein CAS, d.h. ein Computer-Algebra- System verwenden) a) In Mupad: h:=sin(x); p:=x-x^3/6; plot(h,p,x=-1..1); b) 0, In Mupad: float(abs(subs(h-p,x=0.5))); c) 0, In Mupad: float(sqrt(int((h-p)^2,x=-1..1))); 8) Wir wollen die Funktion f(x) = sin(x) im Intervall [ π; π] durch eine Linearkombination der Form f p (x) = a 0 g 0 (x) + a 1 g 1 (x) + a 2 g 2 (x) + a 3 g 3 (x), 5

6 mit 1 3 g 0 (x) = 2π, g 1(x) = 2π 3 x, g 2(x) = ) 175 g 3 (x) = (x 8π 7 3 3π2 5 x 45 8π 5 ) (x 2 π2, 3 approximieren. Alle hier betrachteten Funktionen liegen in einem Vektorraum, den wir mit dem Skalarprodukt ausstatten. f 1 ; f 2 := π π f 1 (x) f 2 (x) dx a) Prüfen Sie mit einem CAS ihrer Wahl nach, dass B = {g 0 ; g 1 ; g 2 ; g 3 } eine Orthonormalbasis ist, d.h. die Basisvektoren sind normiert ( g i ; g i = 1 für i {0; 1; 2; 3}) und stehen paarweise orthogonal zueinander ( g i ; g j = 0 für i, j {0; 1; 2; 3} und i j). b) Finden Sie die Bestapproximation f p (x) von f(x) durch orthogonale Projektion von f(x) auf den durch B aufgespannten Unterraum. D.h. berechnen Sie f p = f; g 0 g 0 + f; g 1 g 1 + f; g 2 g 2 + f; g 3 g 3. (um die Integrale zu berechnen können Sie ein CAS verwenden) c) Plotten Sie die Funktionen f(x) und f p (x). a) In Mupad: g0:=1/sqrt(2*pi); g1:=sqrt(3/(2*pi^3))*x; g2:=sqrt(45/(8*pi^5))*(x^2-pi^2/3); g3:=sqrt(175/(8*pi^7))*(x^3-3*pi^2/5*x); int(g0*g0,x=-pi..pi); int(g1*g1,x=-pi..pi); int(g2*g2,x=-pi..pi); int(g3*g3,x=-pi..pi); int(g0*g1,x=-pi..pi); int(g0*g2,x=-pi..pi); int(g0*g3,x=-pi..pi); int(g1*g2,x=-pi..pi); int(g1*g3,x=-pi..pi); int(g2*g3,x=-pi..pi); 6

7 b) f p 0, x 0, x 3 In Mupad: f:=sin(x); pf:=int(g0*f,x=-pi..pi)*g0+int(g1*f,x=-pi..pi)*g1+int(g2*f,x=-pi..pi)*g2+ int(g3*f,x=-pi..pi)*g3; float(expand(pf)); c) Plot in Mupad: plot(f,pf,x=-pi..pi); 7

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 8 18. Mai 2010 Kapitel 8. Vektoren (Fortsetzung) Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 80. (Lineare (Un-)Abhängigkeit)

Mehr

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5 PROF DR-ING RAINER CALLIES DR THOMAS STOLTE DIPL-TECH MATH KATHRIN RUF DIPL-TECH MATH KARIN TICHMANN WS / HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt Zentralübung Z Bezüglich eines kartesischen Koordinatensystems

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Skalarprodukte im Funktionenraum und orthogonale Funktionen

Skalarprodukte im Funktionenraum und orthogonale Funktionen 1 Skalarprodukte im Funktionenraum und orthogonale Funktionen Im Allgemeinen muss ein reelles Skalarprodukt (, ) (wir betrachten reelle Funktionen) folgende Eigenschaften ausweisen: Bilinearität (Linearität

Mehr

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist Orthogonalität p. 1 Skalarprodukt Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind u := u 1 u 2. u n reelle n-tupel, dann ist und v := v 1 v 2. v n u v := u 1 v 1 + u 2

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.)

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.) Blatt 1 (3.10.) 1. Von einem Parallelogramm ABCD sind die Punkte A = (2, 1), B = (6, 2) und D = (3, 5) gegeben. Berechnen Sie C. 2. Stellen Sie rechnerisch fest, ob das Viereck ABCD mit A = (2, 3), B =

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30 Algebra für Informatiker, SS 10 Vorlesungsklausur, 2.7.2010, 12:00-13:30 Name: Matrikelnr.:. (1) Es sind keine Unterlagen und keine elektronischen Hilfsmittel (Taschenrechner, Notebook, u.ä. ) erlaubt!

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2013

Bericht zur Mathematischen Zulassungsprüfung im Mai 2013 Bericht zur Mathematischen Zulassungsprüfung im Mai 3 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am. Mai 3 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 4. Februar 2002, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen Schreiben Sie bitte auf dieses Deckblatt oben

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti Dr. V. Gradinaru T. Welti Herbstsemester 27 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie Aufgabe. Multiple Choice: Online abzugeben..a) Bezüglich des euklidischen Skalarprodukts in R

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Mathematik II. Variante A

Mathematik II. Variante A Prof. Dr. E. Triesch Mathematik II SoSe 28 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

Algebra und Zahlentheorie WS 13/14

Algebra und Zahlentheorie WS 13/14 Algebra und Zahlentheorie WS 13/14 FU Berlin David Müßig http://page.mi.fu-berlin.de/def/auz14/ muessig@mi.fu-berlin.de 21.01.2014 1 Hintergrund: Basen & Vektorräume 1.1 Grundlegende Begriffe Da einige

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

Höhere Mathematik I. Variante B

Höhere Mathematik I. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter (Vorder- und Rückseite beschriftet,

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B.

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Lineare Algebra WS2/22 Übungsblatt Übung. Von einem Parallelogramm ABD sind die Punkte A =(, 5), =(3, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Übung 2. Stelle rechnerisch fest, ob das Viereck A

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Invertieren von Potenzreihen

Invertieren von Potenzreihen Invertieren von Potenzreihen Sei E(x) die Erzeugende Funktion der Reihe, 0, 0, 0,.... E(x) ist neutrales Element der Multiplikation von Potenzreihen. Definition Inverses einer Potenzreihe Sei A(x), B(x)

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017 Beispiele zum Tutorium Numerisches Rechnen und Lineare Algebra WS 6/7 Zur positiven Beurteilung der LV ist es notwendig, dass aus jedem der 9 Abschnitte (Lineare Gleichungssysteme, Determinanten, Vektorräume,

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Mathematik I Übungsblatt 5 WS 7/8 Prof.Dr.W. Konen Dr. A. Schmitter Bereiten Sie die Aufgaben parallel zur Vorlesung so vor dass Sie in der Lage sind Ihre Lösungen vorzutragen. Übungsblatt 5 : Lineare

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr