(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

Größe: px
Ab Seite anzeigen:

Download "(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP"

Transkript

1 .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip Permutation -Tupel aus n-menge -Permutation aus n-menge -Teilmenge aus n-menge MISSISSIPPI-Problem Außerdem sollten folgende Methoden beannt sein: Anwendung des Zählprinzips Berechnung von Permutationen Berechnung der Anzahl von -Tupeln aus n-menge Berechnung der Anzahl von -Permutationen aus n-menge Berechnung der Anzahl von -Teilmengen aus n-menge Berechnung der Anzahl von n-tupeln mit gleichen Elementen Kenntnis der verschiedenen Urnenmodelle Erennen von Indizien, die für ein bestimmtes Urnenmodell sprechen 9RUEHPHUNXQJHQ Die.RPELQDWRULN ist die Lehre vom V\VWHPDWLVFKHQ $E]lKOHQ HQGOLFKHU 0HQJHQ. Es geht dabei darum möglichst geschict herauszufinden, wie viele Möglicheiten es in bestimmten Situationen gibt, also zum Beispiel, wie viele Paschs es beim Werfen zweier Würfel gibt. In einfachen Fällen - wenn die Anzahl der Möglicheiten nicht zu groß ist - wird man durch einfaches systematisches Aufzählen aller Möglicheiten zum richtigen Ergebnis ommen. Häufig ist die Anzahl der Möglicheiten jedoch so groß, dass ein Aufzählen aller Möglicheiten nicht möglich ist. Hier helfen die 0HWKRGHQGHU.RPELQDWRULN weiter. Zu Beginn eine typische $XIJDEHDXVGHU.RPELQDWRULN: Beim beannten Würfelspiel <DW]L bzw..qliio werden 5 Würfel auf einmal geworfen. Wie viele Möglicheiten gibt es für ein Doppelpärchen? Dieses Sript soll helfen, dass die Aufgabe durch Anwenden der Methoden der Kombinatori gelöst werden ann. Einen Lösungsvorschlag gibt es am Ende des Sripts. Zunächst müssen folgende Begriffe beannt sein: Unter einer Q0HQJH A versteht man eine Menge mit n Elementen. Zum Beispiel ist A = {; ; 3} eine 3-Menge. $ $[$ heißt.uhx]surgxnwyrq$, d. h. man ombiniert jedes Element von A mit jedem Element von A und erhält damit die Menge aller Paare (a i ; a j ), wobei a i, a j A mit i, j n. Also A = {( a i ; a j ) mit a i, a j A und i, j n}. Entprechend bedeutet A n = A A. Ein Element von A n heißt Q7XSHOD D D. n mal Im Folgenden werden die verschiedenen JUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN vorgestellt..rpelqdwruln - Vers. v Seite

2 hehuvlfkw EHUGLHJUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN 'DV=lKOSULQ]LS Gibt es für ein Tupel für die. Stelle n Möglicheiten, für die. Stelle n Möglicheiten,..., für die. Stelle n Möglicheiten, so gibt es insgesamt n n... n Möglicheiten. =lkosulq]ls: Es gibt insgesamt n n... n verschiedene Tupel. Beispiel: Wie viele 3-stellige Zahlen zwischen 00 und 400 gibt es, deren Zehnerstelle prim ist? Lösung: Für die Hunderterstelle gibt es die Ziffern,, 3, also n = 3. Für die Zehnerstelle gibt es die Ziffern, 3, 5, 7, also n = 4. Für die Einerstelle gibt es die Ziffern 0 bis 9, also n 3 = 0. Somit gibt es insgesamt n n n 3 = = 0 Zahlen der gewünschten Art. 3HUPXWDWLRQ Eine 3HUPXWDWLRQ ist ein n-tupel (a,..., a n ) A n mit ODXWHUYHUVFKLHGHQHQD. Es gibt genau Q verschiedene Permutationen. Definition Das Produt Q Q Q heißt Q)DNXOWlW. Man legt fest: 0! =. Beispiel: Es sei A = {,, 3}. Dann lassen sich die Zahlen, und 3 auf folgende Art anordnen: 3, 3, 3, 3, 3, 3. Damit gibt es die Permutationen (3), (3), (3), (3), (3), (3). Die Anzahl von 3-Permutationen ist 3! = 3 = 6. Vergleiche dazu das Zählprinzip! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden DOOH Q.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N7XSHODXVQ0HQJH Ein N7XSHODXVHLQHUQ0HQJH ist von der Form (a, a,..., a ) A mit N ç; A = Menge aller -Tupel. Es gibt genau Q verschiedene -Tupel aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, ), (, 3), (, ), (, ), (, 3), (3, ), (3, ), (3, 3)}. Es gibt also 3 = 9 verschiedene -Tupel aus einer 3-Menge. 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N3HUPXWDWLRQDXVQ0HQJH Eine N3HUPXWDWLRQ DXV HLQHU Q0HQJH ist von der Form (a, a,..., a ) A mit N d Q und ODXWHU YHUVFKLHGHQHQD. Es gibt genau verschiedene -Permutationen aus einer n-menge. (n )! Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, 3), (, ), (, 3), (3, ), (3, )}. Es gibt also 3! = 6 verschiedene -Permutationen aus einer 3-Menge.! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU.RPELQDWRULN - Vers. v Seite

3 N7HLOPHQJHDXVQ0HQJH Eine N7HLOPHQJHDXVHLQHUQ0HQJH ist von der Form {a, a,..., a } mit NdQ und ODXWHUYHUVFKLHGHQHQD Es gibt genau n verschiedene -Teilmengen aus einer n-menge. n Definition Der Ausdruc = heißt %LQRPLDONRHIIL]LHQW (n )!! n wird gelesen als ÄQ EHUN³ bzw. ÄNDXVQ³. Beispiel: Es sei A = {,, 3}, = Dann sind die Ergebnisse von der Form {;}, {;3}, {;3}. 3 3! Es gibt also = = 3 verschiedene -Teilmengen aus einer 3 Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ RKQH %HDFKWXQJ GHU N.RPELQDWLRQDXVQ0HQJH Hinweis: Dieser Punt ist in Bayern nicht abiturrelevant, wird aber der Vollständigeit halber erwähnt! Eine N.RPELQDWLRQDXVHLQHUQ0HQJH ist von der Form (a, a,..., a ), wobei ç. n + Es gibt genau verschiedene -Kombinationen aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann gibt es die Kombinationen (;), (;), (;3), (;), (;3), (3;3) ! Es gibt also genau = = 6 = verschiedene -Kombinationen aus einer 3-Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ RKQH %HDFKWXQJ GHU Q7XSHOPLWJOHLFKHQ(OHPHQWHQ Es sei (a, a,..., a n ) ein n-tupel PLWPHKUHUHQJOHLFKHQ(OHPHQWH. Die Anzahlen der jeweils gleichen Elemente seien n, n,..., n wobei n + n n = n gelten muss. Für die Anzahl der verschiedenen Tupel gilt: Es gibt genau n! n! verschiedene Tupel. Beispiel: Diese Problem ist auch als MISSISSIPPI - Problem beannt, da zum Beispiel gefragt werden ann, auf wie viele verschiedene Arten sich die Buchstaben des Wortes MISSISSIPPI anordnen lassen. Lösung: Sie lassen sich auf! = verschiedene Arten anordnen.!4!!4! Dieses Ergebnis erhält man auch durch die Rechnung = UQHQPRGHOO: Aus einer Urne mit n Kugeln, wobei so und so viele Kugeln gleich sind, werden Q.XJHOQRKQH =XU FNOHJHQXQWHU%HDFKWXQJ gezogen..rpelqdwruln - Vers. v Seite 3

4 hehuvlfkw EHUGLHJUXQGOHJHQGHQ8UQHQPRGHOOH Zu jeder der in Kapitel beschriebenen Methoden gibt es ein entsprechendes 8UQHQPRGHOO. Die Urnenmodelle unterscheiden sich dabei in der $UWGHV$XVZDKOYHUIDKUHQV, also dem =LHKPRGXV. Um das passende Urnenmodell zu finden, müssen folgende Fragen gelärt werden:. Was entspricht den Kugeln und wie viele Kugeln müssen es sein? n =?. Wie viele Kugeln werden gezogen? =? 3. Werden die Kugeln mit oder ohne Zurüclegen gezogen? 4. Muss die Reihenfolge der gezogenen Kugeln berücsichtigt werden? Hat man diese Fragen gelärt, so ennt man die zugehörige Methode aus der Kombinatori und damit die Anzahl der möglichen Ergebnisse.,QGL]LHQ, die zur Klärung dieser Fragen und damit auf einen bestimmten Ziehmodus schließen lassen, sind - mehr oder weniger gut sichtbar - in jeder Aufgabe verstect. 8UQHQPRGHOOHZHQQDOOHQ.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ. )DOO: DOOHQ.XJHOQVLQGYHUVFKLHGHQ und alle n Kugeln werden RKQH=XU FNOHJHQ XQWHU%HDFKWXQJGHU 5HLKHQIROJH gezogen Es handelt sich um das Urnenmodell für 3HUPXWDWLRQHQ )DOO: von den Q.XJHOQ VLQG VR XQG VR YLHOH JOHLFK und alle n Kugeln werden RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ gezogen Es handelt sich um das Urnenmodell für Q7XSHO PLW JOHLFKHQ (OHPHQWHQ und damit dem MISSISSIPPI - Problem 8UQHQPRGHOOHZHQQN.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ;es werden N.XJHOQJH]RJHQ. Die Anzahl der möglichen Ergebnisse hängt nun von dem verwendeten Auswahlverfahren (= Ziehmodus) ab. Folgende Übersicht zeigt die Möglicheiten auf: XQWHU%HDFKWXQJ Auswahlverfahren PLW=XU FNOHJHQ RKQH=XU FNOHJHQ Tupel n Permutationen (n )! RKQH %HDFKWXQJ Kombinationen n + Mengen n Beispiel: Aus einer Urne mit 3 Kugeln werden Kugeln gezogen, d. h. aus einer 3 - Menge A = {; ; 3} werden Elemente gezogen. Die möglichen Ergebnisse sind: XQWHU%HDFKWXQJ Auswahlverfahren ; ; ;3 PLW=XU FNOHJHQ RKQH=XU FNOHJHQ RKQH %HDFKWXQJ ; ; ;3 ( ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ;) ( ;3) ( 3; ) ( 3;) ( 3;3) ( ;) ( ;3) ( 3;3) ( ;) ( ;3) { ;} { ;3 } ( ; ) ( ;3) { ;3} ( 3; ) ( 3;) Beachte die unterschiedlichen Schreibweisen bei den Ergebnisse.RPELQDWRULN - Vers. v Seite 4

5 %HLVSLHOH. Beispiel: Auf wie viele Arten önnen sich 3 Personen auf 3 Stühle verteilen? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 3 Personen Q zu.: die 3 Stühle entsprechen 3 Ziehungen N zu 3.: da sich eine Person nur auf einen Stuhl setzen ann, ann eine Kugel nicht zweimal gezogen werden =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend auf welchem Stuhl eine Person sitzt XQWHU%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHU3HUPXWDWLRQHQ Damit ennt man die Anzahl der Möglicheiten, nämlich = 3! = 6.. Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 4-fachen Würfelwurf? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 4 Würfe N zu 3.: die Augenzahlen önnen sich wiederholen =LHKHQPLW=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7XSHODXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich n = 6 4 = Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 3-fachen Würfelwurf, wenn alle Augenzahlen verschieden sind? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 3 Würfe N zu 3.: die Augenzahlen dürfen sich nicht wiederholen =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN3HUPXWDWLRQHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 6! = = 0. (n )! (6 3)! 4. Beispiel: Wie viele 4-stellige Zahlen haben genau mal die Ziffer? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 4 Stellen Q zu.: die Ziffer soll an Stellen sein N zu 3.: jede Stelle ommt genau mal vor =LHKHQRKQH=XU FNOHJHQ zu 4.: Ergebnisse wie xx, xx, xx usw. sind gleichwertig RKQH%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7HLOPHQJHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 4! = = 6. (n )!! (4 )!! Bemerung: Natürlich ann man jede dieser Aufgabe auch in anderer Art und Weise lösen..rpelqdwruln - Vers. v Seite 5

6 6FKOXVVEHPHUNXQJ Die in Abschnitt beschriebenen Methoden stellen die grundlegenden Methoden der Kombinatori dar. In gewissen Situationen müssen diese 0HWKRGHQJHHLJQHWPLWHLQDQGHUNRPELQLHUW werden. Als Beispiel dazu dient die eingangs gestellte Aufgabe. (LQ/ VXQJVYRUVFKODJI UGLHHLQJDQJVJHVWHOOWH$XIJDEH Ein Doppelpärchen ist von der Form ( a a b b c ), wobei a, b, und c zueinander verschieden sind. In dem Tupel ann die Reihenfolge der a, b und c beliebig vertauscht sein. 5! Es liegt zum Einen das MISSISSIPPI-Problem vor, d. h. es gibt = 30 verschiedene Möglicheiten a, b!!! und c anzuordnen. Zum Anderen sind a und b verschiedene Zahlen von bis 6, die ihre Rolle vertauschen önnen. Somit gibt es für 6 4 a und b = 5 Möglicheiten. Für c bleiben damit = 4 Möglicheiten. 5! 6 4 Insgesamt gibt es damit nach dem Zählprinzip = = 800!!! verschiedene Doppelpärchen..RPELQDWRULN - Vers. v Seite 6

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

15.2 Kombinatorische Abzählformeln

15.2 Kombinatorische Abzählformeln 15.2 Kombinatorische Abzählformeln 1. Permutationen In wie vielen verschiedenen Reihenfolgen ann man n verschiedene Dinge anordnen? Wie viele Reihenfolgen gibt es, wenn die Dinge nicht alle verschieden

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Kapitel 7 Wahrscheinlicheitsrechnung 7.1 Kombinatori Def. 7.1.1:a) Für eine beliebige natürliche Zahl m bezeichnet man das Produt aus den Zahlen von 1 bis m mit m Faultät: m! : 1 2 3 m, 0! : 1. Beispiele:

Mehr

Kombinatorische Abzählverfahren - LÖSUNGEN

Kombinatorische Abzählverfahren - LÖSUNGEN Kombinatorische Abzählverfahren - LÖSUNGEN TEIL C: Lösungen 1. Produtregel das einfache Verfahren Aufgabe 1: Auto-Ausstattung Aufgabe 2: Tanzstunde Aufgabe 3: Menüplanung Aufgabe 4: Atenzeichen Aufgabe

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Kombinatorik und Urnenmodelle

Kombinatorik und Urnenmodelle Kapitel 2 Kombinatori und Urnenmodelle In diesem Abschnitt nehmen wir an, dass (Ω, A, P ein Laplace scher Wahrscheinlicheitsraum ist (vgl. Bsp.1.3, d.h. Ω ist endlich, A = P (Ω und P (A = A Ω A Ω. Für

Mehr

Binomialverteilung & Binomialtest

Binomialverteilung & Binomialtest Mathemati II für Biologen & 5. Juni 2015 & -Test Kombinatori Permutationen Urnenmodelle Binomialoeffizient Motivation Bin(n, p) Histogramme Beispiel Faustregeln Vorzeichentest & -Test Permutationen Urnenmodelle

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

Bericht über den zweiten Tag von Mädchen machen Technik Thema Kombinatorik

Bericht über den zweiten Tag von Mädchen machen Technik Thema Kombinatorik Bericht über den zweiten Tag von Mädchen machen Techni Thema Kombinatori Christof Böcler und Marion Orth 31. Otober 2003 Vormittag Nachdem am ersten Tag der Begriff der Wahrscheinlicheit (stets unter der

Mehr

II Wahrscheinlichkeitsrechnung

II Wahrscheinlichkeitsrechnung 251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges

Mehr

Bei der Berechnung von Laplace-Wahrscheinlichkeiten muss man die Mächtigkeit von Ergebnisräumen und Ereignissen bestimmen.

Bei der Berechnung von Laplace-Wahrscheinlichkeiten muss man die Mächtigkeit von Ergebnisräumen und Ereignissen bestimmen. VI. Kombinatorik ================================================================== 6.1 Einführung --------------------------------------------------------------------------------------------------------------

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

KOMBINATORIK IN DER SCHULE

KOMBINATORIK IN DER SCHULE KOMBINATORIK IN DER SCHULE Referenten: Florian Schmidt und Benjamin Otto GLIEDERUNG 1. Erstbegegnungen mit ombinatorischem Denen 2. Das allgemeine Zählprinzip der Kombinatori 3. Die 4 ombinatorischen Grundfiguren

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

M9 Aufgabensammlung Wahrscheinlichkeit, Kombinatorik

M9 Aufgabensammlung Wahrscheinlichkeit, Kombinatorik M9 ufgabensammlung Wahrscheinlicheit, Kombinatori Zur Erinnerung: Die Wahrscheinlicheit w, dass ein bestimmtes Ereignis eintrifft, wird mit einem Quotienten berechnet: w () nahl günstigefälle nahlmögliche

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Lösungsskizzen zur Präsenzübung 05

Lösungsskizzen zur Präsenzübung 05 Lösungsskizzen zur Präsenzübung 0 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 201/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 01. Dezember 201 von:

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X Aufgabe 1 Schwierigkeit: X Aufgabe 3 Schwierigkeit: X Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte

Mehr

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind.

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind. 6 Kombinatori PermutationenOhneWiederholung@n_IntegerD := Permutations@Range@nDD PermutationenMitWiederholung@n_ListD := Permutations@Flatten@Table@Table@i, 8n@@iDD

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Aufgaben und Lösungen

Aufgaben und Lösungen Aufgaben und Lösungen Aufgabe Aus einer Schulklasse von 3 Schülern soll eine Abordnung von Schülern zum Direktor geschickt werden. Auf wie viele Arten kann diese Abordnung gebildet werden? ( ) 3 = 33.649

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Bsp. 2: Wie viele 5-buchstabige Wörter lassen sich bilden, wenn kein Buchstabe doppelt vorkommen soll?

Bsp. 2: Wie viele 5-buchstabige Wörter lassen sich bilden, wenn kein Buchstabe doppelt vorkommen soll? 5 Kombinatorik 5.1 Das Zählprinzip Bsp. 1: Wie viele Menüs kann man aus 2 Vorspeisen (Suppe, Blattsalat), 3 Hauptspeisen (Pizza, Lasagne, Fisch) und 2 Nachspeisen (Eis, Tiramisu) zusammenstellen? Bsp.

Mehr

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln

Mehr

Kombinatorische Abzählverfahren

Kombinatorische Abzählverfahren Mathematik Statistik Kombinatorische Abzählverfahren * Kombinatorische Abzählverfahren Vorwort TEIL A: Basiswissen 1. Was zum Teufel ist das? 1.2. Wofür benötigt man Kombinatorische Abzählverfahren? 1.3.

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel Aufgaben ab Seite 9 I. reignisräume. rgebnis und rgebnisraum; Baumdiagramm xperimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - xperimente, deren rgebnisse

Mehr

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München 1 Vollständige Indution Wir setzen hier das System Z = {..., 2,

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Stochastik Kombinatorik

Stochastik Kombinatorik Stochastik Kombinatorik In der Kombinatorik werden Techniken behandelt, mit deren Hilfe ohne direktes Abzählen die Anzahl möglicher Ausgänge bei einem Experiment bestimmt werden können. Wie viele Einstellungen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt.

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt. ETH-Aufnahmeprüfung Herbst 215 Mathematik II (Geometrie/Statistik) Aufgabe 1 Gegeben ist der Kreis mit Mittelpunkt M( 5 2) und Radius r = 85. a) Bestimmen Sie die Gleichung des Kreises in der Form x 2

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Kombinatorik. Kombinatorik

Kombinatorik. Kombinatorik Kombinatori Kombinatori Ziel: Bestimmen der Mächtigeiten bestimmter endlicher Mengen, die durch Anordnung oder Auswahl von Elementen einer Menge gebildet werden. Wir wissen bereits, dass für die Potenzmenge

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 3 Punkte Beispiele Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 1. Der gegebene Stern hat 9 Strahlen. Nur ein Ausschnitt weist diese Anzahl an Strahlen auf: (D) 2. Damit die

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Archivierung. Modulbeschreibung. Archivierung Modulbeschreibung. Software-Lösungen. Stand: 26.09.2011. Seite 1

Archivierung. Modulbeschreibung. Archivierung Modulbeschreibung. Software-Lösungen. Stand: 26.09.2011. Seite 1 Seite 1 Inhalt Einleitung / Übersicht...3 Funktionsweise...3 Anlegen von Beleg-Archiven...4 Bestücken von Beleg-Archiven...5 Informatorische Nutzung von Beleg-Archiven...7 Auswertung von Beleg-Archiven...8

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

Durch welches 3-Tupel wird die Umkehrfunktion von p = (2, 3, 1) dargestellt?

Durch welches 3-Tupel wird die Umkehrfunktion von p = (2, 3, 1) dargestellt? 23. Januar 2007 Arbeitsblatt 11 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 16.1.07 Präsenzaufgaben: 1. Bekanntlich

Mehr

Urnenmodell - Ziehen mit und ohne Zurücklegen

Urnenmodell - Ziehen mit und ohne Zurücklegen 1. Pokern Urnenmodell - Ziehen mit und ohne Zurücklegen Beim Pokern wird ein Kartenspiel mit 52 Blatt verwendet. Es gibt die 13 Kartenwerte 2,3,4,5,,7,8,9,10,J,Q,K,A und die Farben Pik, Kreuz, Karo und

Mehr

Kombinatorik. Worum geht es in diesem Modul?

Kombinatorik. Worum geht es in diesem Modul? Kombinatorik Worum geht es in diesem Modul? Permutationen Binomialkoeffizienten Variation und Kombination Stichproben ohne Zurücklegen mit Berücksichtigung der Reihenfolge Stichproben mit Zurücklegen mit

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern.

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern. U2 verläufe Definition Der verlauf spiegelt wider, wie sich die mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stüczahl) ändern. Variable Die variablen sind in der betriebswirtschaftlichen

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung a.: Du bearbeitest die Aufgabe in Einzelarbeit. Lies dir die Aufgabe genau durch und überlege dir einen Lösungsansatz. Danach versuche eine Lösung zu erarbeiten. Für diese Phase hast du 10 Minuten Zeit.

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

5. Jgst. 1. Tag

5. Jgst. 1. Tag Schulstempel Probeunterricht 009 Mathematik 5. Jgst.. Tag. Tag. Tag Name Vorname gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Sachinformation Umkehrzahlen

Sachinformation Umkehrzahlen Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet

Mehr