Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung"

Transkript

1 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de

2 Blatt 26: Pfadregeln (I) Blatt 27: Pfadregeln (II) Blatt 28: Pfadregeln (III) Blatt 29: Pfadregeln (IV) Blatt 0: Vierfeldertafeln Blatt : Baumdiagramm und Vierfeldertafel Blatt 2: Simulation (I) Blatt : Simulation (II) Blatt 4: Erzeugen von Zufallszahlen mit dem Taschenrechner Blatt 5: Erzeugen von Zufallszahlen mit EXCEL Blatt 6: (Zusammen-)Gewürfeltes (V) Blatt 7: (Zusammen-)Gewürfeltes (VI) Zufallsgrößen und ihre Verteilung Blatt 8: Zufallsgrößen und ihre Verteilung (I) Blatt 9: Zufallsgrößen und ihre Verteilung (II) Blatt 40: Erwartungswert einer Zufallsgröße (I) Blatt 4: Erwartungswert einer Zufallsgröße (II) Blatt 42: Bernouille-Versuche Blatt 4: Binomialverteilung (I) Blatt 44: Binomialverteilung (II) Blatt 45: (Zusammen-)Gewürfeltes (VII) Teste dein Wissen Blatt 46: MC-Test Wahrscheinlichkeitsrechnung (I) Blatt 47: MC-Test Wahrscheinlichkeitsrechnung (II)

3 Hinweise zur Arbeit mit den Kopiervorlagen Die vorliegenden 47 Kopiervorlagen enthalten Arbeitsblätter zu wesentlichen inhaltlichen Schwerpunkten der Wahrscheinlichkeitsrechnung. Ein Einsatz dieser Arbeitsblätter ist sowohl bei der Behandlung der entsprechenden Sachverhalte im Mathematikunterricht der Sekundarstufe I in verschiedenen Klassenstufen und Schultypen als auch in Arbeitsgemeinschaften möglich. Die Aufgaben der Kopiervorlagen sind innerhalb der einzelnen Abschnitte nicht nach Anforderungsniveau, sondern nach dem Inhalt geordnet. Einige enthalten mehrere Teilaufgaben und verlangen von den Schülerinnen und Schülern eine höhere Komplexität in der Bearbeitung eines Sachverhalts. Die meisten Teilaufgaben können aber auch einzeln gelöst werden. Lehrerinnen und Lehrer können aus einem vielfältigen Angebot an Aufgaben (z.b. Aufgaben unterschiedlichen inhaltlichen Niveaus, einfache und komplexe Aufgaben) geeignete Beispiele für ein differenziertes Lernen, für variantenreiches Festigen und Anwenden, für das Ermitteln von Schülerleistungen bzw. auch für mündliche und schriftliche Kontrollen auswählen. Auf der Rückseite eines jeden Arbeitsblattes sind jeweils die von den Schülerinnen und Schülern zu erwartenden Lösungen angegeben. Jenes knappe Erwartungsbild mit Beispielcharakter dient vorrangig zur Information der Unterrichtenden. Durch die Kopiervorlagen sollen Lehrerinnen und Lehrer sowohl Hilfe und Unterstützung als auch Anregungen für die Gestaltung ihres Unterrichts erhalten. So können die Arbeitsblätter beispielsweise als Grundlage für die Zusammenstellung von Aufgaben für mündliche und schriftliche Leistungskontrollen im Fach Mathematik sowie zur langfristigen Vorbereitung auf Prüfungen dienen. Auch lassen sie sich parallel zum laufenden Unterricht nutzen, insbesondere als Ergänzung zum Aufgabenangebot in Lehrbüchern und methodischen Handreichungen. Im Unterricht selbst ist ein Einsatz der Arbeitsblätter zur Wiederholung und Systematisierung des mathematischen Stoffes, aber auch zur Leistungsüberprüfung möglich. Durch das differenzierte Angebot einer Vielzahl von Aufgaben unterschiedlichen Typs können sie zur gezielten Entwicklung von Kompetenzen innerhalb eines handlungsorientierten und schüleraktiven Mathematikunterrichts beitragen. Die Verwendung solcher Operatoren wie Beschreibe, Begründe, Erkläre, Definiere, Bewerte, Vergleiche, Erläutere oder Interpretiere unterstützt diesen Prozess.

