M 4 Bestimmung des Torsionsmoduls

Größe: px
Ab Seite anzeigen:

Download "M 4 Bestimmung des Torsionsmoduls"

Transkript

1 M 4 Bestimmung des Torsionsmoduls. Aufgabenstellung. Bestimmen Sie den Torsionsmodul von Metallen mittels rehschwingungen.. Bestimmen Sie das Trägheitsmoment des schwingenden Systems..3 Führen Sie zur Ermittlung des Torsionsmoduls eine Größtfehlerberechnung durch.. Theoretische Grundlagen Stichworte zur Vorbereitung: Elastische Konstanten, Torsionsmodul, Statische Messmethode, ynamische Messmethode, Trägheitsmoment, rehschwingung Literatur:. Geschke Physikalisches Praktikum, Kap. M 3, Teubner Verlag 00 W. Walcher Praktikum der Physik, Kap..4., Elastizität, Teubner Verlag 989 E. Grimsehl Lehrbuch der Physik, Bd., Kap. 6, Teubner Verlag 99 H.. Paus Physik in Experimenten und Beispielen Kap. 5 Hanser Verlag 995 H.. Eichler,. Sahm as neue Physikalische Grundpraktikum, H.-. Kronfeldt Kapitel 9, Springer-Verlag, Berlin 00

2 Ideal starre Körper treten in der Natur nicht auf. eder Körper erfährt durch eine angreifende Kraft eine eformation. e nach der Art der Einwirkung äußerer Kräfte in Bezug auf eine bestimmte Körperfläche werden verschiedene Spannungszustände, wie z. B. Längsdehnung, Querkontraktion, Scherung oder Torsion beobachtet. as elastische Verhalten homogener, isotroper Festkörper wird durch vier Materialgrößen charakterisiert: den Elastizitätsmodul E, den Torsionsmodul G, die Poisson sche Zahl μ und den Kompressionsmodul K. iese vier Materialgrößen der Elastizitätslehre werden durch das Hooke sche Gesetz definiert. Sie sind Proportionalitätsfaktoren zwischen der jeweiligen Ursache und ihrer Wirkung. er Elastizitätsmodul E beschreibt die relative Längenänderung eines Körpers, die durch eine Zugspannung verursacht wird und der Torsionsmodul G die eformation durch eine Scherkraft, die Poisson sche Zahl ist das Verhältnis aus relativer Querverkürzung und relativer Längenänderung, und der Kompressionsmodul K charakterisiert die Zusammendrückbarkeit eines Körpers. er Elastizitätsmodul E ist nur eine der elastischen Konstanten, deren Bedeutung im folgendem kurz erklärt wird. Ein Metallstab werde durch eine Zugkraft belastet, er wird dabei länger. er Quotient aus der in Längsrichtung des Stabes wirkenden Kraft und der Querschnittsfläche A wird Normalspannung σ genannt (Abb. ). er Zusammenhang zwischen Belastung σ und relativer Längenänderung des Stabes Δ ε = ist in dem Spannungs-ehnungs-iagramm in Abb. dargestellt. F n F = n A0 E B A C F 0 Fn Abb. : Spannungs-ehnungs-iagramm und Zugversuch / Längsdehnung

3 ie im Stabquerschnitt wirksame Spannung ist auf den unbelasteten Querschnitt A 0 bezogen. Bis zum Punkt A, der Proportionalitätsgrenze, ist die ehnung der Spannung proportional. Unterhalb der Elastizitätsgrenze B gehen Volumen und Gestalt des Körpers nach Aufhören der Belastung in ihren ursprünglichen Zustand zurück, der Körper verhält sich elastisch. Oberhalb von B nimmt der Körper nach Verschwinden der Kraft die ursprüngliche Gestalt nicht mehr ein, das Material verhält sich plastisch. Oberhalb des Punktes C, der so genannten Fließgrenze, dehnt sich der Körper weiter, ohne dass die Belastung zunimmt. Oberhalb von kommt es wieder zu einer Verfestigung, bis der raht sich bei E an der späteren Bruchstelle einschnürt und schließlich bei F reißt. as Spannungs-ehnungs-iagramm sieht bei verschiedenen Stoffen qualitativ ähnlich aus, jedoch unterscheiden sich die einzelnen Bereiche in ihrer Ausdehnung oft wesentlich. Neben der Belastungsabhängigkeit beobachtet man auch eine Zeitabhängigkeit der Verformung. Man erreicht den Endwert einer Formänderung auch im elastischen Bereich erst nach einer gewissen Zeit (elastische Nachwirkung). Eine andere Erscheinung, die elastische Hysterese, besteht im Auftreten einer Restdeformation bei völliger Entlastung, sie ist durch entgegengesetzter Belastung zu beseitigen. ie Ursache dieser Erscheinung sind Fehler im Kristallbau. Physikalisch anschaulich lässt sich dieses Verhalten deuten, wenn man berücksichtigt, dass feste Körper aus Gitterbausteinen aufgebaut sind, die in Form eines Raumgitters angeordnet sind und die sich durch anziehende und abstoßende Kräfte zwischen den Bausteinen im stabilen Gleichgewicht befinden. urch nicht zu große äußere Kräfte F werden die Abstände der Gitterbausteine verändert und dadurch innere Kräfte F i hervorgerufen, die nach der äußeren Krafteinwirkung die alte Gleichgewichtslage wieder herstellen (elastisches Verhalten). urch größere äußere Kräfte können die Gitterebenen gegeneinander verschoben werden. ie Gitterbausteine gelangen dabei in neue stabile Gleichgewichtslagen, die sie nach dem Aufhören der äußeren Krafteinwirkung beibehalten (plastisches Verhalten). Im Gültigkeitsbereich des HOOKE schen Gesetz gilt σ = ε. () E 3

4 3. er Torsionsmodul 3. efinition A Wirkt auf die eckfläche des in Abb. dargestellten Würfels, dessen Bodenfläche F S festgehalten wird, eine Kraft F S, so ist der sich ergebende Scherwinkel α der Schubspannung τ proportional α τ Gα =. () Abb. : eformation eines Würfels durch eine Scherkraft er Proportionalitätsfaktor G heißt Torsions- oder Schubmodul. Als Schubspannung τ bezeichnet man den Quotienten aus dem Betrag der Scherkraft F S und der Querschnittsfläche A F τ = S. (3) A Experimentell kann der Torsionsmodul z. B. aus der Verdrillung von Stäben oder rähten mit kreisförmigem Querschnitt bestimmt werden. Es soll im Weiteren ein einseitig eingespannter raht betrachtet werden, dessen Länge groß gegenüber dem Radius r ist. Am freien rahtende lässt man tangential am äußeren urchmesser ein äußeres Kräftepaar den Winkel ϕ verdrillt. F S angreifen, das den raht um r d r α ϕ b Abb. 3 : Verdrillung eines rahtes 4

5 enkt man sich den raht aus unendlich vielen ineinander gesteckten konzentrischen Hohlzylindern mit der icke dr zusammengesetzt, so verschiebt sich bei Verdrillung eine zur rehachse parallele Faser im Abstand r von der rehachse um den Winkel α (vergl. Abb. 3). em äußeren rehmoment (Kreisringe) im Abstand r elastisches rehmoment d M M = rf wirkt an jedem Flächenelement da S von der rehachse ein im Betrag jeweils gleichgroßes r df Mit den Gln.() und (3) ergibt sich d = entgegen. M = rg α da. Nach Abb. 3 gilt für kleine α: b= ϕr = α. Mit diesem Ausdruck und da = πr dr (Zylinderkoordinaten) folgt G 3 dm = π ϕ r dr. as gesamte rücktreibende rehmoment erhält man durch Integration über alle Hohlzylinder. r G 3 πgr M = dm = π ϕ r dr = 0 4 ϕ. (4) Eine Methode zur Bestimmung des Torsionsmoduls, die dynamische Methode, basiert auf der Messung der Schwingungsdauer von rehschwingungen. Mit dieser Messmethode wird der Torsionsmodul zweckmäßigerweise dann ermittelt, wenn das zu untersuchende Material als raht vorliegt, also geringe rehmomente zur Verdrillung benötigt werden. Ein raht der Länge ist am oberen Ende eingespannt und am unteren Ende mit einem Körper belastet. Lenkt man den Körper bzgl. der rehachse aus, so führt er eine rehschwingung aus, deren Ursache die elastischen Kräfte des verdrillten rahtes sind. Bei einem Auslenkwinkel ist der Betrag des rücktreibenden Momentes M gegeben durch M = ϕ. (4a) wird als irektions- oder Richtmoment bezeichnet. Für die Rotationsbewegung um die rehachse gilt die Bewegungsgleichung ϕ + ϕ = 0, (5) wobei das Trägheitsmoment der Messanordnung ist. ie allgemeine Lösung dieser ifferentialgleichung lautet 5

6 cos ϕ = ϕ0 t + β (6) mit den durch die Anfangsbedingungen bestimmten Konstanten ϕ 0 (Amplitude) und β (Phase). ie Periodendauer T dieser harmonischen Schwingung ergibt sich zu Mit den Gln.(4) und (4a) folgt daraus T = π. T = π π Gr. (7) Somit kann der gesuchte Torsionsmodul G durch Messung der Schwingungs-dauer T bestimmt werden, wenn das Trägheitsmoment 4 der schwingenden Anordnung bekannt ist. Im speziellen Versuch ist jedoch neben G auch das Trägheitsmoment unbekannt (unregelmäßige Form bzw. Inhomogenität des angehängten Körpers, sowie Beitrag des mitschwingenden rahtes). Man macht deshalb eine zweite Messung, bei der am schwingenden Körper eine Zusatzscheibe mit berechenbarem, also bekanntem, Trägheitsmoment befestigt wird. ie Schwingungsdauer T ergibt sich hierbei zu T π + =. (8) Für das unbekannte Trägheitsmoment folgt aus den Gln.(7) und (8) T = T. (9) T Aus den Gln.(7) und (9) erhält man nun den gesuchten Torsionsmodul 8 π G = d T T 4 ( ). (0) ie Zusatzscheibe ist ein homogener Hohlzylinder der Höhe H, dem inneren Radius R i und dem äußeren Radius 4 4 ( a Ri ) R a. Sein Trägheitsmoment beträgt ρ H R =. () Mit m m ρ = = V H π R R ( a i ) m erhält man = ( Ra + Ri ). () 6

7 4. Versuchsdurchführung Eine Verdrehung der beiden zusammengeschraubten Körper um etwa 90 bewirkt die Verdrillung des rahtes, von dessen Material der Torsionsmodul bestimmt werden soll. Nach dem Loslassen der Körper führt das System rehschwingungen aus. ie Schwingungsdauer T bestimmt man aus der Zeit für 0 aufeinander folgende Schwingungen. ie Messung ist fünfmal durchzuführen. Nach dem Abschrauben der unteren Scheibe wird die Schwingungsdauer T (am raht hängt nur der obere Körper) auf die gleiche Weise bestimmt (fünfmalige Messung von 0 Schwingungen). ie zur Berechnung des Trägheitsmomentes der unteren Scheibe notwendige Masse m erhält man durch Wägung. en Außendurchmesser R a sowie den urchmesser der Bohrung R i bestimmt man mit dem Messschieber, den rahtdurchmesser d an fünf verschiedenen Stellen mit der Bügelmessschraube. ie rahtlängen sind am Versuchsplatz angegeben. 5. Kontrollfragen 5. Unter welcher Voraussetzung gilt das Hooke sche Gesetz? 5. Nennen Sie die efinitionsgleichung des Trägheitsmomentes, erläutern Sie anschaulich diese Größe und leiten Sie die Beziehung () her. 5.3 Wie groß wäre das Trägheitsmoment des verwendeten Hohlzylinders (Zusatzscheibe), wenn er um einen Punkt seiner Peripherie rehschwingungen ausführen würde? 5.4 Welche weitere Messmethode zur Bestimmung des Torsionsmoduls gibt es an Stelle der dynamischen Messung ( T )? Welche Größe wird bei der alternativen Methode gemessen? 5.5 Nennen Sie analoge Größen und Gleichungen der Translation und der Rotation. 7

106 Torsionsmodul. 1.2 Bestimmen Sie für zwei weitere Metallstäbe den Torsionsmodul aus Torsionsschwingungen!

106 Torsionsmodul. 1.2 Bestimmen Sie für zwei weitere Metallstäbe den Torsionsmodul aus Torsionsschwingungen! Physikalisches rundpraktikum 06 Torsionsmodul. Aufgaben. Messen Sie für zwei Metallstäbe den Torsionswinkel bei unterschiedlichen Drehmomenten. Stellen Sie den Zusammenhang grafisch dar, und bestimmen

Mehr

V1 - Dichtebestimmung

V1 - Dichtebestimmung Aufgabenstellung: Überprüfen Sie die Proportionalität zwischen Belastung und Verlängerung einer Feder. Bestimmen Sie die Federkonstante. Bestimmen Sie die Federkonstante mit Hilfe der dynamischen Methode.

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M3 Elastizität Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 9.01.001 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das Hooksche Gesetz. Die elastische Biegung.3 Die elastische

Mehr

( ) i. 6 Reale Feste und Flüssige Körper. F i F = F = grad E pot. Atomares Modell der Aggregatszustände. Kraft auf ein Atom:

( ) i. 6 Reale Feste und Flüssige Körper. F i F = F = grad E pot. Atomares Modell der Aggregatszustände. Kraft auf ein Atom: 6 Reale Feste und Flüssige Körper Atomares Modell der Aggregatszustände Kraft auf ein Atom: F = i F i r ( ) i potentielle Energie hängt von der Anordnung der Atome ab F = grad E pot 1 Atomares Modell der

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

11. Deformierbare Festkörper

11. Deformierbare Festkörper 11. Deformierbare Festkörper Segen der erformung (kippelnder Stuhl, usw.) 11.1. Dehnung und Kompression Hier steht die Kraft auf der Bezugsfläche! In xperimenten zeigt sich: mit: 1 l F A... lastizitätsmodul

Mehr

ELASTIZITÄTSMODUL und TORSIONSMODUL

ELASTIZITÄTSMODUL und TORSIONSMODUL Versuch 6/1 E-MOUL und TORSIONSMOUL 05.05.006 Blatt 1 ELASTIZITÄTSMOUL und TORSIONSMOUL Beide Module sind materialspezifische Eigenschaften eines festen Gegenstandes, die, ausser über die elastischen Verformungen,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Elastizitätslehre Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 13. Jan. 2016 Elastizitätsgrenze und Plastizität Zugfestigkeit Versuch

Mehr

M3 ELASTIZITÄT UND TORSION

M3 ELASTIZITÄT UND TORSION M3 ELATIZITÄT UN TORION PHYIKALICHE GRUNLAGEN Grundbegriffe: ehnung, Torsion, Norma- und chubspannung, Hookesches Gesetz Eastische Konstanten, rehmoment, Massenträgheitsmoment 1 Eastizität und Hookesches

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

104 Biegung. 1.3 Führen Sie eine Größtfehlerabschätzung durch, und vergleichen Sie Ihre Ergebnisse mit Tabellenwerten!

104 Biegung. 1.3 Führen Sie eine Größtfehlerabschätzung durch, und vergleichen Sie Ihre Ergebnisse mit Tabellenwerten! 104 Biegung 1. ufgaben 1.1 Messen Sie die Durchbiegung verschiedener Stäbe in bhängigkeit von der Belastung und stellen Sie den Zusammenhang grafisch dar! Kontrollieren Sie dabei, ob die Verformung reversibel

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Experimentalphysik 1. Vorlesung 3

Experimentalphysik 1. Vorlesung 3 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 Vorlesung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

A5 Trägheitsmoment. Inhaltsverzeichnis. Physikpraktikum Version: 1.0

A5 Trägheitsmoment. Inhaltsverzeichnis. Physikpraktikum Version: 1.0 Tobias Krähling email: Homepage: 13.3.27 Version: 1. Stichworte: Literatur: rehmoment, rehimpuls, Trägheitsmoment, Berechnung von Trägheitsmomenten, ifferentialgleichung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

DREHSCHWINGUNGEN AN DER DRILLACHSE

DREHSCHWINGUNGEN AN DER DRILLACHSE 16 REHSCHWINGUNGEN AN ER RILLACHSE 1) Einführung ie Bewegung eines ausgedehnten starren Körpers lässt sich im allgemeinen durch die Überlagerung zweier Bewegungen, nämlich einer translatorischen und einer

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

Zusammenfassung. Reale feste und flüssigekörper

Zusammenfassung. Reale feste und flüssigekörper Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper:

Festkörper Struktur von Festkörpern. 1. Kristalline Festkörper: Festkörper Struktur von Festkörpern. Kristalline Festkörper: nordnung der Bausteine (tome, Moleküle oder Ionen) in regelmäßigen Raumgittern Symmetrieeigenschaften. bstand der Gitterpunkte liegt in der

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

5. Elastizitätsgesetz

5. Elastizitätsgesetz 5. Elastizitätsgesetz Das Materialgesetz ist eine Beziehung zwischen den Spannungen, den Verzerrungen und den Temperaturänderungen. Das Materialgesetz für einen elastischen Körper wird als Elastizitätsgesetz

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Klassische Physik-Versuch 23. Elastizitätsmodul

Klassische Physik-Versuch 23. Elastizitätsmodul Klassische Physik-Versuch 2 KLP-2-1 Elastizitätsmodul 1 Vorbereitung Allgemeine Grundlagen zu elastischen Eigenschaften fester Körper, Neutrale Faser, Anisotropie von Kristallen Lit.: EICHLER/KRONFELD/SAHM

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Bestimmung von Federkonstanten Test

Bestimmung von Federkonstanten Test D. Samm 2012 1 Bestimmung von Federkonstanten Test 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

3. Elastizitätsgesetz

3. Elastizitätsgesetz 3. Elastizitätsgesetz 3.1 Grundlagen 3.2 Isotropes Material 3.3 Orthotropes Material 3.4 Temperaturdehnungen 1.3-1 3.1 Grundlagen Elastisches Material: Bei einem elastischen Material besteht ein eindeutig

Mehr

Versuch 6/3 Gekoppelte Schwingungen

Versuch 6/3 Gekoppelte Schwingungen Versuch 6/3 Gekoppelte Schwingungen Versuchdurchührung: 19.11.009 Praktikanten: Sven Köppel, Sebastian Helgert Assistent: Simon Untergrasser Theoretischer Hintergrund: Es soll die Bewegung eines einzelnen

Mehr

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 0. 0. 009 1 Aufgaben

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Übung zu Mechanik 2 Seite 16

Übung zu Mechanik 2 Seite 16 Übung zu Mechanik 2 Seite 16 Aufgabe 27 Ein Stab wird wie skizziert entlang der Stabachse durch eine konstante Streckenlast n beansprucht. Bestimmen Sie den Verlauf der Normalspannungen σ 11 (X 1 ) und

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:

Mehr

Universität Ulm Fachbereich Physik Grundpraktikum Physik

Universität Ulm Fachbereich Physik Grundpraktikum Physik Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung G-Modul Nummer: 06 Kompiliert am: 13. Dezember 2018 Letzte Änderung: 11.12.2018 Beschreibung: Webseite: Bestimmung des Schermoduls

Mehr

Aufgabe 37: Helmholtz Spulenpaar

Aufgabe 37: Helmholtz Spulenpaar Theoretisch-Physikalisches nstitut Friedrich-Schiller Universität Jena Elektrodynamik Sommersemester 8 Hausübung 9 Aufgabe 37: Helmholt Spulenpaar Berechne das Magnetfeld auf der Symmetrieachse eines Helmholt

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 7: Hydrostatik Dr. Daniel Bick 29. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 29. November 2017 1 / 27 Übersicht 1 Mechanik deformierbarer

Mehr

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V 3 Lösungen Lösung zu 53. ie Lösung ist ganz einfach: E kin = 1 mv und p = mv folgt m = 1.391 10 5 kg. araus folgt dann eine olmasse von m mol = 1.391 10 g 6.0 10 3 mol 1 = 83.77 g. Also handelt es sich

Mehr

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr.

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr. 5. Ebene Probleme 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand 1.5-1 Definition: Bei einem ebenen Spannungszustand ist eine Hauptspannung null. Das Koordinatensystem kann so gewählt werden,

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Sebastian Pfitzner. Mai 13 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (5577) Arbeitsplatz: Platz 4 Betreuer: Jacob Michael Budau Versuchsdatum:

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

1. GV: Mechanik. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer.

1. GV: Mechanik. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer. Physik Praktikum I: WS 005/06 Protokoll zum Praktikum 1. GV: Mechanik Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Stefan Gerkens Versuchstag Dienstag, 9.11.005 Einleitung Im Allgemeinen unterscheidet

Mehr

5.5.3 Welle im Messingstab ****** 1 Motivation. 2 Experiment. Welle im Messingstab

5.5.3 Welle im Messingstab ****** 1 Motivation. 2 Experiment. Welle im Messingstab 5.5.3 ****** Motivation Ein Messingstab wird horizontal bzw. vertikal angeschlagen. Die Geschwindigkeit der dabei jeweils ausgelösten longitudinalen bzw. vertikalen Schallwelle wird gemessen. 2 Experiment

Mehr

1. Formänderungsenergie

1. Formänderungsenergie 1. Formänderungsenergie 1.1 Grundlagen 1. Grundlastfälle 1.3 Beispiele.1-1 1.1 Grundlagen Zugstab: F L F x E, A F W u u An einem am linken Ende eingespannten linear elastischen Stab greift am rechten Ende

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechanik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 006/007 Grundpraktikum I Tutor: Sarah Dierk 09.01.007 Inhaltsverzeichnis 1 Ziel Theorie 3 Versuch

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

M1 - Gravitationsdrehwaage

M1 - Gravitationsdrehwaage Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Experimentalphysik 1

Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Winter 2015/16 Vorlesung 3 Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 6 Stöße zwischen Teilchen 3 6.1 Elastische Stöße im Laborsystem.........................

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

Es wird ein Koordinatensystem gewählt. Mit einem Schnitt senkrecht zur x-achse wird der Spannungsvektor

Es wird ein Koordinatensystem gewählt. Mit einem Schnitt senkrecht zur x-achse wird der Spannungsvektor 1 Theorie: Elastizität Mit dem Wissen über die mechanischen Eigenschaften von Zugstäben und über den atomaren Aufbau der Materie wird der Spannungs- und Dehnungsbegriff verallgemeinert. 1.1 Spannungen

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

M,dM &,r 2 dm bzw. M &,r 2!dV (3)

M,dM &,r 2 dm bzw. M &,r 2!dV (3) - A8.1 - ersuch A 8: Trägheitsmoment und Steinerscher Satz 1. Literatur: Walcher, Praktikum der Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Gerthsen-Kneser-ogel, Physik Stichworte: 2. Grundlagen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 04

Vorlesung Physik für Pharmazeuten PPh - 04 Vorlesung Physik für Pharmazeuten PPh - 04 Starrer Körper: Hebelgesetz, Drehmoment, Schwerpunkt, Drehimpuls Deformierbarer Körper: Elastizitätsmodul Punktmassen-Systeme Abgeschlossenes System : * Keine

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik Hookesches Gesetz.Übung Werkstoffmechanik Aus der lastostatik ist das Hookesche Gesetz im -dimensionalen Raum bekannt. σ = ε Wobei σ die Spannung, das lastizitätsmodul und ε die Dehnung oder allgemeiner

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Impuls und Drehungen Dr. Daniel Bick 22. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 22. November 2017 1 / 36 Hinweise zur Klausur Sa,

Mehr

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

1.) Der Torsionsfaden hat einen extrem kleinen Radius. Wie wirkt sich dies auf die Winkelrichtgröße D und die Schwingungsdauer T aus?

1.) Der Torsionsfaden hat einen extrem kleinen Radius. Wie wirkt sich dies auf die Winkelrichtgröße D und die Schwingungsdauer T aus? M50 Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Name: Vorname: Mat.-Nr.: Studiengang: Datum: Note: Betreuer: Dipl.-Ing. Matthias vom Stein / fml Versuch 1: Drehzahl und Beschleunigung

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

P 2 - Piezoelektrizität

P 2 - Piezoelektrizität 56 P2 Piezoelektrizität P 2 - Piezoelektrizität Ein Kristall, dessen Punktgruppe (Kristallklasse) kein Symmetriezentrum (Z) aufweist, kann prinzipiell piezoelektrisch sein Das heißt, der auf den Kristall

Mehr

Die elastischen Konstanten

Die elastischen Konstanten Die elastischen Konstanten Das elastische Verhalten eines festen Körpers unter der Wirkung von außen angreifender Kräfte soll untersucht werden. Die wichtigsten charakteristischen Konstanten, der Elastizitätsmodul

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009 Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 29 Zugversuch Gruppe 3 Protokoll: Simon Kumm Mitarbeiter: Philipp Kaller, Paul Rossi 1. Einleitung, Aufgabenstellung Im Zugversuch sollen

Mehr