Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda"

Transkript

1 Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS ALP2-Vorlesung, M. Esponda

2 Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume Baumtraversierung Suchen Einfügen 5. Doppelt verkettete binäre Bäume Löschen 22. ALP2-Vorlesung, M. Esponda

3 Warum Bäume? Bäume sind fundamentale Datenstrukturen für: Betriebssysteme Datenbanken Übersetzerbau CFS von Linux (RB-Baum) B-Bäum, R-Bäume Abstrakte Syntaxbäume Textverarbeitung 3D Graphik-Systeme Datenkompression KI, Spiele Hofmann-Kodierung Entscheidungsbäume usw. 22. ALP2-Vorlesung, M. Esponda

4 Was ist ein Baum? Eine spezielle Graph-Struktur ohne Zyklen O1 Wurzel 1. Er hat eine Wurzel. O2 O3 2. Alle Knoten außer der Wurzel haben genau eine Verbindung O4 O5 O6 O7 mit einem Vorfahren. 3. Es existiert genau ein Weg O8 O9 O10 zwischen der Wurzel und jedem beliebigen Knoten. O11 O12 O13 O ALP2-Vorlesung, M. Esponda

5 Eigenschaften von Bäumen? Nehmen wir an, wir haben einen Baum t, dann gilt: t bezeichnet die Größe des Baumes t oder die gesamte Anzahl seiner Knoten. Die Tiefe (Level) eines Knotens ist sein Abstand zur Wurzel. Die Tiefe der Wurzel ist gleich 0. die Höhe h(t) ist der maximale Abstand zwischen der Wurzel und die Knoten. Blätter sind Knoten ohne Kinder. Die Pfadlänge des Baumes sei definiert als die Summe der Tiefen aller Knoten des Baumes. 22. ALP2-Vorlesung, M. Esponda

6 Eigenschaften von Bäumen Zwischen zwei beliebigen Knoten in einem Baum existiert genau ein Pfad, der sie verbindet. O1 Knoten O2 O3 Kanten O4 O5 O6 O7 O8 O9 O10 Ein Baum mit N Knoten hat N-1 Kanten. Blätter 22. ALP2-Vorlesung, M. Esponda

7 Binärbäume Bäume, in denen jeder Knoten höchstens zwei Kinder hat. Ein Binärbaum mit N inneren Knoten hat N+1 äußere Knoten oder Blätter. O5 Innere Knoten O9 O10 Blätter O11 O12 O13 O ALP2-Vorlesung, M. Esponda

8 Warum Bäume? Weil die Grundoperationen für dynamische Datenmengen damit viel effizienter realisiert werden können. Elementare Operationen für dynamische Mengen Suchen Einfügen Löschen Bäume kombinieren die Vorteile der zwei Datenstrukturen, die wir bereits diskutiert haben: Felder (Arrays) und Listen. 22. ALP2-Vorlesung, M. Esponda

9 Sortiertes Array mit n Elementen Binärsuche Suchen Kopf Sortierte Liste mit n Elementen n/ n/4 n/ Schlimmster Fall log 2 (n) Schritte O(log 2 n) Schlimmster Fall n Schritte O(n) 22. ALP2-Vorlesung, M. Esponda

10 Einfüge- und Lösch-Operationen (wenn die Position bereits bekannt ist) 7 Array Die Laufzeit hängt linear von der Länge der bereits gespeicherten Daten ab. 7 Liste Die Laufzeit ist immer konstant Schlimmster Fall n Schritte Schlimmster Fall O(n) 56 O(1) 22. ALP2-Vorlesung, M. Esponda

11 Liste Liste vs. Array n O1 O2 O3 O4 O5 O6 O7 O8 Array n O1 O2 O3 O4 O5 O6 O7 O8 Elementare Operationen für dynamische Mengen Liste sortiert nicht sortiert Array sortiert Suchen O(n) O(n) O(log 2 (n)) Einfügen O(n) O(1) O(n + log 2 (n)) Löschen O(n) O(n) O(n + log 2 (n)) 22. ALP2-Vorlesung, M. Esponda

