Sozialwissenschaftliche Methoden und Statistik I

Größe: px
Ab Seite anzeigen:

Download "Sozialwissenschaftliche Methoden und Statistik I"

Transkript

1 Sozialwissenschaftliche Methoden und Statistik I Universität Duisburg Essen Standort Duisburg Integrierter Diplomstudiengang Sozialwissenschaften Skript zum SMS I Tutorium Von Mark Lutter Stand: April 2004 Teil II Wahrscheinlichkeitsrechnung und Inferenzstatistik

2 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 2 von 52 Inhaltsverzeichnis Seite 1. Wahrscheinlichkeitstheorie Grundbegriffe Zufallsexperiment Wahrscheinlichkeit Stichprobenraum Ω Elementarereignis ω Ereignis Spezielle Ereignisse: das leere & das sichere Ereignis Komplementäres Ereignis 1.2 Verknüpfung von Ereignissen Durchschnittsbildung (A B) Vereinigung (A B) Unvereinbarkeit von Ereignissen Differenz von Ereignissen 1.3 Empirischer Wahrscheinlichkeitsbegriff: Bernoulli Theorem Theoretischer Wahrscheinlichkeitsbegriff: Laplace Experiment Axiome der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung: Additionssatz: Additionstheorem A Additionstheorem B Bedingte Wahrscheinlichkeit Stochastische Unabhängigkeit Multiplikationstheorem für abhängige Ereignisse Multiplikationstheorem für unabhängige Ereignisse Satz von der totalen Wahrscheinlichkeit Theorem von Bayes Kombinatorik Permutationen Kombinationen Das Urnenmodell Zufallsvariablen & Wahrscheinlichkeitsverteilungen Definition Zufallsvariable Diskrete vs. Stetige Zufallsvariablen Wahrscheinlichkeitsfunktion Verteilungsfunktion

3 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 3 von diskrete vs. stetige Wahrscheinlichkeitsverteilungen diskrete Verteilungsformen diskrete Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Poissonverteilung stetige Verteilungsformen Normalverteilung Standardnormalverteilung 4. Stichprobe & Grundgesamtheit Die Stichprobenkennwerteverteilung Zentraler Grenzwertsatz Wichtige Begriffe Statistik Schätzer Erwartungswert Erwartungstreue Standardfehler (des Mittelwertes) 4.1 Bestimmung von Konfidenzintervallen Die Überprüfung statistischer Hypothesen / Testverfahren Hypothesenarten Fehlerarten Signifikanz z-test t-test F-Test Chi-Quadrat-Test Interpretation der SPSS-Outputs 6. Literaturverzeichnis... 52

4 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 4 von Wahrscheinlichkeitstheorie 1.1 Grundbegriffe Zufallsexperiment (auch: zufälliger Versuch) Ist ein beliebig oft wiederholbarer Vorgang Wird nach einer genau festgelegten Vorschrift durchgeführt Führt zu genau einem Ergebnis aus einer Menge möglicher Ergebnisse die Menge aller möglichen Ergebnisse lässt sich genau angeben Welches Ergebnis aber eintritt, hängt vom Zufall ab Daher: Das Ergebnis eines Zufallsexperiments lässt sich nicht mit Sicherheit vorherbestimmen, stattdessen lässt sich angeben, mit welcher Wahrscheinlichkeit jedes mögliche Ergebnis eintreten wird Beispiele für Zufallsexperimente sind Das Werfen einer Münze Das Werfen eines Würfels Das Roulettespiel Die zufällige Entnahme eines Produkts aus einer laufenden Produktion und die Kontrolle auf Fehlerhaftigkeit Ebenso sind die folgenden Vorgänge Beispiele für Zufallsexperimente (und hier findet sich der Knüpfpunkt zur empirischen Sozialforschung): Die Befragung einer zufällig ausgewählten Person nach dem Lebensalter, nach dem Geschlecht, nach dem Einkommen usw. Wahrscheinlichkeit (engl.: probability) Eine Wahrscheinlichkeit gibt die Chance des Auftretens eines zufälligen Ereignisses (oder: Ergebnis eines Zufallsexperiment) an Eine Wahrscheinlichkeitsangabe wird immer mit einem Zahlenwert zwischen 0 und 1 (bzw. als Prozentangabe zwischen 0% und 100%) angegeben Stichprobenraum Ω [lies: Omega ] (auch: Ergebnismenge, Ereignisraum) Die Menge aller möglichen Ergebnisse eines Zufallsexperiments heißt Stichprobenraum und wird mit Ω bezeichnet Bsp.: Werfen eines Würfels: Ω {1,2,3,4,5,6} Werfen einer Münze: Ω {Wappen, Zahl} Werfen zweier Münzen: Ω {WW, ZZ, WZ, ZW}

5 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 5 von 52 Elementarereignisse ω [lies: klein Omega ] Die einzelnen Elemente ω aus Ω werden Elementarereignisse genannt Bsp.: Zufallsexperiment: Werfen eines Würfels Mögliche Elementarereignisse: 1, 2, 3, 4, 5, 6 Zufallsexperiment: Werfen einer Münze Mögliche Elementarereignisse: Wappen, Zahl (zufälliges) Ereignis Eine Teilmenge A des Stichprobenraumes Ω heißt (zufälliges) Ereignis Ist das Ergebnis eines Zufallsexperiments ein Element von A, dann sagt man: das (zufällige) Ereignis A ist eingetreten. Ein Ereignis A tritt also genau dann ein, wenn ein Element ω aus Ω zur Teilmenge A gehört Ereignisse werden mit Großbuchstaben bezeichnet Bsp.: Beim Zufallsexperiment Werfen mit einem Würfel ist die Teilmenge {2,4,6} das Ereignis A gerade Augenzahl und die Teilmenge {1,3,5} das Ereignis B ungerade Augenzahl Spezielle Ereignisse Besondere Teilmengen von Ω sind a) das sichere Ereignis und b) das unmögliche Ereignis: Das sichere Ereignis E {Ω} enthält die Menge aller Elementarereignisse ( Ω) und tritt daher immer ein Das unmögliche Ereignis E {φ} enthält die leere Menge ( φ) und tritt daher niemals ein Komplementäres Ereignis Ein Ereignis A, welches aus nicht zu A gehörenden Elementarereignissen besteht, sondern aus allen anderen Elementen ω aus Ω, heißt das zu A komplementäre Ereignis A. Im obigem Beispiel ist Ereignis A gerade Augenzahl das komplementäre Ereignis zu B ungerade Augenzahl (und umgekehrt) Oder: das zum leeren Ereignis komplementäre Ereignis ist das sichere Ereignis Die Menge A ist also das Genaue Gegenteil von A

6 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 6 von Verknüpfung von Ereignissen 1. Durchschnittsbildung A B ( A und / geschnitten B ) A und B treten gleichzeitig ein, d.h. das nach Durchführung eines Zufallsexperiment eingetretene Ergebnis ω aus Ω gehört gleichzeitig sowohl in die Teilmenge A als auch in die Teilmenge B 2. Vereinigung A B ( A oder / vereinigt B ) A oder B tritt ein, d.h. das Element ω kann zur Teilmenge A oder zur Teilmenge B gehören Bsp.: Zwei Ereignisse A und B haben die folgenden Teilmengen: A {1,2,3,6} B {1,4,5,6} Dann ist: A B { 1,6 } A B { 1,2,3,4,5,6 } Unvereinbarkeit (auch: Unverträglichkeit) von Ereignissen Zwei Ereignisse heißen unvereinbar, wenn gilt: A B φ D.h. die Mengen A und B enthalten keine gleichen Elemente Bsp.: Die Ereignisse A: gerade Augenzahl und B: ungerade Augenzahl sind unvereinbar Bei Unvereinbarkeit kann immer nur ein Ereignis auftreten, niemals beide gleichzeitig! Differenz von Ereignissen Die Differenz A \ B ( A ohne B ; auch: A minus B ) tritt dann ein, wenn A, aber nicht B eintritt

7 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 7 von 52 Graphisch dargestellt (die schraffierte Fläche zeigt jeweils den Bereich, in dem das Element ω liegt): 1.3 Empirische Wahrscheinlichkeit: Bernoulli Theorem (auch: Gesetz der großen Zahl) Nach dem Bernoulli Theorem lassen sich Wahrscheinlichkeiten für zufällige Ereignisse empirisch anhand ihrer Auftretenshäufigkeit (bei hinreichend großer Anzahl von Wiederholungen des Zufallsexperiments) ermitteln Merke: die relative Häufigkeit eines Ereignisses stellt (für eine hinreichend große Anzahl von Versuchen) einen Schätzwert für die Wahrscheinlichkeit des Ereignisses dar. 1 Die Wahrscheinlichkeit für das Auftreten eines Ereignisses A wird mit P(A) bezeichnet. P steht für das englische Wort probability Wahrscheinlichkeit 1 vgl. dazu die Ausführungen in Dürr/Mayer, a.a.o., Kap.: 2.5 (S.26ff.) oder die entsprechenden Ausführungen im Faulbaum-Skript

8 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 8 von Theoretische (klassische) Wahrscheinlichkeit: Laplace Experiment Nach Laplace kann die Wahrscheinlichkeit für ein Ereignis a priori bestimmt werden, d.h. ohne empirische Überprüfung der relativen Häufigkeit eines Ereignis (Bernoulli-Theorem), sondern auf theoretischem Weg! Def.: Laplace Experiment: Ein Zufallsexperiment mit endlich vielen, gleichwahrscheinlichen Ergebnissen heißt Laplace Experiment Beispiele für Laplace Experimente sind: Das Werfen eines (idealen) Würfels Das Werfen einer (idealen) Münze Das Ziehen von Kugeln aus einer (idealen) Urne Die Wahrscheinlichkeit eines Ereignisses A lässt sich nach Laplace mit folgender Formel bestimmen: Anzahl günstiger Fälle Anzahl der Elemente von A P(A) Anzahl möglicher Fälle Anzahl der Elemente von Ω Bsp.: 1. Werfen einer Münze. Wie groß ist die Wahrscheinlichkeit für das Eintreten des Ereignisses E { Wappen }? Da: E { Wappen } > 1 Element Ω {W,Z} > 2 Elemente P( Wappen ) ½ 2. Werfen eines Würfels. Wie groß ist die Wahrscheinlichkeit für das Auftreten des Ereignisses E {6}? Da: E {6} > 1 Element Ω {1,2,3,4,5,6} > 6 Elemente P(Augenzahl 6) 6 1

9 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 9 von Werfen zweier Würfel. Wie groß ist die Wahrscheinlichkeit für das Auftreten des Ereignisses E {Augensumme 10}? Da: E {(4,6); (5,5); (5,6); (6,5); (6,4); (6,6)} > 6 Elemente Ω {(1,1);(1,2);(1,3);(1,4);(1,5);(1,6); (2,1);(2,2);(2,3);(2,4);(2,5);(2,6); (3,1);(3,2);(3,3);(3,4);(3,5);(3,6); (4,1);(4,2);(4,3);(4,4);(4,5);(4,6); (5,1);(5,2);(5,3);(5,4);(5,5);(5,6); (6,1);(6,2);(6,3);(6,4);(6,5);(6,6)} > 36 Elemente P(Augensumme 10) 36 6 Anmerkung: Bei den obigen Beispielen können die entsprechenden Anzahlen aufgrund der (Noch-) Überschaubarkeit durch Abzählen leicht bestimmt werden bei komplexeren Mengen ist dies nicht mehr möglich. Dann bedient man sich der Kombinatorik (näheres dazu in Kapitel 2) 1.5 Axiome (Grundsätze) der Wahrscheinlichkeitstheorie P(Ω) 1 P(φ) 0 P( A ) 1 P(A) P(A \ B) P(A) P(A B) vgl. hierzu Beispiel 2.8 in Dürr/Mayer, S. 31

10 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 10 von Wahrscheinlichkeitsrechnung: Additionssatz: Variante 1: Falls zwei voneinander unabhängige Ereignisse vereinbar sind, d.h. falls gilt P(A B) φ dann gilt Additionstheorem A: P(A B) P(A) + P(B) P(A B) Variante 2: Falls jedoch zwei voneinander unabhängige Ereignisse unvereinbar sind, d.h. falls gilt: P(A B) φ dann gilt Additionstheorem B: P(A B) P(A) + P(B) Bsp.: Wie hoch ist die Wahrscheinlichkeit, aus einem Skatspiel (32 Karten) eine schwarze Karte oder einen König zu ziehen? Diese Frage bezieht sich auf Additionstheorem A Es gibt insgesamt 32 Karten (16 rote, 16 schwarze) mit 4 Königen (2 sind rot, 2 sind schwarz). Auftreten kann eine schwarze Karte (Ereignis A) oder ein König (Ereignis B). Formal haben wir hier zwei voneinander unabhängige Ereignisse, die sich nicht gegenseitig voneinander ausschließen (eine schwarze Karte kann gleichzeitig auch ein König sein und umgekehrt) Daher: P(A B) P(A) + P(B) P(A B) Die Wahrscheinlichkeiten können wir mit Laplace ermitteln: P(A B) Anmerkung: Durch die Addition von P(A)+P(B) werden zunächst 2 schwarze Könige doppelt gezählt, anschließend werden sie mit P(A B) wieder subtrahiert. Wie hoch ist die Wahrscheinlichkeit, beim Würfeln mit einem idealen Würfel eine 2 oder eine 4 zu würfeln? Diese Frage bezieht sich auf Additionstheorem B Hier haben wir zwei voneinander unabhängige Ereignisse, die sich gegenseitig ausschließen (es gilt: P(A B ) φ). Daher: P(A B) P(A) + P(B)

11 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 11 von Bedingte Wahrscheinlichkeit / stochastische Unabhängigkeit / Multiplikationstheorem Die Wahrscheinlichkeit für das Ereignis A unter der Bedingung, dass Ereignis B bereits eingetreten ist, heißt bedingte Wahrscheinlichkeit Man schreibt: P(A B) Hierbei geht es um die Frage, ob das Eintreten von B die Wahrscheinlichkeit für das Auftreten von A (1) verändert oder (2) nicht verändert (1) Hat das Eintreten von B einen Einfluss auf die Wahrscheinlichkeit für das Auftreten von A, dann sind beide Ereignisse voneinander abhängig. In diesem Falle gilt die Formel für die bedingte Wahrscheinlichkeit: P(A B) P( A B) P( B) Aus dieser Formel lässt sich das Multiplikationstheorem für abhängige Ereignisse ableiten: P(A B) P(A B) P(B) bzw. P(A B) P(B A) P(A) (2) Hat das Eintreten von B keinen Einfluss auf die Wahrscheinlichkeit für das Auftreten von A, dann sind A und B voneinander unabhängig. Zwei Ereignisse sind insbesondere dann unabhängig voneinander, wenn das Multiplikationstheorem für unabhängige Ereignisse gilt: P(A B) P(A) P(B) bzw. P(A B C) P(A) P(B) P(C) Für die bedingte Wahrscheinlichkeit bedeutet dies, dass es keine bedingte Wahrscheinlichkeit gibt, d.h. es gilt: P(A B) P(A) bzw. P(B A) P(B)

12 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 12 von 52 Beispielaufgaben: (weitere Aufgaben: Dürr/Mayer, a.a.o., S. 38/39) - bedingte Wahrscheinlichkeit: Für eine Untersuchung der Rauchgewohnheiten bei Männern und Frauen hat eine Zufallsstichprobe von 300 Personen folgende (absolute) Häufigkeiten ergeben: Mann Frau Raucher Nicht- Raucher Wie groß ist die Wahrscheinlichkeit, dass eine aus der gleichen Population zufällig ausgewählte Person männlich ist, unter der Bedingung, dass sie zur rauchenden Bevölkerung gehört? Die relativen Häufigkeiten können nach dem Bernoulli-Theorem als Schätzwerte für die Wahrscheinlichkeiten genommen werden. Wir definieren folgende Ereignisse: A: Person ist männlich; B: Person ist Raucher Gesucht ist: P(A B) P( A B) P( B) Es ergeben sich folgende Wahrscheinlichkeiten: P(A B) ( Person ist männlich und Raucher ) 40/300 P(B) ( Person ist Raucher ) 100/300 Dann ist: P(A B) / , Multiplikationstheorem für unabhängige Ereignisse: Wie hoch ist die Wahrscheinlichkeit, beim 3maligen Würfeln mit einem idealen Würfel beim ersten Wurf eine 6, beim zweiten Wurf eine gerade Augenzahl und beim dritten Wurf eine ungerade Augenzahl zu würfeln? Da die Ereignisse voneinander unabhängig sind gilt: 1 3 P(A B C) P(A) P(B) P(C)

13 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 13 von 52 - Multiplikationstheorem für abhängige Ereignisse Eine gutdurchgemischte Urne enthalte 20 rote und 25 weiße Kugeln. Es wird zweimal jeweils eine Kugel ohne Zurücklegen gezogen. Wie groß ist die Wahrscheinlichkeit, erst eine rote und dann eine weiße Kugel zu ziehen? Wir definieren folgende Ereignisse: A: die erste Kugel ist rot B: die zweite Kugel ist weiß Gesucht ist: P(A B). Da wir ohne Zurücklegen ziehen, sind beide Ereignisse voneinander abhängig, deswegen gilt: P(A B) P(A) P(B A) Die Wahrscheinlichkeiten ermitteln wir nach Laplace: P(A) 20/45 (20 rote Kugeln von insgesamt 45 beim ersten Zug) P(B A) 25/44 (25 weiße Kugeln von nur noch 44 Kugeln beim zweiten Zug) Demnach: P(A B) 20/45 25/44 25/99 Dieser Fall kann beliebig erweitert werden: Wie groß ist die Wahrscheinlichkeit, dass die erste Kugel rot, die zweite weiß, die dritte rot und die vierte wieder weiß ist (jeweils ohne Zurücklegen)? Wir definieren folgende 4 Ereignisse: A: erste Kugel rot B: zweite Kugel weiß C: dritte Kugel rot D: vierte Kugel weiß Gesucht ist: P(A B C D) P(A) P(B A) P(C A B) P(D A B C) , Satz von der totalen Wahrscheinlichkeit Der Satz von der totalen Wahrscheinlichkeit stellt im Prinzip nichts anderes dar als eine Erweiterung des Multiplikationssatzes für abhängige Ereignisse. Genauer: Es können beliebig viele Multiplikationssätze (für abhängige Ereignisse) additiv (d.h. nach Additionstheorem B) miteinander verknüpft werden. Er ist definiert als: P(B) P(B A 1 ) + P(B A 2 ) + + P(B A i ) P(A 1 ) P(B A 1 ) + P(A 2 ) P(B A 2 ) + + P(A i ) P(B A i ) oder vereinfacht geschrieben: P(B) P( A ) P( B Ai) n i 1 i

14 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 14 von 52 Ein Anwendungsbeispiel bietet die Erweiterung obiger Beispielaufgabe (vgl. S.13): Wie groß ist die Wahrscheinlichkeit, beim zweimaligen Ziehen ohne Zurücklegen erst eine rote, (und) dann eine weiße Kugel oder erst eine weiße, (und) dann eine rote Kugel zu ziehen? Nach dem Satz der totalen Wahrscheinlichkeit ergibt sich: , Den Unterschied zwischen Satz der totalen Wahrscheinlichkeit und Multiplikationstheorem für abhängige Ereignisse verdeutlicht auch folgende Aufgabe: Ein Unternehmen hat insgesamt 3 Produktionsstandorte mit unterschiedlich großer Anzahl an Arbeitern. An jedem der 3 Standorte müssen Arbeiter entlassen werden. Standort: S 1 S 2 S 3 Anteil der Arbeiter an der Gesamtzahl Anteil der Arbeiter, die am Standort entlassen werden 50% 25% 25% 10% 15% 2% Aus der Gesamtarbeiterschaft wird ein Arbeiter zufällig ausgewählt. a) Wie groß ist die Wahrscheinlichkeit, dass dieser Arbeiter zu S 1 gehört und nicht entlassen wird? b) Wie groß ist die Wahrscheinlichkeit, dass dieser Arbeiter nicht entlassen wird, wobei er zu allen 3 Standorten gehören kann? Wir definieren zunächst folgende Ereignisse: A: Arbeiter wird nicht entlassen A : Arbeiter wird entlassen S i : Arbeiter stammt aus Standort S i, wobei i 1, 2, 3. Aufgabe a) bezieht sich aufs Multiplikationstheorem für abhängige Ereignisse: Gesucht ist: P(S 1 A) P(A S 1 ) P(S 1 ) 0,9 0,5 0,45 Antwort: Mit einer Wahrscheinlichkeit von 45% gehört er zu S 1 und wird nicht entlassen. Aufgabe b) bezieht sich auf den Satz der totalen Wahrscheinlichkeit: Gesucht ist P(B), wobei B das Ereignis: Ein Arbeiter, ausgewählt aus der Gesamtarbeiterschaft, wird nicht entlassen ist. Dann ergibt sich nach dem Satz der totalen Wahrscheinlichkeit: P(B) 0,9 0,5 + 0,85 0,25 + 0,98 0,25 0,9075. Antwort: Ein (zufällig ausgewählter) Arbeiter dieser Firma hat eine 91%tige Chance, nicht entlassen zu werden.

15 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 15 von Theorem von Bayes 2 Das Bayes-Theorem ist nun eine Verknüpfung der bedingten Wahrscheinlichkeit mit dem Multiplikationstheorem für abhängige Ereignisse und der totalen Wahrscheinlichkeit: Die Formel für die bedingte Wahrscheinlichkeit lautet: P(A B) P( A B) P( B) P(A i B) P( A i P( B) B) Für P( A i B) wird die Formel für das Multiplikationstheorem eingesetzt; für P(B) wird die Formel für die totale Wahrscheinlichkeit eingesetzt; daraus ergibt sich das Bayes Theorem: P(A i B) P( A ) P( B A ) n i 1 i P( A ) P( B A ) i i i Mit dem Bayes - Theorem lässt sich nun die bedingte Wahrscheinlichkeit ermitteln, wie groß der Wahrscheinlichkeitsanteil der Schnittmenge P( A i B) an P(B) ist - wobei P(B) die Gesamt-(totale)-Wahrscheinlichkeit ist Bezogen auf obige Beispielaufgabe ( Arbeiter, vgl. S. 14) ist man mit dem Bayes - Theorem in der Lage, folgende Frage zu klären: c) Angenommen, der ausgewählte Arbeiter gehört zu denen, die nicht entlassen werden. Mit welcher Wahrscheinlichkeit stammt er aus Standort S 1? Gesucht ist also die Wahrscheinlichkeit, mit der ein Arbeiter aus S 1 stammt, unter der Bedingung, dass er zu denen gehört, die nicht entlassen werden. Dann gilt: P(S 1 A) P ( A S1) P( S1) P( B) 0,45 0, 496 0,9075 vgl. vgl. Teilaufgabe Teilaufgabe a) b) 2 Das Theorem von Bayes und der Satz von der totalen Wahrscheinlichkeit wird im Dürr/Mayer nicht behandelt. Neben den entsprechenden Ausführungen im Faulbaum Skript sind sie sehr gut erklärt in: Clauß, G. et al., a.a.o., Kap.3; insbes. Kap.: sowie Kap.: Auch sehr gut: Bamberg/Baur, a.a.o., Kap.: 7.3.5ff. Hinweis: Das gesamte Kapitel 3 des Buches von Clauß et. al. ist meiner Meinung nach mit die beste, weil verständlichste Darstellung der Wahrscheinlichkeitstheorie; daher absolut empfehlenswert!

16 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 16 von Kombinatorik Mithilfe der Kombinatorik ist es möglich, die Menge der möglichen Ergebnisse eines Zufallsexperiments, also Ω, zu bestimmen genauer formuliert: Es kann die Menge verschiedener Anordnungsmöglichkeiten von Elementen bestimmt werden Unterschieden wird zwischen Permutationen und Kombinationen: 2.1 Permutation von n Elementen Jede Zusammenstellung / Anordnung, die dadurch entsteht, dass man n gegebene Elemente in irgendeiner Reihenfolge nebeneinander setzt, heißt Permutation der gegebenen Elemente Dabei unterscheidet man (a) ob alle Elemente verschieden sind, oder (b) ob es Elemente gibt, die in Klassen gleicher Elemente zerfallen (a) Alle n Elemente sind verschieden Dann gilt: Die Anzahl der Permutation von n verschiedenen Elementen wird berechnet mit n! (lies: n Fakultät) 3 Bsp.: Wie viele verschiedene `Worte lassen sich unter Verwendung des Wortes MAYER bilden? Jeder Buchstabe - also jedes Element - des Wortes MAYER ist verschieden Daher: n! Hier: 5 Elemente, also 5! verschiedene Anordnungsmöglichkeiten (b) Es gibt n Elemente, die in k Klassen von einander gleichen Elementen zerfallen Dann gilt: Die Permutation wird berechnet mit n! n! n!... n 1 2 k! 3 Unter n! versteht man das Produkt der ersten n natürlichen Zahlen. Bsp.: 4! oder 8! Ferner wird definiert: 0! 1

17 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 17 von 52 Bsp.: Wie viele verschiedene `Worte lassen sich unter Verwendung des Wortes MUELLER bilden? Insgesamt gibt es 7 Elemente, davon sind 2 Elemente gleich n 1! n n!!... 2 n k! 7! 1!1!1!2!2! Erläuterung: Im Zähler steht 7!, da es insgesamt 7 Buchstaben gibt. Im Nenner stehen die Klassen von Elementen: Es gibt drei Klassen von Buchstaben (M,U,R) mit jeweils einem Element (deswegen dreimal 1!) Des weiteren gibt es zwei Klassen von Buchstaben (E,L) mit jeweils zwei Elementen (deswegen zweimal 2!) 2.2 Kombinationen k-ter Ordnung von n Elementen Bildet man nun aus einer Menge von n verschiedenen Elementen eine Zusammenstellung, die aus k Elementen besteht, so nennt man dies Kombination k-ter Ordnung von n Elementen Dabei unterscheidet man 4 Möglichkeiten: mit / ohne Berücksichtigung der Reihenfolge und mit / ohne Zurücklegen Die Anzahl der Kombinationen k-ter Ordnung von n Elementen berechet man mit folgenden vier Formeln: Mit Berücksichtigung der Reihenfolge Ohne Berücksichtigung der Reihenfolge Ohne Zurücklegen n! ( n k)! n k Mit Zurücklegen k n n + k 1 k EXKURS: n ist der sog. Binomialkoeffizient (lies: n über k ). k n Es gilt: n! (für k n) Wobei: n (für n 0) n n 1 k k!( n k)! 1 n n (für n 0) (für k > n) 0 1 n 0 k

18 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 18 von 52 Beispiel für die vier Kombinationsregeln: Aus 3 Elementen (a, b, c) sollen Kombinationen 2-ter Ordnung erstellt werden: Ohne Zurücklegen 4 Mit Zurücklegen 5 Mit Berücksichtigung der Reihenfolge (d.h.: es können Dopplungen auftreten, also ab ba) 6 Ohne Berücksichtigung der Reihenfolge (d.h.: es treten keine Dopplungen auf, also ab ba ) 7 ab ac bc ba ca cb 3! 6 (3 2)! ab ac bc ab ac bc ba ca cb aa bb cc ab ac bc aa bb cc Beispielaufgaben (vgl. Dürr/Mayer, a.a.o., S.47f.) 1. Beim Pferderennen sollen jeweils die 3 schnellsten Pferde eines bestimmten Rennens mit ihrer Reihenfolge des Eintreffens ins Ziel vorhergesagt werden. Insgesamt gehen 20 Pferde an den Start. Wie viel verschiedene Tipplisten gibt es? Kombination 3-ter Ordnung von 20 Elementen Mit Berücksichtigung der Reihenfolge / Ohne Zurücklegen n! 20! Daher: 6840 verschiedene Tipplisten. ( n k)! (20 3)! 2. Wie viel verschiedene Tippreihen gibt es beim Lotto (6 aus 49)? Kombination 6-ter Ordnung von 49 Elementen Ohne Berücksichtigung der Reihenfolge / Ohne Zurücklegen n Daher: verschiedene Tippreihen k 6 4 Ohne Zurücklegen bedeutet, dass ein einmal gezogenes Element nicht nocheinmal gezogen werden kann. Deswegen sind die drei Kombinationen aa, bb, cc nicht möglich 5 Mit Zurücklegen bedeutet, dass ein einmal gezogenes Element wieder gezogen werden kann, deswegen sind die Kombinationen aa, bb und cc möglich 6 Mit Berücksichtigung der Reihenfolge bedeutet, das die unterschiedliche Anordnung von Elementen eine Rolle spielt. Deswegen werden Kombinationen wie ab und ba als ungleich aufgefasst und mitgezählt. 7 Hier spielt die Anordnung der Elemente keine Rolle. Solange also zwei Kombinationen die gleichen Elemente besitzen, werden sie nur 1mal gezählt.

19 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 19 von Ein Zigarettenautomat hat 6 Fächer. Insgesamt hat der Händler 10 Sorten zur Verfügung. Es können mehrere Fächer mit der gleichen Sorte belegt werden. Die Reihenfolge der Belegung der 6 Fächer soll keine Bedeutung haben. Wie viel verschiedene Möglichkeiten gibt es, den Automaten zu füllen? Kombination 6-ter Ordnung von 10 Elementen Ohne Berücksichtigung der Reihenfolge / Mit Zurücklegen Daher: n + k verschiedene Anordnungsmöglichkeiten k 6 4. Wie viel verschiedene dreistellige Zahlen kann man aus den Ziffern 1,2,3,4,5,6,7,8,9 bilden? Kombination 3-ter Ordnung von 9 Elementen Mit Berücksichtigung der Reihenfolge / Mit Zurücklegen k 3 Daher: n verschiedene Ziffern Mithilfe der Kombinatorik können auch Wahrscheinlichkeiten ermittelt werden: Bsp.: Wie groß ist die Wahrscheinlichkeit 6 Richtige beim Lotto (6 aus 49) zu erhalten, wenn man eine Tippreihe abgibt? Mit Laplace können wir die Wahrscheinlichkeit bestimmen: Das Ereignis Eine richtige Tippreihe (6 Richtige) hat 1 Element. Der Stichprobenraum Ω (alle möglichen Tippkombinationen) hat wie oben bereits ermittelt Elemente. Damit beträgt nach Laplace die Wahrscheinlichkeit für eine richtige Tippreihe aus möglichen Tippreihen: 1 P( 6 Richtige ) 0,

20 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 20 von Das Urnenmodell Das Urnenmodell stellt eine Verallgemeinerung der Kombinationen k-ter Ordnung von n Elementen ohne Berücksichtigung der Reihenfolge und ohne Zurücklegen dar. Dieses Modell gestattet es, Wahrscheinlichkeiten direkt zu berechnen Eine Urne enthalte N Kugeln, davon W weiße und S schwarze (W + S N). Es werden n Kugeln nacheinander ohne Zurücklegen gezogen. Dann lässt sich die Wahrscheinlichkeit, dass sich unter den n Kugeln w weiße und s schwarze Kugeln befinden (Ereignis A), folgendermaßen berechnen: n N s S w W A P ) ( Bsp.: Eine Urne (N 10) enthalte 4 weiße und 6 schwarze Kugeln. 3 Kugeln werden nacheinander (ohne Zurücklegen; ohne Berücksichtigung der Reihenfolge) gezogen. Dann ergeben sich für die Ereignisse A { 3 weiße Kugeln werden gezogen } und B { 2 weiße und 1 schwarze werden gezogen } folgende Wahrscheinlichkeiten: ) ( n N s S w W A P ) ( n N s S w W B P Das Urnenmodell lässt sich auf viele Anwendungsbereiche übertragen. 8 Beispielsweise kann die Wahrscheinlichkeit für 6 Richtige im Lotto auch mit dem Urnenmodell ermittelt werden: P( 6 Richtige ) 12 0, n N s S w W 8 Vgl. dazu Beispiel 3.15 in Dürr/Mayer, a.a.o., S.50.

21 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 21 von 52 Erläuterung: Im Nenner steht 49 6, da es insgesamt in der Urne 49 Kugeln gibt, von denen 6 gezogen werden. Das macht verschiedene Möglichkeiten, 6 Zahlen aus 49 ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge anzuordnen. Im Zähler steht 6 43, da von den 6 Richtigen genau diese 6 und von den Falschen genau 0 gezogen werden sollen. Wie groß ist demnach die Wahrscheinlichkeit für 4 Richtige im Lotto? P( 4 Richtige ) 0, Weitere Übungsaufgaben: Dürr/Mayer, a.a.o., S Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufallsvariable (auch: Zufallsgröße) Eine Variable, deren Merkmalsausprägungen durch Ergebnisse eines Zufallsexperiments realisiert werden, heißt Zufallsvariable eine Zufallsvariable ist also eine Variable, deren Werte vom Zufall abhängen Eine Zufallsvariable ist dabei eine eindeutige Abbildung (Funktion), die jedem Ergebnis der Ergebnismenge Ω eines Zufallsexperiments Werte aus einem Wertebereich, z.b. reelle Zahlen, zuordnet Eine mögliche diskrete Zufallsvariable, abgeleitet aus dem Zufallsexperiment Werfen mit zwei Würfeln, wäre die Zufallsvariable Augensumme ; ihre Werte sind diskret, weil sie abzählbar und diskontinuierlich sind Wenn wir Personen aus einer Population zufällig auswählen und jede ausgewählte Person nach ihrem Geschlecht zuordnen, dann ist die Variable Geschlecht ebenfalls eine diskrete Zufallsvariable stetige Zufallsvariablen ergeben sich aus Zufallsexperimenten, in denen kontinuierliche Größen erfasst werden, wie z.b. Zeit- Längen- oder Gewichtsmessungen. Der Ereignisraum besteht hier aus unendlich vielen möglichen Elementarereignissen.

22 Mark Lutter SMS I Tutorium Teil II Inferenzstatistik Seite 22 von 52 Wahrscheinlichkeitsfunktion Die Wahrscheinlichkeitsverteilung einer Zufallsvariablen ist durch ihre Wahrscheinlichkeitsfunktion f(a) definiert. Sie gibt an, wie wahrscheinlich die einzelnen Ergebnisse eines Zufallsexperiments sind Eine eindeutige Zuordnung (Funktion), welche jedem Wert einer Zufallsvariablen die Wahrscheinlichkeit des Auftretens jeden Wertes zuordnet, heißt Wahrscheinlichkeitsfunktion: f(a i ) p i Bsp.: Aus dem Zufallsexperiment Werfen mit zwei Würfeln betrachten wir die diskrete Zufallsvariable Augensumme. Der Wertebereich, d.h. die Werte, die die Variable annehmen kann, liegt zwischen 2 und 12. Jetzt ordnen wir jedem Wert nach Laplace seine Auftretenswahrscheinlichkeit zu: Wahrscheinlichkeitsverteilung der Zufallsvariable Augensumme f(a i ) p i Augensumme (a i ) Wahrscheinlichkeit (p i ) Die Augensumme 2 und 12 hat jeweils die geringste Auftretenswahrscheinlichkeit, da jeweils nur 1 Ereignis [(1,1) bzw. (6,6)] aus 36 möglichen Ereignissen zutreffen kann. Mit 6/36 hat Augensumme 7 die höchste Wahrscheinlichkeit, weil genau 6 günstige Ereignisse aus 36 möglichen zutreffen [(6,1); (1,6); (4,3); (3,4); (5,2); (2,5)] Graphisch dargestellt: Verteilungsfunktion Aus einer Wahrscheinlichkeitsfunktion f(a) lässt sich durch Summation der einzelnen Wahrscheinlichkeiten ihre Verteilungsfunktion F(a) Σf(p i ) bilden: (man beachte: Die Summe aller Wahrscheinlichkeiten ist immer 1) Verteilungsfunktion von Augensumme Augensumme (a i ) Wahrscheinlichkeit (p i )

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als:

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als: 9-9 Die befasst sich mit der Untersuchung, wie wahrscheinlich das Eintreten eines Falles aufgrund bestimmter Voraussetzungen stattfindet. Bis anhin haben wir immer logisch gefolgert: 'Wenn diese Voraussetzung

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Stichwortverzeichnis. 3-of-a-Kind (Poker) 112, 114 4-of-a-Kind (Poker) 112, 114 50-50-Irrtum 348

Stichwortverzeichnis. 3-of-a-Kind (Poker) 112, 114 4-of-a-Kind (Poker) 112, 114 50-50-Irrtum 348 3-of-a-Kind (Poker) 112, 114 4-of-a-Kind (Poker) 112, 114 50-50-Irrtum 348 50-50-Situation 36 α-stufe 249 λ 259, 264, 323 σ 190 A Abzählbar unendlich (Mengentyp) 40 Abzählproblem 106 Abzählregel 95 Additionsregel

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 4 ALPHA / BETA-FEHLER 12.12.2014 1 12.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 STATISTISCHE HYPOTHESEN 02 POPULATION / STICHPROBE 03 ALPHA/ BETA-FEHLER

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, Philosophische Fakultät, Seminar für Sozialwissenschaften Vorbemerkung: Es handelt sich um die Anfang

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

7 Wahrscheinlichkeitsverteilungen Lösungshinweise

7 Wahrscheinlichkeitsverteilungen Lösungshinweise 7 Wahrscheinlichkeitsverteilungen Lösungshinweise Aufgabe 7.: Gegeben sei ein Würfel, der die Form eines Tetraeders hat und die Augenzahlen bis aufweist. a) Bestimmen Sie die Wahrscheinlichkeitsverteilung

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

11 Diskrete Zufallsvariablen

11 Diskrete Zufallsvariablen 11 Diskrete Zufallsvariablen 11.1 Wahrscheinlichkeitsfunktion und Verteilungsfunktion In Kapitel 2 wurde zwischen diskreten und stetigen Zufallsvariablen unterschieden. Eine Zufallsvariable X wurde als

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

T-TEST BEI EINER STICHPROBE:

T-TEST BEI EINER STICHPROBE: Kapitel 19 T-Test Mit Hilfe der T-TEST-Prozeduren werden Aussagen über Mittelwerte getroffen. Dabei wird versucht, aus den Beobachtungen einer Stichprobe Rückschlüsse auf die Grundgesamtheit zu ziehen.

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Stochastik kompakt. - worauf es ankommt... Zürich 2007 1

Stochastik kompakt. - worauf es ankommt... Zürich 2007 1 Stochastik kompakt - worauf es ankommt... Zürich 2007 1 Ziel: Am Ende der Unterrichtssequenzen über Stochastik sollen die Schüler/innen Aufgaben aus folgenden Themenbereichen lösen können: 1. Umgang mit

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Norm- vs. Kriteriumsorientiertes Testen

Norm- vs. Kriteriumsorientiertes Testen Norm- vs. Kriteriumsorientiertes Testen Aus psychologischen Test ergibt sich in der Regel ein numerisches Testergebnis, das Auskunft über die Merkmalsausprägung der Testperson geben soll. Die aus der Testauswertung

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 4 3 Aufgabe 8 3 Aufgabe 9 3 Aufgabe 30 3 Aufgabe 31 3 Aufgabe 3 4 Aufgabe 33 4 Aufgabe 34 4 Aufgabe 35 4 Aufgabe 36 4 Aufgabe 37 4 Aufgabe 38 5 Aufgabe 39

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK III. In einer Region haben 60 % der Haushalte einen Internetanschluss. Das Diagramm veranschaulicht die Anteile der Zugangsgeschwindigkeiten unter den Haushalten

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Mini-Skript Wahrscheinlichkeitstheorie und Statistik

Mini-Skript Wahrscheinlichkeitstheorie und Statistik Mini-Skript Wahrscheinlichkeitstheorie und Statistik Peter Bühlmann Georg Grafendorfer, Lukas Meier Inhaltsverzeichnis 1 Der Begriff der Wahrscheinlichkeit 1 1.1 Rechenregeln für Wahrscheinlichkeiten........................

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript WAHRSCHEINLICHKEITSTHEORIE I und II Wolfgang König TU Berlin und WIAS Berlin Vorlesungsskript SS 2005 und WS 2005/06 überarbeitet im WS 2008/09 kleine Korrekturen im März und Juli 2012 und im März 2013

Mehr

AUFGABEN AUS DEM ZENTRALABITUR

AUFGABEN AUS DEM ZENTRALABITUR -28- -29- AUFGABEN AUS DEM ZENTRALABITUR GK-Aufgabe / Zentralabitur Bayern 1984 In einer Urne befinden sich 2 blaue und 6 weiße Kugeln. Die Kugeln unterscheiden sich nur durch ihre Farbe. 1. Bei einem

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert)

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert) Kaufhaus-Aufgabe aus Abiturprüfung Bayern LK (abgeändert) 5. a) Ein Kunde eines Kaufhauses benutzt mit einer Wahrscheinlichkeit von 75% die hauseigene Tiefgarage. Mit einer Wahrscheinlichkeit von 40% bleibt

Mehr

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Stochastik 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Inhaltsverzeichnis 1 Einführung in die Wahrscheinlichkeitsrechnung 2 1.1 Laplace-Experimente................................. 2 1.2

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Wahrscheinlichkeitsrechnung und Statistik 8.1 Grundbegriffe 8.1 8.1 Laplace-Experiment Ergebnis Elementarereignis Ergebnismenge Ergebnisraum

Wahrscheinlichkeitsrechnung und Statistik 8.1 Grundbegriffe 8.1 8.1 Laplace-Experiment Ergebnis Elementarereignis Ergebnismenge Ergebnisraum 8 Wahrscheinlichkeitsrechnung und Statistik Die österreichische Lottoziehung vom 28. September 2003 lieferte nahezu dieselben Zahlen wie die am Vorabend in Deutschland stattgefundene Ziehung: 3, 17, 35,

Mehr