4 N a m e : K l a s s e : K o p i e r v o r l a g e 0 Zufällige Vorgänge. Entscheide, ob die angegebenen Vorgänge jeweils zufälligen Charakter haben (Zufallsversuche sind). ja nein a) Reihenfolge (des Aufleuchtens der Farben) bei einer Ampelschaltung b) Ziehen einer Karte aus einem Quartettspiel c) Ermitteln der Gewinner bei einem Preisausschreiben d) Zuordnung einer Zensur anhand der erreichten Punktezahl in einer Klausur e) Anzahl der Sechsen bei dreimaligem Würfeln f) Festlegen des Datums für das Osterfest g) Wettervorhersage für Freitag, den. 2. Ergänze die im Folgenden angegebene Tabelle. Zufälliger Vorgang Betrachtetes Merkmal Mögliche Ergebnisse Werfen eines Würfels gewürfelte Augenzahl Geburt von Drillingen Anzahl der Mädchen Anzahl der Wappen 0; ; 2 Ziehen einer Karte aus einem Skatspiel Karo, Herz, Pik, Kreuz Ziehen der Superzahl im Lotto 6 aus 49 Nummer der gezogenen Kugel. Aus einem Gefäß, in dem sich zwei rote und acht weiße Kugeln befinden, werden auf gut Glück drei Kugeln entnommen. Gib alle möglichen Ergebnisse an. 4. Es wird mit zwei Würfeln gleichzeitig gewürfelt und die Summe der geworfenen Augenzahlen betrachtet. a) Gib alle möglichen Ergebnisse an. b) Vermute, welches Ergebnis am häufigsten auftritt, wenn sehr oft gewürfelt wird.

5 N a m e : K l a s s e : K o p i e r v o r l a g e 0 Zufallsexperimente (II) Statistische Erhebungen sind meistens Zufallsexperimente. Zu einem interessierenden Merkmal (Beobachtungsvorschrift) gibt es fast immer mehrere Merkmalsausprägungen (Ergebnisse). Im Folgenden ist jeweils ein Beispiel für eine statistische Erhebung durch Beobachtung bzw. durch Experimente angegeben. Ergänze in den Tabellen die fehlenden Angaben. a) Statistische Erhebung durch Beobachtung Vorgang Beobachtung im Straßenverkehr (an einem Kontrollpunkt) Beobachtung beim Sportfest Beobachtung im Mathematikunterricht Merkmal (Beobachtungsvorschrift) Anzahl der Insassen im Pkw Anzahl der Fahrzeuge je Stunde Landungszone beim Kugelstoßen für Notengebung Trefferanzahl beim Zielwerfen mit einem Ball und drei Versuchen Ergebnis eines Geometrietests Pkw, Lkw; Krad; Sonstige Merkmalsprägung (Ergebnis) Limousine; Cabrio; Combi; Van; Sportwagen ja; nein b) Statistische Erhebung durch Experimente Vorgang Spielen einer Schachpartie Lottoziehung 6 aus 49 Verkostung von Fruchtsäften Merkmal (Beobachtungsvorschrift) Spielsteinart beim ersten Zug Gewinnzahl Merkmalsprägung (Ergebnis) Sieg; Remis; Niederlage weiß; schwarz 0; ; 2; ; ; 9

6 N a m e : K l a s s e : K o p i e r v o r l a g e 06 Ergebnis und Ergebnismenge (II). Bei einem Tischbillard sind gleichaussehende Kugeln über eine grüne Wiese in Löcher zu spielen. Die Löcher haben die Bezeichnungen L, R und T, die Wiese sei mit W bezeichnet (siehe Abbildung). a) Welche Ergebnisse können bei einem Stoß erzielt werden? Gib die Ergebnismenge S an. W L R T b) Gib die Ergebnismenge an, wenn unabhängig voneinander zwei Kugeln gespielt werden und das Trefferbild (d.h. die Endlage jeder Kugel) interessiert. c) Wie können die zwei Kugeln auf die Löcher L, R, T und die Wiese W zufällig verteilt sein? Gib die Anzahl der Kugeln je Loch und Wiese in der Reihenfolge L, R, T und W an. Nutze dazu gegebenenfalls ein Baumdiagramm. 2. Anna und Björn wollen am Wochenende endlich wieder einmal Go spielen. Sie vereinbaren, dass ihr Wettstreit beendet ist, wenn einer den anderen zweimal hintereinander besiegt hat. Insgesamt wollen sie aber nicht mehr als vier Spiele austragen. (A Anna gewinnt; B Björn gewinnt) a) Welche Spielausgänge sind möglich? Zeichne dazu ein Baumdiagramm.. Spiel 2. Spiel. Spiel 4. Spiel b) Gib die Ergebnismenge an. c) Wie viele Partien wären mindestens notwendig, um garantiert einen Sieger zu haben?

7 N a m e : K l a s s e : K o p i e r v o r l a g e 09 Ergebnis und Ereignis Für eine Klassenfete wird ein Lotto 2 aus 5 vorbereitet. Aus einem Säckchen mit fünf Kugeln, die mit den Zahlen bis 5 beschriftet sind, kann ein Spielteilnehmer nacheinander zwei Kugeln ohne die erste zurückzulegen ziehen. Beim Spiel gibt es Preise zu gewinnen, wenn die folgenden Bedingungen erfüllt sind: Hauptgewinn: Trostpreis : Trostpreis 2: Trostpreis : Die zweite Zahl ist die Quadratzahl der ersten (Ereignis H). Beide Zahlen sind ungerade (Ereignis E). Die erste Zahl ist um kleiner als die zweite (Ereignis Z). Die zweite Zahl ist größer als die erste (Ereignis D). a) Nenne alle Ergebnisse, die bei dieser Lottoziehung möglich sind. b) Gib die jeweiligen Teilmengen (Ereignisse) der Ergebnismenge an, die den einzelnen Preisen zugeordnet sind. Hauptgewinn: Trostpreis : Trostpreis 2: Trostpreis : c) Gib die Menge der Ergebnisse an, denen kein Preis zugeordnet ist (Ereignis N). d) Stelle die Beziehungen zwischen den Ereignissen (Mengen) E, Z und D in einem Venndiagramm (Mengendiagramm) dar. Gib die Menge der Ziehungsergebnisse an, bei denen man zwischen zwei Trostpreisen auswählen kann? e) Veranschauliche die Elemente der Ereignisse E, Z und D jeweils in einem Koordinatensystem (x-achse: erste Zahl; y-achse: zweite Zahl). O O O Trostpreis (Menge E) Trostpreis 2 (Menge Z) Trostpreis (Menge D)

8 N a m e : K l a s s e : K o p i e r v o r l a g e 4 Relative Häufigkeit und Wahrscheinlichkeit (I). Die Wahrscheinlichkeit eines Ereignisses (als Schätzwert für dessen relative Häufigkeit) ist ein Wert, der zwischen 0 und bzw. zwischen 0 % und 00 % liegt. Gib die folgenden Wahrscheinlichkeiten in Prozent an. a) 0,75 b) 5 c) 0,82 d) 7 00 : , Entscheide, welche der folgenden Ereignisse sicher, welche unmöglich sind. A: Beim einmaligen Werfen zweier Würfel beträgt die Augensumme. B: Die sechs Zahlen einer Ziehung im Samstagslotto 6 aus 49 sind voneinander verschieden. C: Unter sieben Würfen mit einem normalen Spielwürfel ist mindestens eine Sechs. D: Beim gleichzeitigen Ziehen von zehn Kugeln aus einem Gefäß mit 20 roten und acht blauen Kugeln ist keine der gezogenen Kugeln eine rote. E: Von acht zufällig ausgewählten Personen sind mindestens zwei am gleichen Wochentag geboren. Sichere Ereignisse: Unmögliche Ereignisse:. Janine und Mike testen einen offensichtlich manipulierten Spielwürfel, indem sie eine hinreichend große Zahl von Würfen auswerten. Für die einzelnen Augenzahlen ermittelten sie die in der folgenden Tabelle zusammengestellten relativen Häufigkeiten. Augenanzahl Relative Häufigkeit 0, 8 % 0, 4 8 % a) Ergänze den in der Tabelle fehlenden Wert. b) Welche Augenzahl ist am häufigsten, welche am wenigsten gefallen? 4. Ein Glücksrad ist folgendermaßen in sechs Kreissausschnitte A bis F aufgeteilt worden: A(72 ); B(60 ); C(48 ); D(90 ); E(0 ); F(60 ) a) Gib die Wahrscheinlichkeit für das Erdrehen der einzelnen Felder an. P(A) = P(B) = F A B P(C) = P(D) = P(E) = P(F) = E D C b) Wie groß ist die Wahrscheinlichkeit, dass eines der drei Gewinnfelder A, C, E erreicht wird?

9 N a m e : K l a s s e : K o p i e r v o r l a g e 2 (Zusammen-)Gewürfeltes (III). In einer Urne befinden sich nummerierte Kugeln mit den Zahlen von bis 9, von denen eine Kugel auf gut Glück gezogen wird. Gib zu den im Folgenden genannten Ereignissen jeweils die Ergebnismenge an E Die gezogene Zahl ist gerade. E 2 Die gezogene Zahl ist durch teilbar. E Die gezogene Zahl ist kleiner als 0. E 4 Die gezogene Zahl ist keine Primzahl. E 5 Die gezogene Zahl ist zweistellig. 2. Der Gewinnplan einer Tombola sieht vor, dass von insgesamt 4000 Losen zehn Lose Hauptgewinne, 50 Lose mittlere Gewinne und 240 Lose Trostpreise sind. a) Ermittle die Wahrscheinlichkeit, beim Ziehen eines Losen einen Hauptgewinn, einen mittleren Gewinn bzw. einen Trostpreis zu ziehen. b) Wie groß ist die Wahrscheinlichkeit, eine Niete zu ziehen? c) Herr Mutig greift als Erster in die Lostrommel in die Lostrommel und entnimmt ihr fünf Lose. Wie groß ist die Wahrscheinlichkeit, dass unter jenen Losen überhaupt kein Gewinn ist? Wie würde sich diese ändern, wenn Herr Mutig zehn Lose zöge? Wie viele Lose hätte Herr Mutig mindestens ziehen müssen, um mit Sicherheit einen Gewinn zu haben?

10 N a m e : K l a s s e : K o p i e r v o r l a g e 2 Mehrstufige Zufallsexperimente (I). Die folgende Abbildung zeigt das Baumdiagramm eines dreistufigen Zufallsexperiments mit den jeweils eingetragenen Wahrscheinlichkeiten für die Teilpfade. 4 4 a b b c a c c {a, b, c} Pfad I d {a, b, d} Pfad II b {a, b, c} Pfad III e {a, c, e} Pfad IV c {a, b, c} Pfad V d {a, b, d} Pfad VI a {a, b, c} Pfad VII d {a, b, d} Pfad VIII a) Gib die Wahrscheinlichkeiten für die Pfade I bis VIII an. Pfad I II III IV V VI VII VII Wahrscheinlichkeit b) Die Ereignisse E = {a, b, c} und E 2 = {a, b, d} werden jeweils durch mehrere Pfade repräsentiert. Gib jeweils die Wahrscheinlichkeit dieser Ereignisse an. 2. In einem Gefäß befinden sich zwei weiße und acht schwarze Kugeln, von denen nacheinander drei gezogen werden (wobei die gezogene Kugel nicht zurückgelegt wird). a) Zeichne ein Baumdiagramm für diesen Vorgang und trage die entsprechenden Pfadwahrscheinlichkeiten ein. b) Gib die Wahrscheinlichkeiten für die im Folgenden gegebenen Ereignisse E bis E 4 an. E Es werden drei schwarze Kugeln gezogen. E 2 Es werden zwei schwarze und eine weiße Kugel gezogen. E Es werden eine schwarze und zwei weiße Kugeln gezogen. E 4 Es werden drei weiße Kugeln gezogen.

11 N a m e : K l a s s e : K o p i e r v o r l a g e 29 Pfadregeln (IV). Für die Ziehung beim Lotto aus 0 sollen folgende Ereignisse betrachtet werden: E keine Zahl richtig; E 2 wenigstens eine Zahl richtig; E genau zwei Zahlen richtig; E 4 alle drei Zahlen richtig a) Gib für jedes dieser Ereignisse die zugehörigen Ergebnisse an. Hinweis: Verwende r für Zahl richtig und f für Zahl nicht richtig. b) Berechne jeweils die Wahrscheinlichkeit für das Eintreten der Ereignisse E bis E Ein regulärer (idealer) Spielwürfel wird viermal nacheinander geworfen und es wird notiert, ob eine Sechs oder keine Sechs fällt (oben liegt). Anschließend wird die Anzahl der Sechsen von allen vier Würfen ermittelt. a) Gib die möglichen Anzahlen an. b) Im Folgenden sind Wahrscheinlichkeitsverteilungen grafisch dargestellt. Welche trifft deiner Meinung nach für den vorliegenden Sachverhalt Anzahl der Sechsen am ehesten zu? 0,5 () 0,5 (2) 0,5 () 0,5 (4) O a b c d e O a b c d e O a b c d e O a b c d e c) Berechne die Wahrscheinlichkeiten für die möglichen Anzahlen (Ereignisse).