12 Vollständige Binärbäume Ein vollständiger binärer Baum hat 2 h 1 innere Knoten und 2 h Blätter root n = 2 h+1-1 O1 Level 0 n + 1 = 2 h+1 O4 O2 O5 O6 O3 O7 Level 1 Level 2 h log 2 (n+1) = log 2 (2 h+1 ) log 2 (n+1) = h+1 O8 O9 O10 O11 O12 O13 O14 O15 Level 3 h = log 2 (n+1) ALP2-Vorlesung, M. Esponda

13 Eigenschaften von Binär Bäumen Rekursive Definitionen: Anzahl der inneren Knoten Höhe des Baumes Innere Pfadlänge des Baumes (Summe der Tiefen aller inneren Knoten) Pfadlänge der Blättern (Summe der Pfadlänge der Blättern) t = t l + t r + 1 h(t) = 1+ max(h(t l ) + h(t r )) π(t) = π(t l ) + π(t r ) + t 1 ξ(t) = ξ(t l ) + ξ(t r ) + t ALP2-Vorlesung, M. Esponda

14 Binärbäume Binärbäume einfachste Baumstrukturen ausgeglichene Bäume Beispiele: AVL-Bäume Red-Black-Bäume B-Bäume usw. Die wichtigste Voraussetzung für die effiziente Verwaltung von Datenmengen mit Hilfe von Bäumen ist, dass die Bäume balanciert sind. 22. ALP2-Vorlesung, M. Esponda

15 Binäre Suchbäume geordneter Baum mit maximal 2 Nachfolgern pro Knoten left O1 right Innere Knoten left O2 right left O3 right O4 O5 O6 O7 null null null null null null null null Blätter 22. ALP2-Vorlesung, M. Esponda

16 Wie können wir Binärbäume in Java implementieren? root O3 TreeNode-Klasse left right BinarySearchTree-Klasse O3 O3 null right left right Die Objekte werden nach einem Schlüssel einsortiert. O3 left O3 null O3 null null null null 22. ALP2-Vorlesung, M. Esponda

17 Beispiel: root K1 D1 TreeNode-Klasse left right BinarySearchTree-Klasse K2 D2 K3 D3 null right left right Die Objekte werden nach einem Schlüssel K einsortiert K4 D4 K5 D5 left null null null Datenobjekt D, das zum Schlüssel verbunden ist. K6 null D6 null 22. ALP2-Vorlesung, M. Esponda

18 Binäre Suchbäume. Sortierbare Schlüssel Daten public class BinarySearchTree <T extends Comparable<T>, D> implements Iterable<T> { private TreeNode root; private int size; // Anzahl der TreeNode-Objekten public BinarySearchTree() { // constructor root = null; size = 0; } public int size() { return size; } um for-each-schleifen verwenden zu können 22. ALP2-Vorlesung, M. Esponda

19 public class BinarySearchTree. class TreeNode { private T key; private D data; private TreeNode left; private TreeNode right; Binäre Suchbäume null T2 D2 T1 left right D1 right T3 left D3 right root TreeNode (T key, D data) { this.key = key; this.data = data; size++; } } // end of class TreeNode T6 null left null null null null T4 D4 T5 D5 D6 22. ALP2-Vorlesung, M. Esponda 5

20 Suchen 4 node root 11 left right 7 19 left right left right 3 left right 9 left right 14 left right 21 left right 1 4 null null 12 null null null left right left right left right null null null null null null 22. ALP2-Vorlesung, M. Esponda

21 Suchen Wenn node gleich null wird, befindet sich das Element nicht in dem Baum. node 4 root 11 left right 7 19 left right left right 3 left right 9 left right 14 left right 21 left right 1 4 null null 12 null null null left right left right left right null null null null null null 22. ALP2-Vorlesung, M. Esponda

22 public boolean contains(t key) { return getdata( key )!= null; } public D getdata(t key) { TreeNode node = root; while (node!= null) { int compare = key.compareto(node.key); if (compare < 0) } node = node.left; else if (compare > 0) node = node.right; else return node.data; } return null; 22. ALP2-Vorlesung, M. Esponda Binäre Suchbäume Ein Schlüssel wird gesucht Gibt die Daten, die mit einem Schlüssel verbunden sind, zurück oder null, wenn der Schlüssel nicht vorhanden ist.

23 Einfügen (rekursiv) insert(root, 4, data) root 11 D D2 D D4 D5 D6 D7 1 5 D8 D9 16 D0

24 Einfügen (iterativ) root insert(left, 4, data) 11 D D2 D D4 D5 D6 D7 1 5 D8 D9 16 D0

25 Einfügen (iterativ) root 11 D1 insert(left, 4, data) 7 19 D2 D D4 D5 D6 D7 1 5 D8 D9 16 D0

26 Einfügen (iterativ) root 11 D D2 D3 insert(right, 4, data) D8 D9 D4 D5 D6 D7 16 D0

27 Einfügen (iterativ) root 11 D D2 D D4 D5 D6 D7 1 5 insert(left, 4, data) D8 D9 16 D0 return 4 data

28 Einfügen (iterativ) root 11 D D2 D D4 D5 D6 D7 1 5 D8 D9 16 D0 4 data

29 Binäre Suchbäume public class BinarySearchTree <T extends Comparable<T>, D> public void store(t key, D data) { } root = insert( root, key, data ); implements Iterable<T>{ private TreeNode insert(treenode node, T key, D data) { } if (node == null) return new TreeNode(key, data); int compare = key.compareto(node.key); if (compare < 0) node.left = insert(node.left, key, data); else if (compare > 0) else node.right = insert(node.right, key, data); node.data = data; return node; Ein Schlüssel und das damit verbundene Daten-Objekt werden eingegeben Ein neues Objekt wird nach seinem Schlüssel in einem Blatt einsortiert. Wenn der Schlüssel bereits existiert, werden die Daten überschrieben.

30 Traversierung binärer Bäume Inorder Linker Unterbaum - Wurzel - Rechter Unterbaum F D I B E G J A C H A B C D E F G H I J

31 Implementierung einer Iterator-Klasse als Innere Klasse public class BinarySearchTree <T extends Comparable<T>, D> implements Iterable<T> {... public Iterator<T> iterator() { return new InorderIterator(); } Iterator-Klasse, die den Baum in sortierter Reihenfolge durchläuft. private class InorderIterator implements Iterator<T> { }... } 22. ALP2-Vorlesung, M. Esponda

32 Iterative Implementierung r Stapel s F x r t D w y I z u B E G J v q A C H

33 Iterative Implementierung r Stapel s F x r s t u t D w y I z u B E G J v q A C H

34 Iterative Implementierung r Stapel s F x r s t u t D w y I z u B E G J v q A C H

35 Iterative Implementierung r Stapel s F x r s t t D w y I z u B E G J v q A C H

36 Iterative Implementierung r Stapel s F x r s v t D w y I z u B E G J v q A C H

37 Iterative Implementierung r Stapel s F x r s t D w y I z u B E G J v q A C H

38 Iterative Implementierung r Stapel s F x r w t D w y I z u B E G J v q A C H

39 Iterative Implementierung r Stapel s F x r t D w y I z u B E G J v q A C H

40 Iterative Implementierung r Stapel s F x rx y t D w y I z u B E G J v q A C H

41 Implementierung einer Iterator-Klasse als Innere Klasse... private class InorderIterator implements Iterator<T> { }... private Stack<TreeNode> stack = new Stack<TreeNode>(); InorderIterator() { pushlefttree(root); } public boolean hasnext() { return!stack.isempty(); } public T next() { if (!hasnext()) throw new NoSuchElementException(); } TreeNode node = stack.pop(); pushlefttree(node.right); return node.key; public void pushlefttree(treenode node) { } while (node!= null) { stack.push(node); } node = node.left; public class NoSuchElementException extends RuntimeException public void remove() { throw new UnsupportedOperationException();}

42 Anwendungsbeispiel: public static void main(string[] args) { BinarySearchTree<Integer, String> st = new BinarySearchTree<Integer, String>(); st.store(43901, "Peter Meyer" ); st.store(43021, "Nils Meyer" ); st.store(43002, "Andre Meyer" ); st.store(43101, "Hans Meyer" ); st.store(43000, "Joachim Meyer" ); st.store(43501, "Carl Meyer" ); for(iterator<integer> iter = st.iterator(); iter.hasnext();) System.out.println(iter.next()); System.out.println("size = " + st.size()); } for (Integer s : st) { System.out.println(s); }

43 Minimum und Maximum 53 Der erste Knoten, der Minimum Maximum keine linken Kinder mehr hat, beinhaltet das kleinste Element ALP2-Vorlesung, M. Esponda

44 Nachfolger 1. Fall 53 Es gibt einen rechten Unterbaum Minimum

45 Nachfolger 2. Fall Es gibt keinen rechten Unterbaum Nachfolger Maximum 39 Wie können wir nach oben laufen?

46 Doppelt verkettete Bäume 53 parent O3 left right y node private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

47 Doppelt verkettete Bäume 53 parent 30 y 69 left O3 right node private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

48 Doppelt verkettete Bäume 53 parent O3 y node left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

49 Doppelt verkettete Bäume y 53 parent O3 node left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

50 Doppelt verkettete Bäume node y 53 parent O3 left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

51 node Doppelt verkettete Bäume y 53 parent O3 left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

52 node Doppelt verkettete Bäume y 53 parent O3 left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

53 Doppelt verkettete Bäume node y 53 Nachfolger parent O3 left right private class TreeNode { private T key; private D data; private TreeNode left private TreeNode right; private TreeNode parent; }

54 Delete-Operation ( Löschen ) 1. Fall Löschen eines Knotens ohne Kinder 2. Fall Löschen eines Knotens mit nur einem Kind null garbage garbage 46

55 3. Fall Löschen Löschen eines Knotens mit zwei Kindern Der Knoten, den man löschen möchte, wird durch seinen Nachfolger ersetzt Der Nachfolger von 27 ist das Minimum des rechten Unterbaumes. Das Minimum ist entweder ein Blatt oder hat maximal ein rechtes Kind.

56 Löschen 53 node y 30 left 46 x parent 32

57 Probleme mit einfachen binären Suchbäumen balancierter Binärbaum nicht balancierter Binärbaum

58 Lösungen AVL-Bäume Red-Black-Bäume AA-Bäume B-Bäume usw. Innerhalb der insert- und delete-operationen wird mit Hilfe von Rotationen die Balance des Baumes ständig wiederhergestellt. 53 x

59 Elementare Operationen für dynamische Mengen Liste Array Balancierter Binärbaum Schlimmster Fall Schlimmster Fall Schlimmster Fall Suchen O(n) O(log 2 (n)) O(log 2 (n)) Einfügen O(n) O(n) O(log 2 (n)) Löschen O(n) O(n) O(log 2 (n)) 22. ALP2-Vorlesung, M. Esponda

60 Farben R: 0 G: 51 B: 102 R: 153 G: 204 B: 0 R: 255 G: 255 B: 255 R: 0 G: 0 B: 0 R: 204 G: 0 B: 0 R: 255 G: 153 B: Fußzeile ALP2-Vorlesung, anpassen unter M. Esponda Ansicht -> Kopf- und Fußzeile 52

ALP II Dynamische Datenmengen

ALP II Dynamische Datenmengen ALP II Dynamische Datenmengen Teil III Iteratoren Iterator-Objekt O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 22. ALP2-Vorlesung, M. Esponda 2 Motivation: Iteratoren Wir haben für die Implementierung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

4.4.1 Implementierung vollständiger Bäume mit Feldern. Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1.

4.4.1 Implementierung vollständiger Bäume mit Feldern. Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1. 4.4 Implementierung von Bäumen 4.4.1 Implementierung vollständiger Bäume mit Feldern 1 3 2 7 9 3 4 8 5 17 12 10 6 7 8 13 11 18 9 10 Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Sortierte Folgen Maike Buchin 30.5., 1.6., 13.6.2017 Sortierte Folgen Häufiges Szenario: in einer Menge von Objekten mit Schlüsseln (aus geordnetem Universum) sollen Elemente

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Listen & Bäume Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 SvenKosub@uni-konstanzde Sprechstunde: Freitag, 14:00-15:00 Uhr, onv Sommersemester

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Bäume, Anwendung und Begriffe

Bäume, Anwendung und Begriffe Bäume Sie wissen, was Bäume in der Informatik sind Sie kennen das Besucher-Entwurfsmuster Sie kennen Binärbäume Sie können die Bäume auf unterschiedliche Arten traversieren Sie wissen, wie man in Binärbäumen

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl

Mehr

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

ALP II Dynamische Datenmengen Datenabstraktion

ALP II Dynamische Datenmengen Datenabstraktion ALP II Dynamische Datenmengen Datenabstraktion O1 O2 O3 O4 SS 2012 Prof Dr Margarita Esponda M Esponda-Argüero 1 Dynamische Datenmengen Dynamische Datenmengen können durch verschiedene Datenstrukturen

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

13. Bäume: effektives Suchen und Sortieren

13. Bäume: effektives Suchen und Sortieren Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht:

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: Typprüfung (Compiler / Laufzeit) In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: 1) Der Compiler prüft

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 10, Donnerstag 8. Januar 2015 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

Übung 4: Die generische Klasse AvlBaum in Java 1

Übung 4: Die generische Klasse AvlBaum in Java 1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik 2 - SS 06 Bäume 2 Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

public interface Stack { public void push(e e); public E pop();

public interface Stack<E> { public void push(e e); public E pop(); ADS Zusammenfassung René Bernhardsgrütter 02.04.2012 1 Generics Gewähren Typsicherheit und können für verschiedene Datentypen ohne Casts verwendet werden. Beim Erstellen der Klasse werden Platzhalter für

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume Übersicht Datenstrukturen und lgorithmen Vorlesung : Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-/dsal/ 1 Suche Einfügen

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1 Kapitel 13 Listen Listen 1 Ziele Implementierungen für Listen kennenlernen Einfach verkettete und doppelt verkettete Listen verstehen Listen-Implementierungen in der Java-Bibliothek kennenlernen Durch

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012 , Queues & Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 19. September 2012 ODE/FHTBM, Queues & 19. September 2012 1/42 Datenstrukturen Elementare Datenstrukturen

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Logische Datenstrukturen

Logische Datenstrukturen Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse

Mehr

Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012

Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012 Hochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Prof. Dr. Peter Becker Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012 Bevor Sie mit der

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1 Kapitel 11 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 2 Ziele Implementierungen für

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume

Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 12./13. VO DAP2 SS 2009 28.5./2.6.2009 1 Motivation Warum soll

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Prof. Dr. Uwe Schmidt. 30. Januar 2017

Prof. Dr. Uwe Schmidt. 30. Januar 2017 Prof. Dr. Uwe Schmidt 30. Januar 2017 Aufgaben zur Klausur Algorithmen und Datenstrukturen im WS 2016/17 ( B Inf, B TInf, B MInf, B CGT, B WInf, B Ecom, B ITE) Zeit: 75 Minuten erlaubte Hilfsmittel: keine

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

3. Übungsbesprechung Programmkonstruktion

3. Übungsbesprechung Programmkonstruktion 3. Übungsbesprechung Programmkonstruktion Karl Gmeiner karl@complang.tuwien.ac.at December 12, 2011 K Gmeiner (karl@complang.tuwien.ac.at) 3. Übungsbesprechung PK December 12, 2011 1 / 13 Rückblick und

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Datenstrukturen und Abstrakte Datentypen

Datenstrukturen und Abstrakte Datentypen Datenstrukturen und Abstrakte Datentypen Abstrakter Datentyp Idee der sequentiellen Struktur Einfach verkettete Liste Iteratorkonzept Prof. Dr. E. Ehses, 2014 1 Definition: Ein abstrakter Datentyp (ADT)

Mehr

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n)

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) .6 Ausgeglichene Mehrweg-Suchbäume Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) Methoden: lokale Transformationen (AVL-Baum) Stochastische

Mehr

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18 EINI LogWing/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 17/18 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

Punkte. Teil 1. Teil 2. Summe. 1. Zeigen Sie, dass der untenstehende Suchbaum die AVL-Bedingung verletzt und überführen Sie ihn in einen AVL-Baum.

Punkte. Teil 1. Teil 2. Summe. 1. Zeigen Sie, dass der untenstehende Suchbaum die AVL-Bedingung verletzt und überführen Sie ihn in einen AVL-Baum. Hochschule der Medien Prof Uwe Schulz 1 Februar 2007 Stuttgart Klausur Informatik 2, EDV-Nr 40303/42022 Seite 1 von 2 Name: Matr Nr: Teil 1: Keine Hilfsmittel Bearbeitungszeit: 20 Minuten Teil 1 Teil 2

Mehr

ContainerDatenstrukturen. Große Übung 4

ContainerDatenstrukturen. Große Übung 4 ContainerDatenstrukturen Große Übung 4 Aufgabenstellung Verwalte Kollektion S von n Objekten Grundaufgaben: Iterieren/Auflistung Suche nach Objekt x mit Wert/Schlüssel k Füge ein Objekt x hinzu Entferne

Mehr

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen...

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen... Bäume und Graphen In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. Inhalt 1. Bäume... 1.1. Grundlagen... 1.. Repräsentation von Binärbäumen... 9 1..1.

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Gefädelte

Mehr

Informatik B Sommersemester Musterlösung zur Klausur vom

Informatik B Sommersemester Musterlösung zur Klausur vom Informatik B Sommersemester 007 Musterlösung zur Klausur vom 0.07.007 Aufgabe : Graphen und Graphalgorithmen + + + () Punkte Für eine beliebige positive, ganze Zahl n definieren wir einen Graphen G n =

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Übung 3: Die generische Klasse BinärerSuchbaum in Java 1 Datenelemente der Klasse BinaererSuchbaum Das einzige Datenelelement in dieser Klasse ist die Wurzel vom Typ BinaerBaumknoten. Die Klasse BinaerBaumknoten

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

Bäume und Priority Queues

Bäume und Priority Queues 14 Kapitel 2 Bäume und Priority Queues 2.1 Bäume Bisher haben wir als dynamische Datenstrukturen Listen kennengelernt. Da der Zugriff in Listen in der Regel nur sequentiell erfolgen kann, ergibt sich für

Mehr

3 Dynamische Datenstrukturen

3 Dynamische Datenstrukturen 3 Dynamische Datenstrukturen Beispiele für dynamische Datenstrukturen sind Lineare Listen Schlangen Stapel Bäume Prof. Dr. Dietmar Seipel 128 Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Kapitel 11: Bäume. Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume

Kapitel 11: Bäume. Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume Kapitel 11: Bäume Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume Prof. Dr. O. Bittel, HTWG Konstanz Programmiertechnik II Bäume WS 17/18 11-1 Beispiele

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

6. Verkettete Strukturen: Listen

6. Verkettete Strukturen: Listen 6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten

Mehr

Klausur Software-Entwicklung März 01

Klausur Software-Entwicklung März 01 Aufgabe 1: minimaler Punktabstand ( 2+5 Punkte ) Matrikelnr : In einem Array punkte sind Koordinaten von Punkten gespeichert. Ergänzen Sie in der Klasse Punkt eine Klassen-Methode (=static Funktion) punktabstand,

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Abgabe: (vor 12 Uhr)

Abgabe: (vor 12 Uhr) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 7 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Schein-/Bachelorklausur Teil 2 am Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock.

Schein-/Bachelorklausur Teil 2 am Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock. Schein-/Bachelorklausur Teil 2 am 13.02.2007 Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock. Alle Studiengänge außer Bachelor melden sich über die Lehrstuhlwebseite

Mehr

Priority Queues and Heapsort

Priority Queues and Heapsort 19. ovember 2012 Prioritätswarteschlangen und Priority Queues and Ferd van denhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software ngineering 19. ovember 2012 D/FHTBM Priority Queues and 19.

Mehr