Fachpraktikum Photovoltaik Versuch 4. Amorphes Silizium für Solarzellen

Größe: px
Ab Seite anzeigen:

Download "Fachpraktikum Photovoltaik Versuch 4. Amorphes Silizium für Solarzellen"

Transkript

1 Universität Stuttgart Fachpraktikum Photovoltaik Versuch 4 Amorphes Silizium für Solarzellen Institut für Physikalische Elektronik Prof. Dr. rer. nat. habil. J.H. Werner Pfaffenwaldring 47 D Stuttgart Telefon (0711)

2 Kurzbeschreibung des Versuchs: Amorphes Silizium hat wirtschaftlich interessante Aspekte als Material für Dünnschicht- Solarzellen. Ein Verfahren zur Herstellung von amorphem Silizium (a-si) ist die Methode der Plasma Enhanced (oder Assisted) Chemical Vapor Deposition (PECVD oder PACVD). Optische Transmissions- und elektrische 4-Punkt-Messung charakterisieren die a-si- Schichten bezüglich ihrer Eigenschaften von Leitfähigkeit, Brechungsindex und Bandlücke. Die Messergebnisse legen die Kriterien fest, ob die hergestellte Schicht für eine Solarzelle geeignet ist. 2

3 1 Einleitung Die Wirkungsgradrekorde für kristalline Silizium Solarzellen liegen bei über 25%. Dies sind allerdings Laborprototypen mit einer Fläche von etwa einem cm 2, hergestellt auf einem einkristallinen Silizium Substrat mit aufwändigen Epitaxieprozessen. Amorphes Si (a-si) lässt sich einfach und großflächig bei niedrigen Temperaturen durch PECVD abscheiden (Plasma Enhanced Chemical Vapor Deposition). Diese niedrigen Temperaturen erlauben eine Herstellung der Solarzellen auf flexiblem Polycarbonat mit einem Zellwirkungsgrad von etwa 5 %. Die geringeren Herstellungskosten von amorphem Silizium werden leider mit einer schlechteren Qualität der elektronischen Eigenschaften erkauft. Wasserstoff passiviert die bei der Präparation entstehende Defekte (dangling-bonds, ungebundene, freie Valenzen) in a-si, damit sie für die durch die Photonen generierten Ladungsträger keine Rekombinations-zentren bilden. Das in der Photovoltaik verwendete a-si:h (hydrogenisiertes amorphes Silizium) ist in seiner Mikrostruktur optimiertes amorphes Silizium. Eine Solarzelle besteht klassischerweise aus einem pn-übergang, zwei Halbleiterschichten, die einmal positiv (mit Bor) und einmal negativ (mit Phosphor) dotiert sind. Die mäßige Beweglichkeit der Ladungsträger in a-si:h bedingen den Einbau einer undotierten, intrinsischen Schicht zwischen die p- und n-dotierte, so dass eine pin-struktur entsteht (positiv-intrinsisch-negativ). Im vorliegenden Versuch untersuchen wir nur eine undotierte Schicht und überprüfen diese auf ihre Tauglichkeit als Bestandteil einer kompletten Zelle. 2 Grundlagen 2.1 Die Solarzelle An einem pn-übergang bildet sich eine Raumladungszone aus, die die photogenerierten Ladungsträger trennt und diese dann - bei genügend großer Diffusionslänge im Halbleiter - zu den Kontakten gelangen. Die im Halbleiter absorbierte Lichteinstrahlung generiert Ladungsträger, welche Elektronen aus dem Valenzband in das Leitungsband anregen. Während in Metallen solche Ladungsträger eine sehr kurze Lebensdauer besitzen und sehr schnell rekombinieren, bewirkt die Existenz einer Energielücke in Halbleitern eine vergleichsweise große Lebensdauer (ca s). Dadurch besteht die Möglichkeit die Ladungsträger, die Elektronen im Leitungsband und die Löcher im Valenzband, im elektrischen Feld der Raumladungszone zu trennen. Bringt man an dem Halbleiter einen leitenden Rückkontakt und einen transparenten Frontkontakt an, kann man diesem pn-übergang bei Beleuchtung einen Photostrom entnehmen. In einer Solarzelle aus kristallinem Silizium (c-si) ist die Ausdehnung der Raumladungszone (RLZ), je nach Dotierungsrad, auf etwa 1 µm begrenzt. Die elektronische Bandstruktur eines indirekten Halbleiters wie im kristallinen Silizium führt aber zu einem begrenzten Absorptionsvermögen von sichtbarem Licht, so dass eine effiziente c-si Zelle eine relativ dicke Absorberschicht haben muss (min. 30 µm ohne zusätzliche Strukturierungsmaß-nahmen für eine höhere Effektivität des Photoneneinfangs). Eine bis zu 300 µm dicke p-dotierte c-si Schicht dient deshalb in konventionellen c-si Zellen als Absorber. Der Photostrom besteht hauptsächlich aus einem Diffusionsstrom der Minoritätsladungsträger die zur RLZ gelangen müssen. Da die Beweglichkeit von Elektronen in Halbleitern größer als die der Löcher ist, wählt man eine p-typ Dotierung für die 3

4 Absorberschicht. Bild 1: Schematischer Aufbau und Bandstruktur einer Solarzelle. 2.2 Amorphes Silizium Strukturelle Besonderheiten Amorph (engl. amorphous) - dieser griechische Begriff für strukturlos trifft nur für die Fernordnung im a-si zu. Die atomare Nahordnung ist vergleichbar mit der von c-si, d.h. die Si-Atome sind sp 3 -hybridisiert und bestenfalls von vier weiteren, tetraedrisch angeordneten Si-Atomen umgeben. Im a-si treten Abweichungen von den im c-si konstanten Bindungslängen und Bindungswinkeln auf. So ist die Bindungslänge im a-si um etwa 1.9 % vergrößert [1], die Abweichung der Bindungswinkel beträgt [2]. Die fehlende Fernordnung d.h. die fehlende Periodizität in der Anordnung der Atome führt dazu, dass weiter voneinander entfernte Si-Atome eine immer größer werdende Abweichung in den zueinander bezogenen Bindungslängen und -winkeln haben, so dass vier oder mehr Bindungslängen voneinander entfernte Si-Atome keinerlei Korrelation in ihrem Abstand und ihrer Orientierung mehr zueinander aufweisen. Obwohl theoretisch die Konstruktion eines unendlich ausgedehnten amorphen Gitters (continous random network) aus ausnahmslos von vier weiteren Bindungsnachbarn umgebenen Si-Atomen möglich ist, treten in a-si Schichten wachstumsbedingte offene Si- Bindungen (dangling bonds) auf. Eine zu hohe Konzentration offener Bindungen verschlechtert die elektronischen Eigenschaften von a-si derart, dass dieses Material für die Verwendung in optoelektronischen Bauteilen wie Sensoren oder Solarzellen ausscheidet. Wasserstoff, als H 2 oder als SiH 4 im Prozessgas Silan, während der Präparation zugegeben, sättigt die offenen Bindungen (freien Valenzen) ab und bildet SiH n -Gruppen, meist SiH und SiH 2 ( Passivierung), und führt zu hydrogenisiertem a-si ( a-si:h). Theoretisch genügt zur vollständigen Passivierung aller im unhydrogenisierten a-si vohandenen offenen Bindungen eine H-Konzentration von cm -3. Da aber bei der Abscheidung von a-si:h aus SiH 4 ein hoher Überschuss an Wasserstoff vorhanden ist, lagert sich der Wasserstoff an inneren Oberflächen (voids) an und baut sich auch auf Zwischengitterplätzen ein. Dadurch liegt die H-Konzentration in a-si:h mit guter elektronischer Qualität bei Atom% um drei Größenordnungen darüber. 4

5 2.2.2 Elektronische und optische Eigenschaften Für ideale einkristalline Festkörper wie c-si ist die elektronische Zustandsdichte exakt berechenbar. Die Wellenfunktion für Valenzelektronen in einem dabei angenommenen Potentialtopf mit periodischem Potential ergibt bei Halbleitern einen verbotenen Bereich der Energie-Eigenwerte der Ladungsträger. Die Größe dieser Bandlücke ist ein Hauptcharakteristikum für die optischen und elektronischen Eigenschaften eines Halbleiters. Die fehlende Periodizität im atomaren Aufbau von amorphen Festkörpern wie a-si erlaubt diesen Ansatz nicht. Deshalb war man lange Zeit darauf angewiesen, die empirisch gewonnenen optischen und elektronischen Eigenschaften von a-si:h mit Modellen zu deuten, die unter Näherungen nur einen oder wenige strukturelle Teilaspekte wie die energetische Lage offener Si-Bindungen [3] oder die verschiedener H-Konfigurationen [4] beschreiben. Erst in den letzten Jahren wurden Rechner ausreichend leistungsfähig, um auf numerischem Weg eine umfassende quantenmechanische Beschreibung einer virtuellen dreidimensionalen a-si:h Zelle zu ermöglichen. Hierbei bleiben jedoch zwei Schwachstellen bestehen: Zum einen beschränkt auch die Rechengeschwindigkeit heutiger Hochleistungsrechner die der Modellierung zugrunde liegende Anzahl von Atomen auf einige Tausend [5, 6]. Dies entspricht einer a-si:h Zelle von 10 bis 20 Si- Atomen Kantenlänge und ist noch weit von einem unendlich ausgedehnten Festkörper entfernt. Zum anderen ist die atomare Struktur des Modellkörpers experimentell nur eingeschränkt abgesichert, was für die nachfolgenden numerischen Rechnungen einen systematischen Fehler bedeutet Die elektronische Zustandsdichte Bild 2 zeigt schematisch die elektronische Zustandsdichte von a-si:h. Die Größe der Beweglichkeitslücke E g dominiert die optischen und elektronischen Eigenschaften. Sie trennt die Leitungsband- (LB) und Valenzband- (VB) Kante. Im Unterschied zur Bandlücke im c-si handelt es sich bei der Beweglichkeitslücke im a-si:h aber um keinen für Ladungsträger verbotenen Bereich, da sogenannte Tail-Zustände exponentiell von den Bandkanten in die Beweglichkeitslücke abfallen ( Bandausläufer, band tails). Diese Tail- Zustände spiegeln die Bindungslängen und -winkelverteilung des amorphen Si-Netzwerks wieder. Weit von den Bandkanten entfernte Zustände entsprechen besonders stark verspannten Si-Si Bindungen. Eine abnehmende Tail-Zustandsdichte zur Bandmitte bedeutet auch einen größeren räumlichen Abstand der zu diesen Zuständen korrelierten verspannten Si-Si Bindungen. Wird dieser Abstand größer als die Wellenfunktion der Ladungsträger in diesem Zustand, so sind diese nicht mehr frei, sondern an den Potenzialfluktuationen der verspannten Si-Si Bindungen lokalisiert. Deshalb spricht man bei a-si:h von einer Beweglichkeitslücke, die im Energiediagramm die freien von den lokalisierten Ladungsträgerzuständen trennt und über elektronische Eigenschaften wie die elektrische Leitfähigkeit zugänglich ist. Durch die strukturelle Unordnung im a-si:h gegenüber dem c-si hervorgerufene komplexe Bandstruktur finden die sich überlagernden elektronischen Übergänge zwischen Bändern und Bandausläufern statt. Der Absorptionskoeffizient unterhalb E g (Urbach Tail) hat einen exponentiellen Verlauf gemäß α exp[ conste U ]. (1) Die Urbach Energie E U dient zur Abschätzung der Zustandsdichteverteilung in den Bandausläufern. Besonders verspannte Si-Si Bindungen brechen leicht ohne äußere Energiezufuhr auf, weshalb die Steigung der Tail-Zustände nicht mehr exponentiell zur Bandmitte hin abnimmt, sondern ab einem gewissen Abstand von den Bandkanten sprunghaft auf sehr 5

6 kleine Werte abfällt [7]. Das Netzwerk relaxiert an dieser Stelle und es entstehen zwei offene Si-Bindungen mit ungepaarten Elektronen, sogenannte Dangling Bonds (DBs). Diese bilden Zustände nahe der Mitte der Beweglichkeitslücke und sind als Rekombinationszentren für Überschussladungsträger für die verglichen mit c-si geringe elektronische Qualität von a-si:h verantwortlich. Nicht-hydrogenisiertes a-si ist deshalb als Material für elektronische Bauteile unbrauchbar. Erst die Passivierung der DBs mit Wasserstoff ermöglicht den Einsatz auf a-si:h basierender optoelektronischer Bauteile. VB - Kante Besetzungswahrscheinlichkeit Beweglichkeitslücke LB - Kante Defektzustände D + D 0 D - log (Zustandsdichte) VB - Tail LB - Tail Energie Bild 2: Zustandsdichteverteilung in a-si:h. Dargestellt sind die an das Valenzband (VB) und Leitungsband (LB) angrenzenden Tail-Zustände sowie die Defektzustände in der Mitte der Beweglichkeitslücke. Die Defektzustände D +, D - und D 0 sind positiv, negativ oder ungeladen (neutral). Die Besetzungswahrscheinlichkeit definiert besetzte (grau unterlegt) und unbesetzte (weiß) Zustände. Es ist jedoch aus thermodynamischen Gründen nicht möglich, beim Wachstum alle offenen Si-Bindungen mit Wasserstoff zu passivieren. Außerdem entstehen in a-si:h Solarzellen DBs erst unter Beleuchtung durch das Aufbrechen verspannter Si-Si Bindungen ( Abschnitt 2.2.7). Deshalb weist a-si:h grundsätzlich die in Bild 2 skizzierten Defektzustände in der Beweglichkeitslücke auf. Gewöhnlich nähert man die Form der entsprechenden Zustandsdichte N db als Gaußverteilung um E db mit der Halbwertsbreite E db an. Dabei sind die durch die möglichen Ladungszustände Q (-1, 0, +1) der Defekte verschiedenen energetischen Lagen E bezüglich der Bandkanten zu berücksichtigen: Q db + 1 Q 2 = Q E E db N = db ( E) N db exp Q (2) Q 1 2 Edb Unter optimierten Bedingungen gewachsenes sehr defektarmes a-si:h weist die integrale Defektkonzentrationen N db = N db (E) de < cm -3 auf [8]. 6

7 auf. = Elektrische Leitfähigkeit Die Dunkelleitfähigkeit σd von a-si:h ist zum einen von der über den H-Gehalt einstellbaren Beweglichkeitslücke, zum anderen über die Konzentration und den Ladungszustand der Defekte bestimmt. Typische bei Raumtemperatur gemessene Werte liegen für undotierte Schichten bei σd = ( cm) -1. Die Fotoleitfähigkeit σph unter AM1.5 (AM = air mass; Definition der Sonneneinstrahlung unter bestimmten Bedingungen; AM 1.5 entspricht der Sonneneinstrahlung im Zenit auf Meereshöhe) Beleuchtung liegt für a-si:h um drei bis vier Größenordnungen über dem Wert der Dunkelleitfähigkeit. Auf hohe Fotoempfindlichkeit optimiertes a-si:h weist σph / σd - Verhältnisse von σph / α σd > 10 5 auf [9] Optische Eigenschaften Für die Bestimmung der optischen Bandlücke existieren verschiedene Definitionen: Die Größe E 04 hν hν bezeichnet die Photonenenergie hν, bei der der entsprechende optische Absorptionskoeffizient den Wert 10 4 cm -1 hat. In dieser Arbeit erfolgt die Bestimmung der optischen Bandlücke gemäß der Tauc-Relation [10], bei der E T durch α ( ) ( E ) 2 T (3) definiert ist. Über die Wachstumsparameter Substrattemperatur und Prozessgaszusammensetzung lässt sich für a-si:h hoher elektronischer Qualität die optische Bandlücke zwischen E T = 1.5 ev [11] und 2.1 ev [12] einstellen, was in diesen Arbeiten mit einem unterschiedlichen H-Gehalt in der Schicht (4.7% und >30%) begründet wird. Fortmann et al. [13] erklären den Zusammenhang zwischen hohem H-Gehalt und großem E T mit einem durch eine hohe Konzentration von SiH 2 -Gruppen modifizierten Phononenspektrum. Bei a- Si:H, wie es gewöhnlich für Solarzellen verwendet wird, liegt die optische Bandlücke zwischen E T α = 1.75 und 1.85 ev. Bild 3 zeigt den gemessenen optischen Absorptionskoeffizienten α(hν) für a-si:h und c- Si. Kristallines Silizium absorbiert wegen seiner kleinen Bandlücke von 1.1 ev bereits im nahen Infrarot (IR), weist aber als indirekter Halbleiter im Bereich des sichtbaren Lichtes ein relativ kleines Amorphes Silicium dagegen ist zwar im nahen IR (hν < 1.8 ev) weitgehend transparent, absorbiert aber als quasi-direkter Halbleiter im sichtbaren Bereich sehr stark. Deshalb sind bei c-si als Absorbermaterial für Solarzellen Dicken von einigen 10 µm erforderlich, während a-si:h bereits mit einigen 100 nm Dicke einen Großteil des Sonnenlichtes absorbiert. Das Absorptionsplateau von a-si:h unterhalb hν = 1.5 ev (Bild 3) stammt von offenen Si-Bindungen. Die damit korrelierten Zustände in der Beweglichkeitslücke ermöglichen die optische Anregung von Ladungsträgern zwischen Defektzuständen und Bändern. Deshalb dient die Defektabsorption α1.2ev = α(hν= 1.2 ev) oft als Maß für die Defektkonzentration. Für defektarmes a-si:h ist α1.2ev < 1 cm -1 und damit über vier Größenordnungen unterhalb der Absorption für Photonenenergien, die nahe bei der der optischen Bandlücke liegen 7

8 von von Absorptionskoeffizient α(cm -1 ) a-si:h c-si Photonenenergie hν (ev) α α Bild 3: Der optische Absorptionskoeffizient a-si:h (durchgezogene Linie) und c-si (gestrichelte Linie) als Funktion der eingestrahlten Photonenenergie hν. Oberhalb der optischen Bandlücke von E g 1.8 ev ist a-si:h um etwa eine Größenordnung größer als der Wert von c-si. Für Photonenenergien unter 1.8 ev absorbiert der indirekte Halbleiter c-si mit seiner Bandlücke von 1.1 ev stärker Dotierung von amorphem Silizium Die Dotierung von a-si:h erfolgt üblicherweise analog zur Standard-Dotierung in c-si über den Akzeptor Bor ( p-typ) oder den Donator Phosphor ( n-typ). Bei der Abscheidung aus der Gasphase werden diese Atome über ihre gasförmige Wasserstoffverbindung Diboran (B 2 H 6 ) bzw. Phosphin (PH 3 ) dem Prozessgas beigemengt und während des Wachstums in die Schicht eingebaut. Elektronisch aktive Akzeptoren und Donatoren sind in tetragonaler Anordnung zu vier Si-Nachbarn gebunden, was in c-si relativ leicht zu realisieren ist. In a-si:h hingegen sind aufgrund der hohen H- Konzentration und offener Bindungen derartige Bindungsverhältnisse nicht sehr häufig, weshalb die Dotiereffizienz pro eingebautem Dotieratom gewöhnlich kleiner als 10-2 ist [14] Lichtinduzierte Degradation in amorphem Silizium Mit a-si:h untrennbar verknüpft ist der sogenannte Staebler-Wronski-Effekt [15]. Dieser Effekt beschreibt die Verschlechterung (Degradation) der für den Einsatz in Solarzellen wichtigen elektronischen Eigenschaften von a-si:h. Auslöser für den Staebler-Wronski- Effekt sind im a-si:h rekombinierende Überschussladungsträgerpaare. Ein Überschuss an freien Ladungsträgern lässt sich entweder durch Injektion von Ladungsträgern über elektrische Kontakte oder über die Generation von Photoladungsträgern unter Beleuchtung erzeugen. Da Letzteres den normalen Betriebsfall einer Solarzelle darstellt, gilt die lichtinduzierte Degradation von a-si:h als größte Hürde auf dem Weg zu stabilen und hocheffizienten a-si:h Solarzellen. Obwohl es mittlerweile über 850 Veröffentlichungen (Stand 2004) zur Beschreibung, Erklärung [16] und Ansätze zur Minderung [17] oder gar Vermeidung [18] des Staebler-Wronski-Effektes gibt, steht ein sowohl mit empirischen Ergebnissen konsistentes Modell als auch ein funktionierender Ansatz zur Realisierung von stabilem a-si:h aus. Folgende Punkte gelten im Zusammenhang mit lichtinduzierter Degradation von a-si:h jedoch als gesichert: 8

9 i) Unter Beleuchtung mit Licht (Photonenfluss Φ, Beleuchtungsdauer t) oberhalb der optischen Bandlücke wächst die Anzahl der offenen Si-Bindungen (Defekte) proportional Φ2/3 t 1/3 [19]. Dieses Ergebnis ist auf das Aufbrechen besonders verspannter Si-Si Bindungen zurückzuführen. Als Aktivierungsenergie für diesen Prozess dient die Energie, die bei der Rekombination photogenerierter Ladungsträgerpaare am Ort der verspannten Bindung frei wird. ii) Die Konzentration und Bindungskonfiguration von Wasserstoff im a-si:h spielt eine große Rolle beim Ausmaß der Degradationserscheinung [20]. Man vermutet, dass durch die Aktivierungsenergie rekombinierender Ladungsträgerpaare auch Si-H Bindungen aufbrechen. Der dabei freiwerdende Wasserstoff kann bestehende Si-Si Bindungen chemisch zu einer Si-H-Bindung und einer offenen Bindung (Defekt) aufbrechen. iii) Die lichtinduzierte Degradation ist reversibel. Hohe Temperaturen ab etwa 150 C [21] führen zur thermisch aktivierten Schließung zweier benachbarter, nach Prozess (i) entstandener offener Si-Bindungen. Hohe elektrische Felder [22] bewirken eine Drift von H + und unterstützen das Ausheilen der nach (ii) generierten Defekte. 2.3 Vom pn- zum pin-übergang Für ein allgemeines Verständnis der Arbeitsweise von Solarzellen ist die Physik des Halbleiter pn-übergangs unerlässlich. W. Bludau [23] gibt einen anschaulichen Überblick, S. M. Sze [24] bietet eine ausführliche Behandlung des pn-übergangs. Die a-si:h Solarzellen stellen als pin-dioden einen Sonderfall des pn-übergangs dar. Dieses Kapitel fasst Physik und Mathematik des pn-übergangs zunächst kurz zusammen, um dann die Besonderheiten des pin-übergangs hinsichtlich Aufbau, Funktionsweise und physikalischer Beschreibung gegenüber dem pn-übergang darzustellen Allgemeine Betrachtung des pn-übergangs Als pn-übergang bezeichnet man den elektrischen Kontakt eines p-typ mit einem n-typ Halbleiter. Ein solcher Kontakt erfolgt für c-si durch nachträgliche Dotierung des Halbleiters über Ionenimplantation oder Diffusion mit dadurch bestimmten Profilen der Dotierstoffkonzentration. Eine übliche und im folgenden gemachte Näherung sind zwei an der Stelle x = 0 in Kontakt gebrachte Halbleiter mit je konstanten Dotierstoffkonzentrationen N A der Akzeptoren und N D der Donatoren. Vor der Kontaktierung bzw. sehr weit von der Kontaktstelle entfernt sind die Konzentrationen an freien Majoritäts- und Minoritäts-Ladungsträgern im p-gebiet p p0 N A und n p0 n 2 i /N A, im n-gebiet n n0 N D und p n0 n 2 i /N D, wobei n i die intrinsiche Ladungsträgerdichte ist (bei Si ist n i cm -3 ). Aufgrund dieses Konzentrationsgefälles fließt ein von Elektronen und Löchern getragener Diffusionsstrom j e diff bzw. j h diff über die Kontaktstelle, der dieses Gefälle abzubauen versucht. Die dabei zurückgebliebenen ortsfesten ionisierten Dotieratome bauen ein elektrisches Feld auf, welches über den Diffusionsströmen entgegengesetzte Driftströme 2εqε j e drift und j h drift der Diffusion entgegenwirkt. Im stationären Gleichgewicht heben sich diese vier Teilströme auf. Durch das Abfließen freier Ladungsträger bildet sich um die Kontaktstelle des p- und n-gebietes eine Raumladungszone (RLZ) der Dicke d RLZ mit einem über d RLZ abfallenden eingebauten Potential qu D aus (k B = Boltzmannkonstante, T = Temperatur): 0 r N AND drlz = ( VD V ) (4) N A + ND mit 9

10 k BT N AN D V D = ln 2 (5) q ni Durch Anlegen einer äußeren Spannung V an die Kontakte sind neben den Drift- und Diffusionsströmen auch die Generationsströme j e gen und j h gen und Rekombinationsströme j e rek und j h rek der Löcher und Elektronen zu berücksichtigen. Der Generationsstrom hat seinen Ursprung in thermisch generierten freien Ladungsträgern. Eine äußere Durchlassspannung U > 0 trennt diese in dem zusätzlichen Feld. Der Rekombinationsstrom folgt aus Ladungsträgern, die durch eine angelegte Sperrspannung U < 0 von den Kontakten in die RLZ injiziert werden und über den pn-kontakt die gegenüberliegende Kontaktstelle erreichen. Durch diese zusätzliche Trennung bzw. Injektion freier Ladungsträger aus bzw. in die RLZ ändert sich deren Ausdehnung. Ist V > 0, verkleinert sich d RLZ, in Sperrrichtung, wenn U < 0 ist, steigt dieser Wert. Ein unter Beleuchtung durch ein in der RLZ absorbiertes Photon erzeugtes Elektron- Loch- (e - /h + -) Paar, trennt das elektrische Feld. Die freien Ladungsträger driften zu den Kontakten, in den Halbleiterzonen, in denen sie Majoritätsladungsträger sind. Die in den feldfreien Schichten generierten Ladungsträger müssen hierzu erst in die RLZ diffundieren. In beiden Fällen addiert sich der dadurch generierte Photostrom I ph zu den bereits genannten Teilströmen, wodurch die Strom-Spannungs-Kennlinie einer beleuchteten idealen Diode bzw. Solarzelle diese Form annimmt (I s = Sperrsättigungsstrom) V I ( V ) = I s exp 1 I p V h (6) T mit k B T V T = (bei T = 273 K ist V T = 25 mv) (7) q Der Begriff ideal beschreibt einen unendlich hohen Parallelwiderstand R p und einen gegen null gehenden seriellen Widerstand R s. Weiterhin impliziert der Begriff ideal das Fehlen der Rekombination freier Ladungsträgerpaare an elektronischen Defekten im Material und an Grenzflächen. Unter Berücksichtigung ohmscher Widerständen und Rekombination nimmt die Strom-Spannungs-Kennlinie eines realen pn-übergangs unter Beleuchtung und angelegter Spannung die Form I V I R V I s s ( V ) = I s exp 1 + I ph (8) nid VT Rp an. Die Größe n id ist der Idealitätsfaktor der Diode und ein Maß für die näherungsweise auf die Mitte der RLZ beschränkte Rekombinationsrate. Es bedeutet für c-si Zellen ein n id = 1 dass die Rekombination photogenerierter Ladungsträger außerhalb der RLZ stattfindet, ein n id = 2 dass die Rekombination an Defekten in der RLZ stattfindet Der pin-übergang In c-si ist die Diffusionslänge freier Ladungsträger ausreichend groß, um den Großteil der in den Dotierschichten optisch generierten Ladungsträger vor deren Rekombination in die RLZ diffundieren zu lassen. In a-si:h hingegen reduzieren Defekte und Haftstellen mit Energieniveaus in der Bandlücke die Diffusionslänge von Minoritätsladungsträgern so stark, dass nur sehr wenige der außerhalb der RLZ erzeugten freien Ladungsträger vor ihrer Rekombination in die RLZ gelangen. Selbst in der RLZ erzeugte freie Ladungsträger R 10

11 würden in a-si:h pn-dioden nur mit kleiner Wahrscheinlichkeit vor ihrer Rekombination im elektrischen Feld getrennt werden, da die in a-si:h notwendige, hohe Dotierstoffkonzentration die Driftlänge verringern. Eine pn-struktur eignet sich demnach nicht für effiziente, auf a-si:h basierenden Solarzellen. Aus diesem Grund sind a-si:h Zellen grundsätzlich als pin-diode realisiert. Zwischen den dünnen p-typ und n-typ dotierten Schichten befindet sich als Absorber eine undotierte Schicht hoher elektronischer Qualität. Diese funktionale Trennung ermöglicht eine Optimierung der einzelnen Schichten auf ihren jeweiligen Zweck. Die optisch inaktiven, elektrisch hoch leitenden Dotierschichten bauen das Potential in der Zelle auf und absorbieren mit einer Dicke von 10 bis 20 nm nur wenig Licht. Die intrinsische Absorberschicht soll möglichst viel des einfallenden Lichts absorbieren. Das durch die Dotierschichten aufgebaute elektrische Feld trennt die erzeugten Ladungsträgerpaare, die dann zu den Kontakten driften. Auf dem Weg dorthin können sie bevorzugt an Defekten im Material wieder rekombinieren. Im Gegensatz zur diffusionsbestimmten pn-solarzelle ist die pin-zelle deshalb driftbestimmt. Das mittlere elektrischen Feld E = (V D V)/d i, im Absorber als treibende Kraft für die Ladungsträgerdrift, hängt neben dem eingebauten Potential V D und der von außen angelegten Spannung V von der Absorberdicke d i selbst ab. Bild 4 zeigt die für pn- als auch für pin-zellen gültige I(V)-Kennlinie unter Beleuchtung als Funktion der anliegenden äußeren Spannung. Der Schnittpunkt der Kurve mit der Abszisse bei I = 0 ist die Leerlaufspannung V oc, der mit der Ordinate bei V = 0 der Kurzschlussstrom I KS. Am maximalen Arbeitspunkt mpp (maximum power point) ist das Produkt VI = V mpp I mpp maximal und damit die von der Zelle abgegebene elektrische Leistung bei gegebener Beleuchtung und Zellfläche maximal. Der über FF = V mpp I mpp /V oc I sc definierte Füllfaktor ist für Solarzellen eine wichtige Kenngröße, die über den Verlauf der I(V)-Kennlinie ein Indiz für die elektronische Qualität des Materials ist. Die Kurzschlussstromdichte ist durch optische Verluste wie Absorption in den optisch inaktiven Dotierschichten oder unzureichender Absorption in zu dünnen Absorbern begrenzt. Lichtstreuung durch optische Diffusoren und Reflexion am Rückkontakt verlängern den optischen Weg des Lichts im Absorber und erhöhen so die Absorption und damit I sc. Bei optimiertem Zellaufbau ist bei einer optischen Bandlücke um 1.75 ev unter AM 1.5 Beleuchtung ein I ph = ma/cm 2 erreichbar. Die Leerlaufspannung hängt neben der elektronischen Qualität des Absorbers auch von der elektrischen Leitfähigkeit der dotierten Kontaktschichten und dem frontseitigen transparenten, leitfähigen Kontakt (TCO) ab. Guha et al [25] erzielten mit dünnen Absorbern und hoher Beweglichkeitslücke des a-si:h Absorbers eine maximalen Leerlaufspanung von V oc = 1.03 V. Auf hohen Wirkungsgrad optimierte Zellen haben eine Leerlaufspannung von V oc 870 mv. Bild 4: Die Strom-Spannungs I(V)-Kennlinie einer Solarzelle unter Beleuchtung. 11

12 < Der optimale Arbeitspunkt maximum power point (mpp) definiert sich durch das maximale Produkt IV im vierten Quadranten. 2.4 Der Aufbau einer a-si:h Solarzelle Bild 5 zeigt den prinzipiellen Aufbau einer pin-a-si:h Zelle. In Wachstumsrichtung besteht eine a-si:h Zelle aus folgenden Schichten: (1) Das Substrat ist der dem Licht zugewandte und damit notwendigerweise transparente mechanische Träger der Solarzelle. Neben Glas eignen sich dazu auch transparente Kunststoffe speziell als flexible Folien. Alternativ hierzu ist auch die Abscheidung der pin-struktur auf Edelstahl als rückseitiger Träger der Zelle möglich. (2) Der transparente, elektrisch leitende Frontkontakt (Transparent Conductive Oxide, TCO) ist die dem Licht zugewandte Elektrode der Solarzelle. Neben hoher optischer Transparenz im Absorptionsspektrum der Solarzelle ist eine hohe elektrische Leitfähigkeit notwendig, um den Photostrom lateral mit kleinen ohmschen Verlusten abzuleiten. Dazu eignen sich Indium-Zinn-Oxid (ITO, Indium Tin Oxide), Fluor dotiertes Zinnoxid (SnO:F) oder Zinkoxid (ZnO). Eine Strukturierung des TCO bewirkt als Diffusor eine Streuung von Licht, das senkrecht auf die Zelle fällt. Damit vergrößert sich der optische Lichtweg in der Zelle, was die Absorption erhöht. (3) Die Bor-dotierte p-schicht ist der Plus-Pol der Zelle. Zur Minimierung optischer Verluste in dieser gewöhnlich dem Licht zugewandten Schicht bietet sich die Legierung mit Kohlenstoff zu p-typ a-sic:h an. Dieses Material hat λ eine, verglichen mit a-si:h höhere optische Bandlücke und Transparenz im sichtbaren Bereich des Spektrums, jedoch verringert ein zu hoher Kohlenstoffanteil in der Schicht die elektrische Leitfähigkeit. Die als Kompromiss zwischen optimierten optischen und elektronischen Eigenschaften präparierte Fensterschicht ist ein p-typ a-sic:h mit einer Beweglichkeitslücke von etwa 2.0 ev bei einer Schichtdicke von nm. Langwelliges Licht durchdringt diese Schicht fast verlustfrei, die optischen Verluste bei blauem Licht mit 400 nm betragen einige 10 %. Der Grund für den in Lichteinfallsrichtung üblichen pin- (anstelle eines nip-)aufbaus ist folgender: Die auf die Solarzelle auftreffenden Photonen werden gemäß dem Absorptionsgesetz vornehmlich nahe der Lichtzugewandten Seite absorbiert und generieren dort die Ladungsträger. In a-si:h ist die Löcherbeweglichkeit um 1-2 Größenordnungen kleiner als die der Elektronen. Für die Mehrzahl der generierten Ladungsträger ist daher der mittlere Driftweg im Absorber in einer pin-struktur für Löcher zum p-typ Kontakt kleiner als der für Elektronen zum n-typ Kontakt. Der Aufbau in pin- Geometrie ermöglicht damit eine bessere Sammlung der photogenerierten Ladungsträger. Bild 5: Der schematische Aufbau einer a-si:h Solarzelle. Das Licht kommt von links durch das transparente Substrat. Auf der rechten Seite schließt ein reflektierender Rückkontakt den pin-aufbau ab. 12

13 λ = (4) Der nachfolgende Absorber soll einerseits einen möglichst großen Teil des Lichtes absorbieren, was große Schichtdicken erfordert. Um z.b. rotes Licht mit einer Wellenlänge 620 nm zu 75% zu absorbieren, sind - je nach Bandabstand des a-si:h Schichtdicken von 1 µm und mehr erforderlich. Bei derartigen Schichtdicken wächst aber einerseits die Präparationszeit auf einen für die Massenproduktion unvertretbaren Wert. Andererseits sinkt mit dem geringeren eingebauten elektrischen Feld die Effizienz der Ladungsträgersammlung und die Auswirkung der Lichtinduzierten Degradation wird vergrößert. Als günstigen Mittelweg aus Lichtabsorption, Präparationszeit und Ladungsträgertrennung haben sich in der Serienproduktion Absorberdicken von d i = nm bewährt. (5) Die folgende n-schicht ist der Minus-Pol der Zelle. Auf der dem Licht abgewandten Seite ist eine für die dem Licht zugewandte Seite der Solarzelle gültige Argumentation hoher optischer Transparenz irrelevant, weshalb für diese Schicht keine Legierung mit Kohlenstoff oder eine besonders dünne Ausführung notwendig ist. (6) Ein metallischer Rückkontakt leitet den Strom der Solarzelle ab. Um das an dieser Stelle noch nicht absorbierte Licht über Rückreflexion in den Absorber zu nutzen, greift man auf hoch reflektierende Metalle wie Silber oder Chrom zurück, die allerdings teurer als das aus diesem Grund üblich verwendete Aluminium sind. 3 Präparation von Dünnschichten Die Entwicklung der Herstellungsverfahren von Halbleiterschichten seit Anfang der 50er Jahren ist außerordentlich vielfältig. Ein Verfahren nutzt als Ausgangsstoffe (Precursoren) Gas oder Flüssigkeiten die durch chemische Aktivierung an einer Oberfläche reagieren. Dieses Verfahren der chemischen Abscheidung aus der Gasphase nennt sich Chemical Vapour Deposition (CVD). Die bei dem CVD-Verfahren gewöhnlich hohe thermische Belastung der Substratmaterialien lässt sich in der plasmagestützten Variante des Verfahrens (Plasma Enhanced-CVD, PECVD) wesentlich reduzieren. Die Aktivierung der Reaktionen erfolgt - mit - durch die Teilchenwechselwirkungen im Plasma und ist dann nicht mehr rein thermische. 3.1 PECVD-Abscheidung von a-si Dünnschichten Das PECVD-Verfahren hat im Vergleich zu den verschiedensten Verfahren und Verfahrensvarianten hinsichtlich der Abscheidung dünner Schichtsysteme für Solarzelle auf a-si-basis folgende Vorteile: niedrige Substrattemperatur, was besonders wichtig bei der Abscheidung auf Plastikfolie oder Polymersubstrate ist, großflächige Abscheidung, große Flexibilität bei Materialien- und Parameterauswahl, hohe Reproduzierbarkeit der Eigenschaften von Mehrschichtstrukturen und Elementzusammensetzung, niedrige Produktionskosten. Komponenten einer PECVD Anlage sind: das Vakuumsystem, Substrathalterung und Heizung, die Precursorversorgung und dosierung, der Generator mit Zuleitung und Leistungseinkopplung zur Speisung des Niederdruckplasmas. 13

14 In diesem Versuch verwenden wir Glas (Corning 7959) als Substrat Der Restgasdruck im Abscheidereaktor muss vor dem Einlass der Precursoren kleiner p = 0,5 x 10-7 mbar sein. Die Precursoren für die Abscheidung von n-dotiertem a-si:h sind eine Mischung von Silan (SiH 4 ), Wasserstoff (H 2 ) und Phosphin (PH 3 ). Der Generator, der eine Leistung von ca. 5 W in das Plasma einkoppelt, arbeitet mit einer Frequenz von 13,56 MHz Technologische Parameter Präparationsparameter, welche die verfahrenstechnischen Randbedingungen des PECVD-Verfahrens definieren und damit die Schichteigenschaften bestimmen, sind einerseits durch die festen Prozessparameter Geometrie des Prozessreaktors, konstruktive Auslegung des Elektrodensystems nach Geometrie, Material, elektrischem Potential, Flächenverhältnis und Abstand, Saugleistung des Pumpsystems, konstruktive Auslegung des Gasversorgungssystems sowie der Module zur Verdampfung von festen Precursoren festgelegt und andererseits durch die variablen Prozessparameter Material, Geometrie, Position, elektrisches Potential, Temperatur und ggf. plasmachemische oder anderweitige Vorbehandlung der Substrate, Art und Flußraten (relative Partialdrücke) der verwendeten Precursoren sowie Träger- und Reaktivgase, Prozessdauer bestimmt. Tabelle 1: Struktur und Depositionsparameter einer hinsichtlich dem Anfangswirkungsgrad optimierte pin-solarzelle. Depositionstemperatur und - druck sind gleichbleibend 150 C und 150 µbar. Angegeben sind Schichtdicke d, Bandabstand E g, Dunkelleitfähigkeit σd, Photoleitfähgkeit unter AM Beleuchtung σph, Aktivierungsenergie der Dunkelleitfähigkeit E act und die Gaszusammensetzung bei der Schichtpräparation. Größe p i n d 15 nm 400 nm 25 nm E g 2 ev 1,8 ev 1,8 ev σd 1x10-7 S/cm 1x10-11 S/cm 1x10-2 S/cm σph 1x10-7 S/cm 2x10-5 S/cm 1x10-2 S/cm E act 320 mev 900 mev 250 mev Gasflüsse SiH 4 7 sccm 15 sccm 8 sccm CH 4 16 sccm - - B 2 H 6 (2%) in SiH 4 1 sccm - - PH 3 (2%) in SiH sscm 14

15 = dünner Die außerordentlich große Menge der letztlich für die Schichtqualität zuständigen äußeren Bedingungen zeigt, dass etwa ein in einer Anlage mit definierten Prozessparametern optimierte Schicht nicht ein vergleichbar gutes Resultat in einer anderen Anlage, mit beispielsweise abweichender Geometrie, mit ähnlichen Parametern erzielt werden kann. Daher sind die Angaben in nachfolgender Tabelle nur als Anhaltswerte anzusehen, die, in der speziellen Konfiguration für diesen Versuch, optimale Ergebnisse erbrachten. 4. Messmethoden 4.1 Optische Transmissions-Spektroskopie (OTS) Diese Methode liefert für Schichten neben der Dicke d die optischen und strukturellen Parameter der optischen Bandlücke E T λ, Brechungsindex n(λ), Absorptionskoeffizient α(λ) und die Urbach Energie E U. Das Auswerteprogramm diplot [26] bestimmt diese Größen über die gemessene Transmission T der Proben im sichtbaren (VIS), im infraroten (IR) und ultravioletten (UV) Bereich des Lichtes im Wellenlängenbereich nm. Die Messung von T(λ) erfolgt nach Bild 6 in einem kommerziellen Spektromerter α (Cary-5). Das Licht einer Halogenlampe bzw. Hg-UV-Lampe (für den UV-Bereich) wird nach der spektralen Zerlegung in einem Doppelgitter-Monochromator in zwei Teilstrahlen aufgespaltet. Ein Strahl der durch die Probe geht ist das Messsignal, dieser, verglichen mit dem Referenzsignal, bestimmt die Transmission/Absorption. Die Untergrenze der zuverlässig messbaren Transmission liegt je nach Wellenlänge und verwendeter Blende zwischen T = 10-5 und 10-4, was die Bestimmung von (d < 300 nm) a-si:h-schichten bis über 1 ev über dessen optischer Bandlücke erlaubt. Wesentlich schwerer sind kleine Absorptionen (T 1) zu messen und eindeutig von Interferenzerscheinungen und Absorption im Substrat zu trennen. Bei hinreichend dicker Schichten d 1 m lässt sich für a-si:h α(λ) bis herunter zur optischen Bandlücke bestimmen. Strahlteiler Halogen- oder UV-Lampe Doppelgitter Monochromator Probe Detektoren Bild 6: Schema der optischen Transmissionsmessung. 15

16 Von der Optik der Dünnschichten ist bekannt dass das Interferenzbild ein Ergebnis der Summe der reflektierten Lichtstrahlen der oberen und unteren Grenzfläche der Dünnschicht ist (Bild 7). Die Bedingungen für Verstärkung oder Schwächung im Interferenzbild sind von optischen Gangunterschieden von interferierenden Strahlen abhängig. g - Gangunterschied bei senkrechtem Einfall d - Dicke der Dünnschicht n - Brechzahl der a-si:h Dünnschicht λ - Wellenlänge des Lichtes Die Interferenzbedingung ist : g = 2dn = kλ (9) für die Verstärkung (Interferenzmaxima) gilt: für die Auslöschung (Interferenzminima) gilt: g = k λ, k = 1, 2,... g = (2k + 1) λ/2, k = 0, 1, 2... Die Bestimmung des Bandabstands von a-si:h Dünnschichten als quasi-direktem Halbleiter erfolgt durch: ( hν) 1 3 = ( hν ) α (10) B E g, opt α - Absorptionskoeffizient [1/cm³], hν - Photonenenergie [ ev ], E g - Bandabstand (E g = ,78 ev) B - Proportionalitätsfaktor 1 2 a-si:h-dünnschicht d, n, E g, α, Glas-Substrat Bild 7: Interferenz entsteht aus der Summe von Strahlen 1 und Elektrischer Widerstand: 4-Punkt Messung Die Vier-Spitzen-Messung (FPP = Four-Point-Probe) ist eine häufig angewandte Methode zur Charakterisierung des Schichtwiderstandes von Halbleitermaterialien. Dieser wird mit vier metallischen Kontaktspitzen in einer linearen Anordnung gemessen (siehe Bild 8). 16

17 direkt Berechnung der spezifischen Leitfähigkeit ρ Für dünne Schichten mit einer Dicke, die kleiner ist als der Spitzenabstand s, ist der Strom durch die Probe annähernd ein reiner Flächenstrom. Damit bestimmt sich der spezifische Widerstand aus dem eingeprägten Strom I und der gemessenen Spannung V Bild 8: Prinzip der Vier-Spitzenmessung (FPP = Four-Point-Probe): Vier metallische Spitzen drücken gleichmäßig auf die zu untersuchende Fläche. Die beiden äußeren dienen der Stromzuführung, die inneren zur Spannungsmessung. Die Abstände der Spitzen (s) und die Schichtdicke (d) bestimmen mit U und I den Schichtwiderstand und die Ladungsträgerkonzentration. ρ = π/ ln 2( V / I) d mit d << s (11) Für sehr dicke Schichten (d > s) zum Beispiel bei ganzen Wafern, kann von einem reinen Volumenstrom ausgegangen werden. Dann gilt für den spezifischen Widerstand ρ = 2πs( V / I) für d > s (12) Bei Schichtdicken im Bereich des Spitzenabstands oder auch für Messungen auf kleinen Bruchstücken oder am Rand eines Wafers wird ein numerisch oder auch analytisch bestimmter Korrekturfaktor F eingefügt ρ = 2πsF ( V / I) für d ~ s (13) Eine Auflistung dieser Korrekturfaktoren und deren Bestimmung ist in Ref. [27], die grundlegende Theorie zu Strömen in beliebig geformten Festkörpern in Ref. [28] beschrieben. Zur Umrechnung des spezifischen Widerstands in eine Dotierung (Ladungsträgerkonzentration) existieren verschiedene Näherungsfunktionen oder Tabellen. Bild 9 zeigt dies für p- und n-silizium. 17

18 Ladungsträgerkonz. n,p [cm -3 ] p-typ n-typ spez. Widerstand ρ [Ωcm] Bild 9: Ladungsträgerkonzentration von kristallinem n- und p-silizium als Funktion des spezifischen Widerstands [29]. Der geringere spezifische Widerstand bei gleicher Ladungsträgerkonzentration für n-silizium resultiert aus der höheren Beweglichkeit von Elektronen und dem damit verbundenen kleineren elektrischen Widerstand bei gleicher Dotierungskonzentration Bestimmung des spezifische Widerstandes und der Ladungsträgerkonzentration Im vorliegenden Fall ist d << s. Somit berechnet sich der spezifische Widerstand aus Gleichung (11). Es ist π/ln2 = 4,53, der eingeprägte Strom I = 45,3 x 10 6 A, dann entsprechen 100 mv dem spezifischen Widerstand von 1 cm, wenn die Schichtdicke 1 µm beträgt. Nachdem der spezifische Widerstandes bestimmt ist, können wir die Konzentration der Ladungsträger berechnen 1 / ρ = qnµ (14) wobei n die Konzentration der Ladungsträger, q die Elementarladung und µ die Beweglichkeit der Ladungsträger bezeichnet. Für a-si:h Schichten ist die effektive Beweglichkeit der Elektronen µ n = cm 2 / Vs, die der Löcher µ n = cm 2 / Vs. 18

19 Literaturnachweis: 1 E. Kim, Y. H. Lee, Ch. Cheng, and T. Pang, Phys. Rev. B59, 2713 (1999). 2 B. Tuttle and J.B. Adams, Phys. Rev. B57, (1998). 3 R. Biswas, C. Z. Wang, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. Lett. 63, 1491 (1989). 4 D.C. Allan and J.D. Joannopoulos, Phys. Rev. B25, 1065 (1982). 5 R. L. C. Vink, G. T. Barkema, W. F. van der Weg, Phys. Rev. B Print Issue of 15 March S. Knief, W. von Niessen, T. Koslowski, Phys. Rev. B58, 4459 (1998). 7 P. Sladek, P. Stsahel, C. I. Roca, Morin-P, Phil. Magazine B77, 1049 (1998). 8 G. Ganguly, H. Nishio, and A. Matsuda, Appl. Phys. Lett. 64, 3581 (1994). 9 B. Alhallani, R. Tews, G. Suchaneck, S. Rohlecke, A. Kottwitz, K. Schade, J. Non-Cryst. Solids , 1063 (1996). 10 F. Demichelis, E. Minetti-Mezzetti, A. Tagliaferro, E. Tresso, P. Rava, N. M. Ravindra, J. Appl. Phys. 59, 611 (1986). 11 S. Hazra, A. R. Middya, and S. Ray, J. Appl. Phys. 78, 581 (1995). 12 W. Futako, K. Yoshino, Ch. M. Fortmann, and I. Shimizu, J. Appl. Phys 85, 812 (1999). 13 C. M. Fortmann, Phys. Rev. Lett. 81, 3683 (1998). 14 M. Stutzmann, Phil Mag. B53, L15 (1986). 15 D. I. Staebler, C. R. Wronski, Appl. Phys. Lett. 31, 292 (1977). 16 H. M. Branz, Phys. Rev. B59, 5498 (1999). 17 G. Ganguly, A. Suzuki, S. Yamasaki, K. Nomoto, and A. Matsuda, J. Appl. Phys. 68, 3738 (1990). 18 I. P. Akimchenko, V. S. Vavilov, N. N. Dymova, V. V. Krasnopevtsev, A. A. Rodina, and D. I. Umkin-Édin, JETP Letters 33, 431 (1981). 19 H. Dersch, J. Stuke, and J. Beichler, Appl. Phys. Lett. 38, 456 (1981). 20 M. Pinarbasi, M. J. Kushner, J. R. Abelson, J. Appl. Phys. 68, 2255 (1990). 21 D. E. Carlson and K. Rajan, J. Appl. Phys. 83, 1726 (1998). 22 D. E. Carlson and K. Rajan, Appl. Phys. Lett. 70, 2168 (1997). 23 W. Bludau, Halbleiter-Optoelektronik, Carl Hanser Verlag München Wien 1995, 40ff. 24 S. M. Sze, Physics of Semiconducror Devices, JohnWiley & Sons New York, 1981, 61ff. 25 A. Banerjee, J. Yang, and Subhendu Guha, Mater. Res. Soc, Symp. Proc. 693, 711 (1997). 26 E. Lotter, Auswertungsprogramm von Transmission, Reflexion und Absorption dünner Schichten, 27 D. K. Schroder, Semiconductor material and device characterization, Wiley-Interscience, New York, G. Lehner, Elektromagnetische Feldtheorie für Ingenieure und Physiker, Springer Verlag, Berlin, J. H. Werner, Vorlesung Bauelemente der Mikroelektronik 19

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

Grundlagen der Elektronik

Grundlagen der Elektronik Grundlagen der Elektronik Wiederholung: Elektrische Größen Die elektrische Stromstärke I in A gibt an,... wie viele Elektronen sich pro Sekunde durch den Querschnitt eines Leiters bewegen. Die elektrische

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Die Physik der Solarzelle

Die Physik der Solarzelle Die Physik der Solarzelle Bedingungen für die direkte Umwandlung von Strahlung in elektrische Energie: 1) Die Strahlung muß eingefangen werden (Absorption) 2) Die Lichtabsorption muß zur Anregung beweglicher

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen. Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der

Mehr

Allotrope Kohlenstoffmodifikationen. Ein Vortrag von Patrick Knicknie. Datum: 04.05.06 Raum:112

Allotrope Kohlenstoffmodifikationen. Ein Vortrag von Patrick Knicknie. Datum: 04.05.06 Raum:112 Allotrope Kohlenstoffmodifikationen Ein Vortrag von Patrick Knicknie Datum: 04.05.06 Raum:112 Themen: 1. Was ist Allotrop? 2. Unterschiedliche Kohlenstoffmodifikationen 3. Der Graphit 4. Der Diamant 5.

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Transparente ZnO:Al 2 O 3 - Kontaktschichten für Cu(In,Ga)Se 2 - Dünnschichtsolarzellen

Transparente ZnO:Al 2 O 3 - Kontaktschichten für Cu(In,Ga)Se 2 - Dünnschichtsolarzellen R. Menner Session III FVS Workshop 25 Transparente ZnO:Al 2 O 3 - Kontaktschichten für Cu(In,Ga)Se 2 - Dünnschichtsolarzellen Einleitung Großflächige Cu(In,Ga)Se 2 -Dünnschichtsolarzellen (CIS) haben über

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Elektrische Spannung und Stromstärke

Elektrische Spannung und Stromstärke Elektrische Spannung und Stromstärke Elektrische Spannung 1 Elektrische Spannung U Die elektrische Spannung U gibt den Unterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei

Mehr

Halbleitergrundlagen

Halbleitergrundlagen Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Grundlagen der Datenverarbeitung

Grundlagen der Datenverarbeitung Grundlagen der Datenverarbeitung Bauelemente Mag. Christian Gürtler 5. Oktober 2014 Mag. Christian Gürtler Grundlagen der Datenverarbeitung 5. Oktober 2014 1 / 34 Inhaltsverzeichnis I 1 Einleitung 2 Halbleiter

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1

Mehr

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten Computer im Chemieunterricht einer Glühbirne Seite 1/5 Prinzip: In dieser Vorübung (Variante zu Arbeitsblatt D01) wird eine elektrische Schaltung zur Messung von Spannung und Stromstärke beim Betrieb eines

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik Versuch 5 Untersuchungen an Halbleiterdioden Teilnehmer: Name Vorname Matr.-Nr. Datum der

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Versuch 42: Photovoltaik

Versuch 42: Photovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Photovoltaik An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1) Messen Sie die

Mehr

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e...

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e... Page 1 of 5 Komponentennummer 31 Identifikation Die Funktionsweise dieser Sensoren ist normalerweise überall gleich, obwohl sie sich je nach Anwendung oder Hersteller in der Konstruktion unterscheiden

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

JFET MESFET: Eine Einführung

JFET MESFET: Eine Einführung JFET MESFET: Eine Einführung Diese Präsentation soll eine Einführung in den am einfachsten aufgebauten Feldeffektransistor, den Sperrschicht-Feldeffekttransistor (SFET, JFET bzw. non-insulated-gate-fet,

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Senkung des technischen Zinssatzes und des Umwandlungssatzes

Senkung des technischen Zinssatzes und des Umwandlungssatzes Senkung des technischen Zinssatzes und des Umwandlungssatzes Was ist ein Umwandlungssatz? Die PKE führt für jede versicherte Person ein individuelles Konto. Diesem werden die Beiträge, allfällige Einlagen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Abb. 1: J.A. Woollam Co. VASE mit AutoRetarder

Abb. 1: J.A. Woollam Co. VASE mit AutoRetarder Charakterisierung von Glasbeschichtungen mit Spektroskopischer Ellipsometrie Thomas Wagner, L.O.T.-Oriel GmbH & Co KG; Im Tiefen See 58, D-64293 Darmstadt Charles Anderson, Saint-Gobain Recherche, 39,

Mehr

Physikalische Analytik

Physikalische Analytik Labor im Lehrfach Physikalische Analytik Studiengang Applied Life Sciences Versuch IR-Spektroskopie Standort Zweibrücken Gruppe: Teilnehmer: Verfasser: Semester: Versuchsdatum: Bemerkungen: Inhalt 1. Einführung

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Einführung in die optische Nachrichtentechnik. Herstellung von Lichtwellenleitern (TECH)

Einführung in die optische Nachrichtentechnik. Herstellung von Lichtwellenleitern (TECH) TECH/1 Herstellung von Lichtwellenleitern (TECH) Dieses Kapitel behandelt drei verschiedenen Verfahren zur Herstellung von Vorformen für Glasfasern: das OVD-Verfahren (outside vapour deposition), das VAD-Verfahren

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Motorkennlinie messen

Motorkennlinie messen Aktoren kennlinie messen von Roland Steffen 3387259 2004 Aktoren, kennlinie messen Roland Steffen Seite 1/5 Aufgabenstellung: Von einer Elektromotor-Getriebe-Einheit ist eine vollständige kennlinienschar

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Technische Information zum Verlustwinkel-optimierten Lautsprecherkabel compact 6 M

Technische Information zum Verlustwinkel-optimierten Lautsprecherkabel compact 6 M Technische Information zum Verlustwinkel-optimierten Lautsprecherkabel compact 6 M Einleitung Die wissenschaftlich fundierte Ergründung von Klangunterschieden bei Lautsprecherkabeln hat in den letzten

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Dünnfilmsolarzellen in Luxembourg

Dünnfilmsolarzellen in Luxembourg Dünnfilmsolarzellen in Luxembourg Susanne Siebentritt Université du Luxembourg Was sind Dünnfilmsolarzellen? Wie machen wir Solarzellen? Wozu brauchen wir Defekte? Wie untersuchen wir Defekte? LPV und

Mehr

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + +

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + + 1 3. Anwendungen 3.1. Chemische Reaktionen Aufgabe: Die Gleichung + + beschreibt die Verbrennung von Ammoniak zu Stickstoffoxid und Wasser Für welche möglichst kleine natürliche Zahlen x1, x2, x3 und x4

Mehr

. Nur wenn ε m (λ 1 ) = ε m (λ 2 ), dann ist E = ε m c d.

. Nur wenn ε m (λ 1 ) = ε m (λ 2 ), dann ist E = ε m c d. Das Lambert-Beersche Gesetz gilt nur für monochromatisches Licht: Wird eine Substanz mit dem molaren Extinktionskoeffizienten ε m (λ) bei der Wellenlänge λ 1 mit der Intensität I 1 und bei der Wellenlänge

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände

2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände 2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände Als Fettsäuren wird die Gruppe aliphatischer Monocarbonsäuren bezeichnet. Der Name Fettsäuren geht darauf

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Bei Anwendung zu Hause, wo es Netzspannung gibt, raten wir, nur einen Teil der erforderlichen Energie mit Solarzellenplatten zu erzeugen.

Bei Anwendung zu Hause, wo es Netzspannung gibt, raten wir, nur einen Teil der erforderlichen Energie mit Solarzellenplatten zu erzeugen. 1) Solarzellenplatten - Basis Eine Solarzelle oder photovoltaische Zelle wandelt Lichtenergie in elektrische Energie um. Eine einzelne Solarzelle erzeugt eine sehr kleine Energiemenge. Um eine brauchbare

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren Sitzung des AK-Thermophysik am 24./25. März 211 Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren M. Manara, M. Arduini-Schuster, N. Wolf, M.H. Keller, M. Rydzek Bayerisches Zentrum

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

Kapitel 13: Laugen und Neutralisation

Kapitel 13: Laugen und Neutralisation Kapitel 13: Laugen und Neutralisation Alkalimetalle sind Natrium, Kalium, Lithium (und Rubidium, Caesium und Francium). - Welche besonderen Eigenschaften haben die Elemente Natrium, Kalium und Lithium?

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Prinzip der Zylinderdruckmessung mittels des piezoelektrischen Effektes

Prinzip der Zylinderdruckmessung mittels des piezoelektrischen Effektes Prinzip der Zylinderdruckmessung mittels des piezoelektrischen Effektes Messprinzip: Ein Quarz der unter mechanischer Belastung steht, gibt eine elektrische Ladung ab. Die Ladung (Einheit pc Picocoulomb=10-12

Mehr

Was ist eine Solarzelle?

Was ist eine Solarzelle? Unsere Solaranlage Was ist eine Solarzelle? Eine Solarzelle oder photovoltaische Zelle ist ein elektrisches Bauelement, das kurzwellige Strahlungsenergie, in der Regel Sonnenlicht, direkt in elektrische

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Berechnungsgrundlagen

Berechnungsgrundlagen Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten

Mehr

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch 14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch Analog zu den Untersuchungen an LDPE in Kap. 6 war zu untersuchen, ob auch für die Hochtemperatur-Thermoplaste aus

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Meteorologie und Klimaphysik Meteo 137 (9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Wiensches Verschiebungsgesetz Meteo 138 Anhand des Plankschen Strahlungsgesetzes (Folie 68 + 69) haben wir

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr