Skript. Technische Mechanik. Festigkeitslehre

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Skript. Technische Mechanik. Festigkeitslehre"

Transkript

1 Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März 00

2 Inhalt 1 Einleitung... 3 Zug- und Druckbeanspruchung Biegung Torsion Querkraftschub Überlagerte Beanspruchung Knickung Statisch unbestimmte Systeme Formelsammlung Das vorliegende Skript soll das Verfolgen der Vorlesung erleichtern. Es gibt ein Gerüst für den Vorlesungsinhalt wieder und erspart einiges an "Kopierarbeit" des Tafelanschriebs. Das Skript ersetzt keine Mitschrift, da individuell notwendige Erläuterungen und Skizzen fehlen. Es steht auch nicht in Konkurrenz zu den Lehrbüchern der Technischen Mechanik. Dort finden sich ausführlichere Darstellungen und zahlreichere Übungsbeispiele zu den einzelnen Themen. Anregungen zu Inhalt und Gestaltung senden Sie bitte an:

3 1 Einleitung Aufgaben der Festigkeitslehre Verteilung der Schnittlasten Formänderungen von Bauteilen Bauteilversagen Beanspruchungsarten 3

4 Schnittlasten Statik F N Normalkraft F Q Querkraft M Biegemoment Festigkeitslehre Spannungsvektor F S A mit den Komponenten : σ Normalspannungen steht senkrecht auf A τ Schubspannungen liegt in der Ebene von A 4

5 Formänderungen elastisches Verhalten plastisches Verhalten Knickung Bauteilversagen Werkstoffkennwerte Vergleichsspannungen Sicherheiten 5

6 Zug- und Druckbeanspruchung σ σ Zugspannung σ F A Vorzeichenregelung: σ > 0 σ < 0 Zug Druck zulässige Spannung σ zul F Dimensionierung σ σ A zul 6

7 Zugversuch In einer hydraulischen Prüfeinrichtung wird ein Probekörper mit Zugkräften belastet. Dabei werden die Zugkraft und die Längenänderung der Probe gemessen. Es gibt viele genormte Versuche zur Ermittlung von Materialkennwerten. In der DIN EN 1000 ist z.b. der Zugversuch für metallische Werkstoffe bei Raumtemperatur beschrieben. Prüfbereich l 0 Dehnung dimensionslose Dehnung D l ε l 0 Ausgangslänge l 0 l Längenänderung l 0 Querdehnung D ε Q D D Durchmesser D Durchmesseränderung Zusammenhang ν ε ε Q Querdehnzahl ν 0,3 (Stahl) 7

8 Versuchsergebnis für unlegierten Stahl R m σ R e σ ε ε R m R e E Zugfestigkeit Elastizitätsgrenze Elastizitätsmodul (E-Modul) Zahlenwerte (Anhaltswerte) Material R m in N/mm² R e in N/mm² E in N/mm² ρ in kg/m³ unlegierte Stähle rostfreie Stähle Einsatzstähle Messing Kupfer Aluminiumlegierung Titanlegierung PP PVC GFK CFK Holz Beton 50 (nur für Druck) Glas

9 Zulässige Beanspruchung Alle Unsicherheiten werden in einem Faktor für die Sicherheit S berücksichtigt. Dimensionierung gegen Bruch σ Dimensionierung gegen Verformung σ S... 4 S 1,3 bis 3 Elastisches Verhalten σ ε HOOKEsches Gesetz Formänderung eines Zugstabes ("Federgesetz") 9

10 Beispiel: Längenänderung unter Eigengewicht dx x l l l ρ g l E Beispiel: statisch unbestimmtes System α l l a 1 a 1 3 α α α α e e F F 10

11 Statisches Kräftegleichgewicht: F 1 F F sinα 0,58 F F 1 F F 3 F F 1 sinα ( sinα) ( sinα) 1 F F F 3 F F 3 sinα + 1 ( ) ,43 F 0,33 F Verformung: e F a E A ( sinα) 3 e E A F a ( ( sinα) 1)

12 Wechselfestigkeit σ Mittelspannung σ m σ m σ u σ o Spannunsamplitude σ a σ o σ u t Wöhlerdiagramm σ a σ m const. Ausschlagfestigkeit σ A σ A N Dauerfestigkeitsschaubild σ D σ A σ A Dauerfestigkeit σ D σ m σ m 1

13 Kerbwirkung Durch die Geometrie von Bauteilen können die mechanischen Spannungen lokal erhöht werden. σ σ α σ K K K N σ N α K Formzahl Druckbelastung Im elastischen Bereich Analogie zur Zugbelastung Bei schlanken Bauteilen zusätzlich Berechnung auf Knickung erforderlich 13

14 Zugspannungen durch Fliehkräfte Beispiel rotierender dünner Ring Fliehkraft F m r Ω² Ω ϕ σ ϕ σ Zugspannung σ ρ Ω unabhängig von der r konstruktiven Gestaltung Beispiel Ω rotierender Stab l Zugspannung σ 1 ρ l Ω 14

15 Wärmespannungen Wenn sich die Temperatur erhöht, dehnen sich Bauteile aus. Wird diese Ausdehnung behindert, ergeben sich große Kräfte und sehr hohe Spannungen. ε T α T Dehnung infolge einer Temperaturdifferenz T α Wärmeausdehnungskoeffizient Zahlenwerte: (Anhaltswerte) Material α in 10-6 K -1 unlegierter Stahl 1 Edelstahl 16 Aluminium 4 Kupfer 17 Messing 0 PP 180 PVC 70 Glas 5 Quarzglas 0,5 Beton 10 Holz 4 Behinderte Wärmedehnung T A, E, α σ α α unabhängig von der Bauteilgeometrie unabhängig von der Länge des Bauteils 15

16 3 Biegung Spannungsverteilung σ σ Annahme: lineare Verteilung der Spannungen σ keine axialen Belastungen des Balkens σ resultierendes Biegemoment als Schnittgröße σ Ι mit Ι Flächenmoment Dimensionierung σ σ mit Ι Widerstandsmoment 16

17 Beispiel: Rechteck Ι y z da Ιz y da A A Ι y b 3 h 1 Ι z b 3 h 1 W y b h 6 W z b h 6 Beispiel: Dreieck z Ι y z da Ι z A A y da h y Ι y b 3 h 36 Ι z b 3 h 48 b W y b h 4 17

18 Beispiel: Kreis Ι y W y Ι z π 64 d π 3 3 Wz d 4 Verschiebung des Koordinatensystems Ι a z y* Ι ( ) + Ι Ι + Verschiebungssatz "Flächenmomente um Schwerpunktsachsen sind immer Minimalwerte" 18

19 Durchbiegung von Balken x σ σ Ι Spannungsverteilung σ ε HOOKEsches Gesetz ε Ι Ι Differentialgleichung der Biegelinie 19

20 Superposition Die Gleichungen für die Biegelinien von Balken sind lineare Gleichungen und erlauben somit die Überlagerung von Lösungen. F 1 F F 1 F 0

21 4 Torsion Schubspannungsverteilung bei Kreisquerschnitten τ T (r) M T τ Annahme: lineare Verteilung der Spannungen τ keine Querkräfte in der Welle τ r da M A T resultierendes Torsionsmoment als Schnittgröße τ (r) M T r Ιp mit Ι polares Flächenmoment Dimensionierung τ τ mit Ι polares Widerstandsmoment 1

22 Beispiel: Kreisringquerschnitt ( ) π Ι π Andere Querschnitte M Ι T Torsionsflächenmoment T τ τa mit W W T Torsionswiderstandsmoment T Beispiel: Rechteckquerschnitt Ι T c 1 h b 3 0,3 h W T c für h b h b 0, c c 1 b 0, h/b

23 Beispiel: Hohlprofil (kleine Wanddicken) M T h α r ds τ M T ( r cosα) ( τ h ds) M T τ h A A ½ ( A a + A i ) τ max MT A h min W T h min A Ι T 4 A ds h 3

24 Verdrehung bei Torsion M T M T ϕ τ γ τ τ τ τ γ Werkstoffgesetz bei Schubbelastung G Schubmodul Zahlenwerte: Stahl G N/mm² Aluminium G N/mm² Kupfer G N/mm² M T ϕ ϕ Torsionswinkel G Ι l T G Ι T Torsionssteifigkeit Ι T Ι P bei Kreisringquerschnitten 4

25 5 Querkraftschub τ Q Dimensionierung τ τ Annahme: gleichmäßige Verteilung der Schubspannungen über die Fläche A "Verformungen durch Querkraftschub sind vernachlässigbar" 5

26 6 Überlagerte Beanspruchung Normalspannungen F N σ Z σ B F N σ res σ σ + σ resultierende Normalspannung res Z B 6

27 Schubspannungen τ T M T τ Q F Q F Q τ res M T τ τ + τ resultierende Schubspannung res T Q 7

28 Normal- und Schubspannungen In der Regel sind Bauteile gleichzeitig durch mehrere Belastungsarten beansprucht. Es treten in der Summe Normal- und Schubspannungen in unterschiedlichen Kombinationen auf. Es ist nicht möglich, für alle diese Belastungen experimentelle Festigkeitskennwerte zu ermittelt. Daher werden an dieser Stelle Hypothesen verwendet, um einen kombinierten Belastungsfall mit dem Zugversuch vergleichen zu können. Die Hypothesen basieren auf der Annahme von unterschiedlichen Versagensmechanismen. Als Ergebnis liefern alle Hypothesen eine Vergleichsspannung σ V. Beispiele: σ σ + 4 τ Schubspannungshypothese V res res Das Bauteilversagen wird durch die größte Schubspannung bestimmt. σ σ + 3 τ Gestaltänderungsenergiehypothese V res res ( GE-Hypothese ) Die Formänderung eines Bauteils bestimmt das Bauteilversagen. 8

29 7 Knickung Bei schlanken Bauteilen können Druckkräfte zum plötzlichen Ausknicken führen. Ι Differentialgleichung der Biegelinie Biegemoment im geknickten Zustand Die kleinste mögliche Kraft F, die diese Differentialgleichung erfüllt, wird Knickkraft genannt. π Ι Knickkraft gilt nur für den elastischen Bereich: σ Mit der Knicklänge l K werden unterschiedliche Randbedingungen berücksichtigt. 9

30 Knickfälle ( nach EULER ) F K F K F K F K Knickfall Knicklänge l K l l K l l K 0,7 l l K 0,5 l Knicksicherheit im Maschinenbau übliche Werte: S K 3 bis 10 30

31 8 Statisch unbestimmte Systeme Nach den Aussagen der Statik gibt es beim allgemeinen ebenen Kräftesystem 3 Gleichgewichtsbedingungen, mit denen 3 unbekannte Größen ermittelt werden können. Wenn mehr Unbekannte vorliegen, z.b. 4 Lagerkräfte, liegt ein statisch unbestimmtes System vor. Zur Lösung muss die Elastizität des Bauteils mit berücksichtigt werden. Beispiel statisch unbestimmt gelagerter Balken Belastung z.b. durch das Eigengewicht M A F Ax 0 F A F B Selbst ohne die Berücksichtigung des horizontalen Kräftegleichgewichts bleiben Gleichungen für 3 Unbekannte. Damit ist der Balken statisch unbestimmt gelagert. 31

32 Lösungsmöglichkeiten Lösung der Differentialgleichung mit den gegebenen Randbedingungen Überlagerungsmethode Energiemethode Überlagerungsmethode Durch "Weglassen" einer Lagerkraft wird ein statisch bestimmtes System gewonnen: Die in Wirklichkeit nicht vorhandene Auslenkung beträgt: Ι ( siehe Formelsammlung ) Die noch unbekannte Lagerkraft F B führt dazu, dass die Auslenkung f verschwindet. f F B 3

33 Ι ( siehe Formelsammlung ) Jetzt können F A und M A berechnet werden. M A F A F B 33

34 Formelsammlung FN Zug / Druck Dimensionierung σ σzul A Werkstoffgesetz σ ε ε Formänderung F N E A l l Wärmedehnung ε α Biegung Spannungsverlauf σ ( x) M B x Ι Dimensionierung σ σ Flächenmoment Ι Rechteck Ι π Kreis Ι Dreieck siehe Skript Verschiebungssatz Ι Ι + Widerstandsmoment Ι Rechteck π Kreis Dreieck siehe Skript Formänderung Ι Lösungen siehe Tabelle Formelsammlung 34

35 M Torsion Spannungsverlauf (r) T r Ι τ (für Kreisringquerschnitt) p Dimensionierung τ max M W T T τ zul Flächenmoment für Kreisringquerschnitt Ι T Ι p π D 3 (Rechteck und Hohlprofil siehe Skript) Widerstandsmoment für Kreisringquerschnitt W T W p 4 π D 16 (Rechteck und Hohlprofil siehe Skript) 3 Formänderung ϕ l M T G Ι T F τ A Q Schub Dimensionierung zul Vergleichsspannung GE-Hypothese σ σ + τ τ Knickung Knickkraft π Ι (Knickfälle siehe Skript) Formelsammlung 35

36 Biegelinien von Balken 1 Belastungsfall Gleichung der Biegelinie Durchbiegung Neigung α + Ι Ι α Ι α Ι Ι α Ι 3 α Ι für Ι α Ι 4 y 1 α 1 w y w 1 α f m + Ι + Ι für für Ι f m l + b f 3 b l + b 3 a α α + + Formelsammlung 36

37 5 α 1 y 1 6 w 1 α α y w α 3 Ι Ι für + für + Ι Ι Ι + α Ι α α α + Ι α Ι 7 α + Ι Ι α Ι Formelsammlung 37

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Zugversuch. Carsten Meyer. Raum 110. Telefon: Institut für Werkstoffanwendungen im Maschinenbau

Zugversuch. Carsten Meyer. Raum 110. Telefon: Institut für Werkstoffanwendungen im Maschinenbau Carsten Meyer c.meyer@iwm.rwth-aachen.de Raum 110 Telefon: 80-95255 F F S 0 σ F S 0 äußere Kraft Spannung ( innere Kraft ) Jeder noch so kleine Teil des Querschnittes überträgt einen noch so kleinen Teil

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

2 Zug- und Druckbeanspruchung

2 Zug- und Druckbeanspruchung 2 Zug- und Druckbeanspruchung 2.1 Zug- und Druckspannungen Zur Berechnung der Spannungen in einem prismatischen Zugstab wenden wir die Schnittmethode (s. Abschn. 1.3) an. Da die äußeren Kräfte F in Richtung

Mehr

Gottfried C. O. Lohmeyer. Baustatik 2. Festigkeitslehre

Gottfried C. O. Lohmeyer. Baustatik 2. Festigkeitslehre Gottfried C. O. Lohmeyer Baustatik 2 Festigkeitslehre 8., überarbeitete und erweiterte Auflage Mit 260 Abbildungen, 90 Tafeln, 145 Beispielen und 48 Übungsaufgaben Te Ubner HLuHB Darmstadt MI HU 15182717

Mehr

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer TECHNISCHE MECHANIK Übungen zur Elastostatik Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer Fachhochschule München Fachbereich 06 - Feinwerk- und Mikrotechnik Technische

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

Prüfung - Technische Mechanik II

Prüfung - Technische Mechanik II Prüfung - Technische Mechanik II SoSe 2013 2. August 2013 FB 13, Festkörpermechanik Prof. Dr.-Ing. F. Gruttmann Name: Matr.-Nr.: Studiengang: Platznummer Raumnummer Die Aufgaben sind nicht nach ihrem Schwierigkeitsgrad

Mehr

Elementare Festigkeitslehre

Elementare Festigkeitslehre 1 Elementare Festigkeitslehre 1.Einführung Statik verformbarer fester Körper, die als linear-elastisch, homogen und isotrop angenommen werden. Weitere gebräuchliche Namen: Elastostatik, Festigkeitslehre

Mehr

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Von Prof. Dipl. Ing. Dr. Hans G. Steger, Linz Prof. Dipl. Ing. Johann Sieghart, Linz Prof. Dipl. Ing. Erhard Glauninger, Linz 2., verbesserte und erweiterte

Mehr

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem Ermittlung unbekannter Kräfte im zentralen Kräftesystem.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem ( Lehrbuch: Kapitel.3.) Gegebenenfalls auftretende Reibkräfte werden bei den folgenden

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Umwelt-Campus Birkenfeld Technische Mechanik II

Umwelt-Campus Birkenfeld Technische Mechanik II 10. 9.4 Stoffgesetze Zug und Druck Zug- und Druckbeanspruchungen werden durch Kräfte hervorgerufen, die senkrecht zur Wirkfläche stehen. Zur Übertragung großer Zugkräfte eignen sich Seile und Stäbe, Druckkräfte

Mehr

Zugstab

Zugstab Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Elastizitätslehre. Torsion

Elastizitätslehre. Torsion 3. Semester Seite 1/13 Elastizitätslehre 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 3 4. Schubgleitung 3 5. 6 6. St. Venant 7 7. Querschnittsformen 7 7.1 Dünnwandiger Kreisring

Mehr

Übung 10: Verbindungstechnik

Übung 10: Verbindungstechnik Ausgabe: 02.12.2015 Übung 10: Verbindungstechnik Einleitung und Lernziele Der Einsatz effizienter Verbindungstechnologien ist für die Realisierung komplexer Leichtbaustrukturen von grosser Bedeutung. Diese

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2.

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2. 1. Aufgabe An einem Proportionalstab aus dem Stahl X3CrNi2-32 mit rechteckigem Querschnitt im Messbereich (a 6,7 mm; b 3 mm; L 8mm) wurde in einem das dargestellte Feindehnungs- bzw. Grobdehnungsdiagramm

Mehr

Kompendium Festigkeitsberechnung

Kompendium Festigkeitsberechnung Kompendium Festigkeitsberechnung Erstellt von Daniel Schäfer 2014 Betreuer Prof. Dr. Ing. Manfred Reichle Inhalt 1. Einleitung... 4 1.1 Aufgaben der Festigkeitsrechnung... 4 1.2 Größen in der Festigkeitsrechnung...

Mehr

Praktische Festigkeitsberechnung

Praktische Festigkeitsberechnung Praktische Festigkeitsberechnung Konstruktionslehre Studiengang Mechatronik. Semester Prof. Dr.-Ing. M. Reichle Inhaltsverzeichnis - I - Inhaltsverzeichnis Grundlagen der Festigkeitsberechnung... Beanspruchungen

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit

Mehr

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth BAUMECHANIK I Umfang V/Ü/P (ECTS) 2/2/0 (5) 2/2/0 2/2/0 2/2/0-2*/2*/0 - Diplom 5. 6. 7. 8. 9. 10. Definitionen und Klassifizierungen Kräfte und Kraftarten, Vektor, Vektorsysteme Darstellung vektorieller

Mehr

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2 Dimensionieren Prof. Dr. K. Wegener ame Vorname Legi-r. Zusatzübung 1: Passfederverbindung Voraussetzungen F F Flächenpressung zwischen Bauteilen M Last Ermüdungsfestigkeit Welle-abe-Verbindung F/ L/ F/

Mehr

Praktikum Materialwissenschaft II. Zugversuch

Praktikum Materialwissenschaft II. Zugversuch Praktikum Materialwissenschaft II Zugversuch Gruppe 8 André Schwöbel 132837 Jörg Schließer 141598 Maximilian Fries 147149 e-mail: a.schwoebel@gmail.com Betreuer: Herr Lehmann 5.12.27 Inhaltsverzeichnis

Mehr

1 Zug und Druck in Stäben

1 Zug und Druck in Stäben 1 Zug und Druck in Stäben In der Elastostatik untersucht man die Beanspruchung und die Verformung von elastischen Tragwerken unter der Wirkung von Kräften. Wir wollen uns im ersten Kapitel nur mit dem

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

Klausur Maschinenlehre I. Kurzfragen

Klausur Maschinenlehre I. Kurzfragen FRITZ-SÜCHTING-INSTITUT FÜR MASCHINENWESEN DER TECHNISCHEN UNIVERSITÄT CLAUSTHAL Dr.- Ing. Günter Schäfer 18.02.2016 Name: Vorname: Matrikel.-Nr.: Klausur Maschinenlehre I WS15/16 Kurzfragen Mit meiner

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

tgt HP 1993/94-1: Getriebewelle

tgt HP 1993/94-1: Getriebewelle tgt HP 1993/94-1: Getriebewelle l 1 45 mm l 2 35 mm l 3 60 mm l 4 210 mm F 1 700 N F 2 850 N F 3 1300 N An der unmaßstäblich skizzierten Getriebewelle aus E295 sind folgende Teilaufgaben zu lösen: Teilaufgaben:

Mehr

Numerische Berechnung von Leichtbaustrukturen

Numerische Berechnung von Leichtbaustrukturen von Leichtbaustrukturen 2.Vorlesung Institut für Mechanik 15. Oktober 2014 (IFME) 15. Oktober 2014 1 / 22 Folie 1 - Flächentragwerke Definition Als Zugsysteme werden Tragwerke bezeichnet, in denen vorzugsweise

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 Inhaltsverzeichnis 1 Einleitung 1 2 Mathematische Grundlagen 5 2.1 Koordinatensystem... 5 2.2 Koordinatentransformation... 7 2.3 Indexschreibweise... 9 2.4 Tensoren... 11 2.5 Tensoroperationen... 14 2.6

Mehr

Aufgaben zur Festigkeitslehre ausführlich gelöst

Aufgaben zur Festigkeitslehre ausführlich gelöst Aufgaben zur estigkeitslehre ausführlich gelöst Mit Grundbegriffen, ormeln, ragen, Antworten von Gerhard Knappstein 6. Auflage VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KG Düsselberger Straße

Mehr

5.2 Beanspruchung auf Zug

5.2 Beanspruchung auf Zug 5.2 Beanspruchung auf Zug 5.2.1 Spannung Ein Stab von beliebiger, gleich bleibender Querschnittsfläche S wird durch die äußere Kraft F auf Zug beansprucht. Gefährdet ist bei Zugbeanspruchung der Querschnitt

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS

STATISCHE BERECHNUNG Traverse Typ F23 Länge bis 10,00m GLOBAL TRUSS Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS Die statische Berechnung ist ausschließlich aufgestellt

Mehr

Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote:

Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote: Klawitter, Szalwicki Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote: 14.01.2014 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch Auflage:

Mehr

Friedrich U. Mathiak. Festigkeitslehre

Friedrich U. Mathiak. Festigkeitslehre Friedrich U. Mathiak Festigkeitslehre 1 1 Seile und Ketten, Stützlinienbögen Aufgabe 1-1 An einem als masselos angenommenen Seil ist ein waagerecht hängender Balken befestigt. Bestimmen Sie: a) die Gleichung

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

Maschinenelemente 1. von Hubert Hinzen. Oldenbourg Verlag München Wien

Maschinenelemente 1. von Hubert Hinzen. Oldenbourg Verlag München Wien Maschinenelemente 1 von Hubert Hinzen Oldenbourg Verlag München Wien Inhalt 1 Grundlagen der Dimensionierung metallischer Bauteile 1 1.1 Das grundsätzliche Problem der Bauteildimensionierung 1 1.2 Quasistatische

Mehr

1 Grundlagen der Statik Die Kraft Axiome der Statik Das Schnittprinzip... 5

1 Grundlagen der Statik Die Kraft Axiome der Statik Das Schnittprinzip... 5 Inhaltsverzeichnis 1 Grundlagen der Statik 1 1.1 Die Kraft...................................... 1 1.2 Axiome der Statik.................................. 3 1.3 Das Schnittprinzip.................................

Mehr

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte:

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte: B Konstruktion Tabelle1 Vorgegebene Werte: Drehzahl [1/min] Startleistung [kw] Planetengetriebe Eingang 3520 377 Planetengetriebe Ausgang 565 369 Eingriffswinkel α 20.00 0.3491 Verzahnungsqualität Q 5

Mehr

Das Omega- Verfahren nach DIN 4114

Das Omega- Verfahren nach DIN 4114 Das Omega- Verfahren nach DIN 4114 Dipl.- Ing. Björnstjerne Zindler, M.Sc. Letzte Revision: 9. Mai 20 Inhaltsverzeichnis 1 Das Omega- Verfahren im Allgemeinen 2 2 Das Omega- Verfahren im Besonderen 3 3

Mehr

Aus Kapitel 4 Technische Mechanik Aufgaben

Aus Kapitel 4 Technische Mechanik Aufgaben 6 Aufgaben Kap. 4 Aus Kapitel 4 Aufgaben 4. Zugproben duktiler Werkstoffe reißen im Zugversuch regelmäßig mit einer größtenteils um 45 zur Kraftrichtung geneigten Bruchfläche. F F 3. Mohr scher Spannungskreis:

Mehr

Zugversuch - Versuchsprotokoll

Zugversuch - Versuchsprotokoll Gruppe 13: René Laquai Jan Morasch Rudolf Seiler 16.1.28 Praktikum Materialwissenschaften II Zugversuch - Versuchsprotokoll Betreuer: Heinz Lehmann 1. Einleitung Der im Praktikum durchgeführte Zugversuch

Mehr

5 Mechanische Eigenschaften

5 Mechanische Eigenschaften 5 Mechanische Eigenschaften 5.1 Mechanische Beanspruchung und Elastizität 5.1 Frage 5.1.1: Kennzeichnen Sie qualitativ die Art der Beanspruchung des Werkstoffes unter folgenden Betriebsbedingungen: a)

Mehr

WWT Frank Sandig Agricolastr. 16, 2310A Freiberg. 1. Belegaufgabe.

WWT Frank Sandig Agricolastr. 16, 2310A Freiberg. 1. Belegaufgabe. Frank Sandig Agricolastr. 16, 310A 09599 Freiberg 4817 4.WWT sandigf@mailserver.tu-freiberg.de Maschinen- und Apparateelemente 1. Belegaufgabe Aufgabenstellung: Abgabezeitraum: 6.11. - 30.11.007 Übungsleiter:

Mehr

Zug- und Druckbeanspruchung

Zug- und Druckbeanspruchung Kapitel 2 Zug- und Druckbeanspruchung 2.1 Zug- und Druckspannungen Zur Berechnung der Spannungen in einem prismatischen Zugstab wendet man die Schnittmethode (s. Abschnitt 1.3) an. Da die äußeren Kräfte

Mehr

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Name: Vorname: Mat.-Nr.: Studiengang: Datum: Note: Betreuer: Dipl.-Ing. Matthias vom Stein / fml Versuch 1: Drehzahl und Beschleunigung

Mehr

Stahlbau 1. Name:... Matr. Nr.:...

Stahlbau 1. Name:... Matr. Nr.:... 1/10 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Stabilitätsnachweis Der in Abb.1 dargestellte Rahmen, bestehend aus zwei Stützen [rechteckige Hohlprofile, a= 260mm,b= 140mm, s= 8mm] und einem Riegel

Mehr

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln.

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln. Name: Matthias Jasch Matrikelnummer: 2402774 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 26. Mai 2009 Betreuer: Vera Barucha Zugversuch 1 Einleitung Der Zugversuch gehört zu den

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I Klausur KT1 (alt KT) SS 011 Dr.-Ing. S. Umbach I 30.08.011 Name, Vorname: Unterschrift: Matrikel- Nr.: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner.

Mehr

FVK Kontrollfragen. 2. Nennen Sie aus werkstofftechnischer Sicht mögliche Versagensarten.

FVK Kontrollfragen. 2. Nennen Sie aus werkstofftechnischer Sicht mögliche Versagensarten. Institut für Werkstofftechnik Metallische Werkstoffe Prof. Dr.-Ing. Berthold Scholtes FVK Kontrollfragen Abschnitt 1 1. Erläutern Sie den Zusammenhang zwischen Werkstoff, Fertigung, konstruktiver Gestaltung,

Mehr

Leseprobe. Biegung. Kirbs TECHNISCHE MECHANIK. Studienbrief HDL HOCHSCHULVERBUND DISTANCE LEARNING. 3. Auflage 2008

Leseprobe. Biegung. Kirbs TECHNISCHE MECHANIK. Studienbrief HDL HOCHSCHULVERBUND DISTANCE LEARNING. 3. Auflage 2008 Leseprobe Kirbs Biegung TECHNISCHE MECHANIK Studienbrief -5-97 3. Auflage 8 HDL HOCHSCHULVERBUND DISTANCE LEARNING Verfasser: Prof. Dr.-Ing. Jörg Kirbs Professor für Technische Mechanik / Festigkeitslehre

Mehr

Das Verformungsverhalten metallischer Werkstoffe

Das Verformungsverhalten metallischer Werkstoffe σ w in N/mm² Das Verformungsverhalten metallischer Werkstoffe Das Spannungs-Dehnungs-Diagramm Das Spannungs-Dehnungs-Diagramm (Abb.1) beschreibt das makroskopische Veformungsverhalten metallischer Werkstoffe

Mehr

Statik- und Festigkeitslehre I

Statik- und Festigkeitslehre I 05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.

Mehr

TECHNISCHE MECHANIK II. Festigkeitslehre

TECHNISCHE MECHANIK II. Festigkeitslehre TECHNISCHE MECHANIK II. Festigkeitslehre Dr. Endre Gelencsér TECHNISCHE MECHANIK II. Festigkeitslehre Dr. Endre Gelencsér Veröffentlicht 2014 Copyright 2014 Dr. Endre Gelencsér Inhaltsverzeichnis I. Grundbegriffe

Mehr

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz

Mehr

Technische Mechanik. Jürgen Dankert Helga Dankert

Technische Mechanik. Jürgen Dankert Helga Dankert Jürgen Dankert Helga Dankert Technische Mechanik Statik, Festigkeitslehre, Kinematik/Kinetik 6., überarbeitete Auflage Mit 1102 Abbildungen, 128 Übungsaufgaben, zahlreichen Beispielen und weiteren Abbildungen

Mehr

Wie groß kann ein Baum werden?

Wie groß kann ein Baum werden? Wie groß kann ein Baum werden? Dipl. Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 22. Mai 2013 Letzte Revision: 9. Juni 2015 Inhaltsverzeichnis 1 Einleitung 2 1.1 Vorbetrachtungen....................................

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Schwingende Beanspruchung II - Lösung

Schwingende Beanspruchung II - Lösung 1 - Gegeben sind in Bild 1 die Wöhlerdiagramme der Wechselschwingversuche (Spannungsverhältnis R = -1) und der Schwellschwingversuche (Spannungsverhältnis R = 0) an Kleinproben aus dem Gusswerkstoff 0.7040.

Mehr

STATISCHE BERECHNUNG "Traverse Typ F34" Länge bis 18,00m Taiwan Georgia Corp.

STATISCHE BERECHNUNG Traverse Typ F34 Länge bis 18,00m Taiwan Georgia Corp. Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F34" Länge bis 18,00m Taiwan Georgia Corp. Die statische Berechnung ist ausschließlich aufgestellt

Mehr

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper:

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper: Festkörper Struktur von Festkörpern. Kristalline Festkörper: nordnung der Bausteine (tome, Moleküle oder Ionen) in regelmäßigen Raumgittern Symmetrieeigenschaften. bstand der Gitterpunkte liegt in der

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Der Elastizitätsmodul

Der Elastizitätsmodul Der Elastizitätsmodul Stichwort: Hookesches Gesetz 1 Physikalische Grundlagen Jedes Material verormt sich unter Einwirkung einer Krat. Diese Verormung ist abhängig von der Art der Krat (Scher-, Zug-, Torsionskrat

Mehr

Statik- und Festigkeitslehre

Statik- und Festigkeitslehre Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Kapitel 3 Festigkeitsberechnung

Kapitel 3 Festigkeitsberechnung Kapitel 3 Festigkeitsberechnung Alle Angaben beziehen sich auf die 19. Auflage Roloff/Matek Maschinenelemente mit Tabellenbuch und die 15. Auflage Roloff/Matek Aufgabensammlung. Das Aufgabenbuch kann man

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Prüfung und Validierung von Rechenprogrammen für Brandschutznachweise mittels allgemeiner Rechenverfahren

Prüfung und Validierung von Rechenprogrammen für Brandschutznachweise mittels allgemeiner Rechenverfahren DIN EN 1991-1-2/NA:2010-12 Prüfung und Validierung von Rechenprogrammen für Brandschutznachweise mittels allgemeiner Rechenverfahren InfoCAD Programmmodul: Tragwerksanalyse für den Brandfall Auszug aus

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L Zugversuch Zugversuch Vor dem Zugversuch Verlängerung ohne Einschnürung Beginn Einschnürung Bruch Zerrissener Probestab Ausgangsmesslänge L 0 Verlängerung L L L L Verformung der Zugprobe eines Stahls mit

Mehr

Technische Mechanik. Band 2: Festigkeitslehre

Technische Mechanik. Band 2: Festigkeitslehre Technische Mechanik Band 2: estigkeitslehre Technische Mechanik Band 2: estigkeitslehre von Peter Hagedorn Jörg Wallaschek 5., vollständig überarbeitete Auflage VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. Aufgaben TK II Übung 1: Schnittkraftermittlung, Festigkeitslehre Aufgabe : Trog-Querschnitt Querschnitt z 0.2 0.2 Übung 1: Schnittkraftermittlung Festigkeitslehre 1.2 0.3 0.9 S 0.35 0.85 y Ausgabe : Freitag,

Mehr

Grundfachklausur Teil 1 / Statik I

Grundfachklausur Teil 1 / Statik I Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil / Statik I im Sommersemester 03, am 09.09.03 Die

Mehr

4. Werkstoffeigenschaften. 4.1 Mechanische Eigenschaften

4. Werkstoffeigenschaften. 4.1 Mechanische Eigenschaften 4. Werkstoffeigenschaften 4.1 Mechanische Eigenschaften Die mechanischen Eigenschaften kennzeichnen das Verhalten von Werkstoffen gegenüber äußeren Beanspruchungen. Es können im allg. 3 Stadien der Verformung

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

tgt HP 1982/83-2: Getriebewelle

tgt HP 1982/83-2: Getriebewelle tgt HP 198/83-: Getriebewelle Die Getriebewelle wird über das Zahnrad 3 mit einem Drehmoment M d 70 Nm angetrieben; über das Zahnrad werden 70% dieses Drehmoments abgeleitet. Die Welle ist in den Lagern

Mehr

2 Beispiele zu den Grundbeanspruchungsarten

2 Beispiele zu den Grundbeanspruchungsarten 28 2 Beispiele zu den Grundbeanspruchungsarten achdem wir die Grundlagen der FEM-Analyse und die grundsätzliche Arbeit mit SolidWorks Simulation kennen gelernt haben, kommen wir zur Anwendung und Vertiefung

Mehr

Klawitter, Strache, Szalwicki

Klawitter, Strache, Szalwicki Klawitter, Strache, Szalwicki Maschinenelemente 1 SoSe 2014 Klausur Punkte: Gesamtnote: 23.06.2014 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch

Mehr

tgt HP 2008/09-5: Wagenheber

tgt HP 2008/09-5: Wagenheber tgt HP 2008/09-5: Wagenheber Das Eigengewicht des Wagenhebers ist im Vergleich zur Last F vernachlässigbar klein. l 1 500,mm I 2 220,mm I 3 200,mm I 4 50,mm F 15,kN α 1 10, α 2 55, β 90, 1 Bestimmen Sie

Mehr

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung 29.10.2015 Tragwerksentwurf I+II 2 Tragwerksentwurf I Tragwerksentwurf II 2. Gleichgewicht & grafische Statik 6. Material und Dimensionierung 18. Biegung 1. Einführung 3.+4. Seile 7. Bögen 10. Bogen-Seil-

Mehr

Klawitter, Strache, Szalwicki

Klawitter, Strache, Szalwicki Klawitter, Strache, Szalwicki Maschinenelemente 1 SS 2013 Klausur Punkte: Gesamtnote: 24.06.2013 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch

Mehr

Werkstoffkunde II - 2. Übung

Werkstoffkunde II - 2. Übung Werkstoffkunde II - 2. Übung Mechanisches Werkstoffverhalten von Kunststoffen Barbara Heesel heesel@ikv.rwth-aachen.de Hendrik Kremer kremer_h@ikv.rwth-aachen.de Anika van Aaken vanaaken@ikv.rwth-aachen.de

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

1 Versuchsziel und Anwendung. 2 Grundlagen und Formelzeichen

1 Versuchsziel und Anwendung. 2 Grundlagen und Formelzeichen Versuch: 1 Versuchsziel und Anwendung Zugversuch Beim Zugversuch werden eine oder mehrere Festigkeits- oder Verformungskenngrößen bestimmt. Er dient zur Ermittlung des Werkstoffverhaltens bei einachsiger,

Mehr