12 N a m e : K l a s s e : K o p i e r v o r l a g e 4 Erwartungswert einer Zufallsgröße (II). Bei einem Würfelspiel kann zwischen drei idealen Würfeln (siehe Abbildung) gewählt werden Würfel Würfel 2 Würfel Es ist festgelegt, dass (bei entsprechendem) Einsatz die nach einmaligem Würfeln oben liegende Augenzahl in Euro ausgezahlt wird. Welchen Würfel würdest du wählen? Begründe deine Entscheidung Der Besitzer eines Spielcasinos stellt einen neuen Automaten auf. Dieser ist auf die im Folgenden angegebenen Wahrscheinlichkeitsverteilung für die Höhe des Gewinns eingestellt. Gewinn (in Cent) Wahrscheinlichkeit für Gewinn 0,0 0,02 0,05 0,20 a) Ermittle die Höhe des Einsatzes, der pro Spiel mindestens zu verlangen ist, um als Betreiber langfristig keinen Verlust zu machen. b) Der Betreiber des Automaten verlangt pro Spiel einen Einsatz von 20 Cent. Ermittle den in einer Woche zu erwartenden Gewinn, wenn insgesamt 500-mal gespielt wird.. Eine Urne enthält drei weiße und zwei schwarze Kugeln. Es wird so lange ohne Zurücklegen Kugel für Kugel entnommen, bis beide schwarze Kugeln gezogen sind (siehe dazu Blatt 9, Aufgabe 2). Ermittle den zu erwartenden Wert für die erforderliche Anzahl von Ziehungen.

13 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (1) - Beschreibende Statistik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (1) - Beschreibende Statistik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (1) - Beschreibende Statistik Das komplette Material finden Sie hier: School-Scout.de Blatt 25: Streumaße

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Übungen zur Kombinatorik

Übungen zur Kombinatorik 1. Das Paradoxon des Chevalier de Méré: De Méré fand es paradox, dass beim Würfeln mit drei Würfeln die Augenzahlsumme 11 häufiger zustande kam als die Augenzahlsumme 12. Wie lauten die tatsächlichen Wahrscheinlichkeiten

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Vorbereitung für die Arbeit

Vorbereitung für die Arbeit Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Prüfungsaufgaben Wahrscheinlichkeit und Statistik

Prüfungsaufgaben Wahrscheinlichkeit und Statistik Aufgabe P8: 2008 Aufgabe 1 von 17 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie eine

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

3.6 Wahrscheinlichkeitsrechnung I

3.6 Wahrscheinlichkeitsrechnung I 3.6 Wahrscheinlichkeitsrechnung I Inhaltsverzeichnis 1 Einführung 2 2 Zufallsversuche 2 3 Der Wahrscheinlichkeitsbegriff 5 4 Der Laplace-Zufallsversuch (oder Laplace-Experiment) 8 5 Die Komplementärregel

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit Hans-Dieter Sill, Universität Rostock Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit 1. Der Begriff der bedingte Wahrscheinlichkeit in Planungsdokumenten 2. Eine Prozessbetrachtung

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

A B A A A B A C. Übungen zu Frage 110:

A B A A A B A C. Übungen zu Frage 110: Übungen Wahrscheinlichkeit Übungen zu Frage : Nr. : Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 28.10.2014 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

Daten und Zufall 6BG Klasse 9 Spiel. Efronsche Würfel

Daten und Zufall 6BG Klasse 9 Spiel. Efronsche Würfel Efronsche Würfel Hinweise für die Lehrkraft Die Schülerinnen und Schüler spielen in Zweierteams. Pro Team benötigt man einen Satz der vier Efronschen Würfel und für jede Schülerin bzw. jeden Schüler ein

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 Inhalt A Grundlegende Begriffe 6 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 2 Relative Häufigkeit und abstrakter Wahrscheinlichkeitsbegriff 13 Aufgaben 16 3 Laplace scher Wahrscheinlichkeitsbegriff

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr