Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:"

Transkript

1 Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel:

2 Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist ein Auszug us dem Originltitel Klssenrbeiten Mthemtik 5 Über diesen Link gelngen Sie zur entsprechenden Produktseite im Web.

3 . Klssenrbeit Mthemtik Klsse: Dtum: Nme: 1. Miss die folgenden Strecken und notiere ihre Länge: ) Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth b) 2. Zeichne folgende Streckenlängen: ) 7 cm b) 2 cm c) 5,5 cm 3. Welche Gerden stehen senkrecht zueinnder? f 4. Welche Gerden verlufen prllel zueinnder? e d f e d b c b c

4 5. Bei welchen Figuren hndelt es sich um Rechtecke? A B C D 6. Zeichne folgende Rechtecke bzw. Qudrte: ) Qudrt: = 4 cm b) Rechteck: = 4 cm; b = 3 cm 7. Zeichne die Prllelogrmme zu Ende. ) b) 8. Ordne den Körpern den entsprechenden Nmen per Pfeil zu. 5 P. Quder Kugel Würfel Zylinder Kegel Gehstein: Klssenrbeiten Mthemtik 5 Auer

5 9. Streiche flsche Eigenschften durch. 5 P. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Anzhl Flächen Anzhl Knten Anzhl Ecken Quder Würfel Zylinder Kugel Streiche flsche Würfelnetze durch. 11. Florin ht zu einem Quder (Länge = 5 cm, Breite = 4 cm, Höhe = 2 cm) mehrere Schrägbilder gezeichnet. Nur ein Bild ist richtig. Streiche die beiden flschen Schrägbilder durch. 31 P.

6 . Klssenrbeit Mthemtik Klsse: Dtum: Nme: 1. Miss die folgenden Strecken und notiere ihre Länge: ) b) 2. Zeichne folgende Streckenlängen: ) 6 cm b) 7,3 cm c) 5,4 cm 3. Zeichne durch P ) eine Senkrechte zu. b) eine Prllele zu. 4. Welche Gerden stehen senkrecht zueinnder? ) b) c) b P d e c f Gehstein: Klssenrbeiten Mthemtik 5 Auer

7 5. Welche Gerden verlufen prllel zueinnder? ) b) c) Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth b 6. Notiere die Buchstben der Figuren zu den pssenden Bezeichnungen. A Qudrt: Rechteck: Prllelogrmm: 7. Zeichne die Figuren zu Ende. ) Rechteck b) Prllelogrmm c) Rute 8. Wo kommen die Körper im Alltg vor? Nenne jeweils ein Beispiel zu jedem Körpernmen. B ) Würfel b) Quder c) Kugel d) Zylinder d c e f C D 4 P.

8 9. Notiere die entsprechenden Eigenschften der einzelnen Körper. 4 P. Quder Anzhl Flächen Anzhl Knten Anzhl Ecken Würfel Zylinder Kugel 10. Zeichne die Würfelnetze zu Ende. ) b) c) 11. Zeichne die Schrägbilder zu Ende. ) b) 32 P. Gehstein: Klssenrbeiten Mthemtik 5 Auer

9 . Klssenrbeit Mthemtik Klsse: Dtum: Nme: 1. Zeichne einen beliebigen Punkt A. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth ) Zeichne einen beliebigen Punkt B, der 5,3 cm von A entfernt ist. b) Zeichne einen beliebigen Punkt C, der 2,7 cm von A entfernt ist. 2. Wo befinden sich Strecken, Hlbgerden, Gerden? 3. Welche Gerden stehen senkrecht und welche Gerden verlufen prllel zueinnder? f 4. Zeichne durch P ) eine Senkrechte zu. b) eine Prllele zu. P b d e c d c e b 4 P.

10 5. Wie weit ist der Punkt P us Aufgbe 4 von der Gerden entfernt? 1 P. 6. Notiere die Buchstben der Figuren zu den pssenden Bezeichnungen. B A D C F Rechteck: Prllelogrmm: 7. Zeichne folgende Figuren: Qudrt: Rute: ) Rechteck: = 4,5 cm; b = 3,7 cm b) Qudrt: = 5,2 cm c) Prllelogrmm: = 4 cm; b = 3 cm d) Rute: = 4,7 cm 8. Notiere jeweils 2 Eigenschften der Figuren. G ) Rechteck b) Prllelogrmm c) Rute 9. Notiere die Buchstben der Figuren zu den pssenden Bezeichnungen. A B C D E H I E 4 P. 4 P. 5 P. F G I H J Würfel: Quder: Zylinder: Pyrmide: Kegel: Gehstein: Klssenrbeiten Mthemtik 5 Auer

11 10. Notiere ein Kreuz bei whren Aussgen zu den Eigenschften der Körper. 4 P. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Quder Würfel Zylinder Kegel Kugel Flächen stehen senkrecht zueinnder Ht 6 Flächen Alle Flächen sind gleich groß 11. Notiere unter jedes Netz den richtigen Körpernmen. c 12. Zeichne folgende Schrägbilder: b ) Quder: Länge = 4 cm; Breite = 2 cm; Höhe = 3 cm b) Würfel: = 6 cm Besitzt nur 1 Fläche Besitzt nur 2 Flächen 37 P.

12 . Klssenrbeit Mthemtik Klsse: Dtum: Nme: 1. Briefträger Heinz steht n Hus A. Er muss noch zu Hus B, C und D. ) Zeichne lle verschiedenen Wegstrecken ein, um lle Briefe zu verteilen. b) Wie viele verschiedene Vrinten gibt es? c) Welches ist die längste Strecke? 2. Bentworte die Frgen zum Them Hlbgerden. ) Wie viele verschiedene Hlbgerden können von einem Punkt P us gezeichnet werden? b) Wie viele verschiedene Hlbgerden können von einem Punkt P us durch einen Punkt Q gezeichnet werden? c) Es gibt 2 verschiedene Punkte A und B. A ist der Anfngspunkt einer Hlbgerden, die durch B verläuft. B ist der Anfngspunkt einer nderen Hlbgerden, die durch A verläuft. Ws hben die beiden Hlbgerden gemeinsm? 3. Welche Gerden stehen senkrecht und welche Gerden verlufen prllel zueinnder? f g e d c A D b C B 5 P. h 4. Bentworte die Frgen. ) Die Gerde steht senkrecht zu b. b ist senkrecht zu c. Wie steht zu c? b) Die Gerde x verläuft prllel zu y. y steht senkrecht zu z. Wie steht x zu z? Gehstein: Klssenrbeiten Mthemtik 5 Auer

13 5. Pul ht seinen Schlüssel verloren. Ein Mthemtiker erklärt ihm, wo er liegt: Der Schlüssel befindet sich in südlicher Richtung 2 km entfernt von der Strße. Von der Bhnstrecke ist er 3 km entfernt in östlicher Richtung gesehen worden. Zeichne die genue Lge des Schlüssels ein. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Mßstb 1: Zeichne folgende Figuren: ) Rechteck: = 5,8 cm; b = 4,1 cm b) Qudrt: = 0,5 dm c) Prllelogrmm: = 5,4 cm; b = 6,4 cm d) Rute: = 80 mm 7. Wenn mn in Ynniks Computer die Eigenschften eines Vielecks eingibt, spuckt der Rechner den Vielecksnmen us. Mnchml nennt er uch mehrere Vielecke. Gib die jeweilige Antwort des Computers n. ) Meine 4 Seiten sind immer gleich lng. b) Meine Seiten stehen senkrecht ufeinnder. c) Gegenüberliegende Seiten sind prllel. d) Meine Digonlen hlbieren sich. 8. Kreuze richtige Aussgen n. Jedes Rechteck ist ein Prllelogrmm. Jedes Prllelogrmm ist ein Qudrt. 9. Erkläre folgende Begriffe: ) Knte b) Ecke Jedes Prllelogrmm ist ein Rechteck. Jede Rute ist ein Prllelogrmm. 10. Zeichne ds Netz des Quders mit den entsprechenden 3 Digonlen us dem Schrägbild. Die genue Größe des Qudernetzes spielt dbei keine Rolle. 11. Zeichne ds Schrägbild des Siegertreppchens. Ein Würfel ht die Kntenlänge = 4 cm. 4 P. 4 P P.

14 1. ) 9,9 cm b) 8,4 cm 2. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Durch Nchmessen überprüfen. 3. e c; d; b d 4. c e; b ; f d 5. A; B 6. ) b) 7. ) b)

15 Quder Kugel Würfel Zylinder Kegel Anzhl Flächen Anzhl Knten Anzhl Ecken Quder Würfel Zylinder Kugel 1 0 1

16 1. ) 6,4 cm b) 5,8 cm 2. Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Durch Nchmessen überprüfen P ) b b) d nicht senkr. zu c c) e f 5. ) nicht prllel zu b b) c d c) e f 6. Qudrt: B Rechteck: A; B Prllelogrmm: C; A; B 7. ) Rechteck b) Prllelogrmm c) Rute 8. Hier sind mehrere verschiedene Lösungen möglich, z. B. ) Würfel: Spielwürfel b) Quder: Schuhkrton c) Kugel: Bll d) Zylinder: Gls

17 Anzhl Flächen Anzhl Knten Anzhl Ecken Quder Würfel Zylinder Kugel ) b) c) 11. ) b)

18 1. Durch Nchmessen überprüfen. Hier sind viele Lösungen möglich. 2. Strecken: d; e Hlbgerden: ; c Gerden: b; f Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth 3. d; b c; b e; c e ,2 cm 6. P Rechteck: B; D Qudrt: D Prllelogrmm: B; D; F; H Rute: D; H 7. ) Zeichnung durch Nchmessen überprüfen. b) Zeichnung durch Nchmessen überprüfen. c) Zeichnung durch Nchmessen überprüfen. Hier sind viele verschiedene Lösungen möglich. d) Zeichnung durch Nchmessen überprüfen. Hier sind viele verschiedene Lösungen möglich. 8. ) Rechteck: Gegenüberliegende Seiten sind gleich lng und prllel. Die Digonlen hlbieren sich. Benchbrte Seiten stehen senkrecht ufeinnder. b) Prllelogrmm: Gegenüberliegende Seiten sind gleich lng und prllel. Die Digonlen hlbieren sich. Gegenüberliegende Winkel sind gleich groß. Benchbrte Winkel ergänzen sich zu 180. c) Rute: Alle 4 Seiten sind gleich lng. Gegenüberliegende Seiten sind prllel. Die Digonlen hlbieren sich. Gegenüberliegende Winkel sind gleich groß. Benchbrte Winkel ergänzen sich zu 180.

19 9. Würfel: E; H Quder: C; E; F; H Zylinder: A; G Pyrmide: B; I Kegel: D; J 10. Flächen stehen senkrecht zueinnder Ht 6 Flächen Quder Alle Flächen sind gleich groß Würfel Zylinder 11. Kegel Kugel ) Quder b) Pyrmide c) Zylinder 12. ) b) Besitzt nur 1 Fläche Besitzt nur 2 Flächen

20 1. ) sh. Grfik b) 6 c) ACDBA D C Gehstein: Klssenrbeiten Mthemtik 5 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth 2. ) Unendlich viele. b) Eine. c) Die Strecke AB. 3. h d; h c; g b; f d; f c; f ; d c; f h; c; d 4. ) verläuft prllel zu c. b) x steht senkrecht uf z Durch Nchmessen überprüfen. 7. ) Qudrt, Rute b) Qudrt, Rechteck c) Qudrt, Rechteck, Rute, Prllelogrmm d) Qudrt, Rechteck, Rute, Prllelogrmm A B

21 8. Jedes Rechteck ist ein Prllelogrmm. Jede Rute ist ein Prllelogrmm. 9. ) Die Flächen eines Körpers stoßen n den Knten zusmmen. b) Die Knten eines Körpers stoßen n den Ecken zusmmen

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunden Mthemtik 32 10. Klsse: Mrco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel: Vertretungsstunden Mthemtik 9./10. Klsse

Mehr

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e.

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e. K. D Alcmo / J. Dy: Lerninhlte selbstständig errbeiten Mthemtik 0 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Alle Knten des Prisms sind lng. Unterteile den Streckenzug zunächst in die Einzelstrecken,

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert ownlo Jens onr, Hry Seifert Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte Mterilien für s gnze Schuljhr ownlouszug us em Originltitel: Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunde Mthemtik 4 5. Klsse: Größen Umfng und Flächeninhlt Downloduszug us dem Originltitel: Umfng Rechteck 1 Größen Umfng und Flächeninhlt 1. Ds drgestellte

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule bschlussrbeit Mthemtik ildungsgng Huptschule Hupttermin 15.05.006 Nme der Schule _, Nme der Schülerin / des Schülers Klsse GESMT NOTE 59 Punkte Ort, Dtum Korrigierende Lehrkrft erbeitungshinweise bschlussrbeit

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen?

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen? Würfelufgen Für lle Aufgen gilt: Kntenlänge der Holzwürfel = m 1. Bue einen Würfel us 8 Holzwürfeln. ) Zeihne den entstndenen Würfel: ) Wie gross ist eine Kntenlänge des entstndenen Würfels? ) Wie viele

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Download. Klassenarbeiten Mathematik 5. Spiegeln und verschieben. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Spiegeln und verschieben. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Klassenarbeiten Mathematik 5 Spiegeln und verschieben Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 5 Spiegeln und verschieben Dieser Download ist

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 10. Schuljahr - Grundlagentraining für jeden Tag!

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 10. Schuljahr - Grundlagentraining für jeden Tag! Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Mthe-Bsics-Triner / 0. Schuljhr - Grundlgentrining für jeden Tg! Ds komplette Mteril finden Sie hier: School-Scout.de 0. Schuljhr H.-J.

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen.

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen. DOWNLOD ndres Mrschll Lur Petry Flächeninhlt und Umfng: und Qudrt reitslätter und Test zur sonderpädgogischen Förderung ndres Mrschll, Lur Petry Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel:

Mehr

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Übungsteil: 1. Algebra

Übungsteil: 1. Algebra lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Download. Klassenarbeiten Mathematik 5. Natürliche Zahlen. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Natürliche Zahlen. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Klassenarbeiten Mathematik 5 Natürliche Zahlen Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 5 Natürliche Zahlen Dieser Download ist ein Auszug aus

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

5 und a y beschreiben, die als Koordinaten oder Komponenten. des Vektors bezeichnet werden. Ein Vektor entspricht daher a a y 1 einem Zahlenpaar.

5 und a y beschreiben, die als Koordinaten oder Komponenten. des Vektors bezeichnet werden. Ein Vektor entspricht daher a a y 1 einem Zahlenpaar. 9 Vektoren In der Litertur über Pirten geht es oft um geheimnisvolle Schätze, die mithilfe von Schtzkrten gefunden werden können. Die Anweisung uf einer Krte lutet zum eispiel: Um den Schtz zu finden,

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 004/005 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P. Es gilt =. Berechne jeweils den Wert des Terms: ) 0,3 b) () c) : ( + ) P. Von 800 Jugendlichen lesen lut einer Umfrge

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Eine Lerneinheit. über. regelmäßige Vielecke. und

Eine Lerneinheit. über. regelmäßige Vielecke. und BLK-Modellversuch SINUS Rheinlnd-Pflz Netzwerkschule Cusnus-Gymnsium Wittlich Fchbereich Mthemtik Kurfürstenstrsse 14 54516 Wittlich Eine Lerneinheit über regelmäßige Vielecke C D C A B E A B A B C D und

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Geraden im Raum Vektoren

Geraden im Raum Vektoren Seite 8 Gerden im Rum Vektoren Punkte im Rum Seite 8 B A C D x D A B O C x x x x x b) A ( ); B ( ); C ( ); D ( ); E ( ); F ( ); G ( ); H ( ) ) Diese Punkte liegen in der x x -Ebene (x x -Ebene; x x -Ebene).

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus. Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3.

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3. I. Reelle Zhlen L9_0 Rtinle Zhlen: ; ;,8 ;, ; 9 7 L9_0 Irrtinle Zhlen: 7 ; + ; ; 8 8 8 L9_0 L9_0 L9_0 L9_0 8 + ist bereits vllständig vereinfcht! (Achtung: + +, vgl. Tschenrechner,, und,, ls +, ), : +

Mehr

Download. Klassenarbeiten Mathematik 5. Multiplikation und Division. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Multiplikation und Division. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Klassenarbeiten Mathematik 5 Multiplikation und Division Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 5 Multiplikation und Division Dieser Download

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Känguru der Mathematik 2005 Gruppe Kadett (7. und 8. Schulstufe) Österreich

Känguru der Mathematik 2005 Gruppe Kadett (7. und 8. Schulstufe) Österreich Känguru der Mthemtik 005 Gruppe Kdett (7. und 8. Schulstufe) Österreich - 7.3.005-3 Punkte Beispiele - ) In den Feldern einer Tbelle befinden sich wie bgebildet 8 Kängurus. Jedes dieser Kängurus knn von

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr