(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

Größe: px
Ab Seite anzeigen:

Download "(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP"

Transkript

1 .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip Permutation -Tupel aus n-menge -Permutation aus n-menge -Teilmenge aus n-menge MISSISSIPPI-Problem Außerdem sollten folgende Methoden beannt sein: Anwendung des Zählprinzips Berechnung von Permutationen Berechnung der Anzahl von -Tupeln aus n-menge Berechnung der Anzahl von -Permutationen aus n-menge Berechnung der Anzahl von -Teilmengen aus n-menge Berechnung der Anzahl von n-tupeln mit gleichen Elementen Kenntnis der verschiedenen Urnenmodelle Erennen von Indizien, die für ein bestimmtes Urnenmodell sprechen 9RUEHPHUNXQJHQ Die.RPELQDWRULN ist die Lehre vom V\VWHPDWLVFKHQ $E]lKOHQ HQGOLFKHU 0HQJHQ. Es geht dabei darum möglichst geschict herauszufinden, wie viele Möglicheiten es in bestimmten Situationen gibt, also zum Beispiel, wie viele Paschs es beim Werfen zweier Würfel gibt. In einfachen Fällen - wenn die Anzahl der Möglicheiten nicht zu groß ist - wird man durch einfaches systematisches Aufzählen aller Möglicheiten zum richtigen Ergebnis ommen. Häufig ist die Anzahl der Möglicheiten jedoch so groß, dass ein Aufzählen aller Möglicheiten nicht möglich ist. Hier helfen die 0HWKRGHQGHU.RPELQDWRULN weiter. Zu Beginn eine typische $XIJDEHDXVGHU.RPELQDWRULN: Beim beannten Würfelspiel <DW]L bzw..qliio werden 5 Würfel auf einmal geworfen. Wie viele Möglicheiten gibt es für ein Doppelpärchen? Dieses Sript soll helfen, dass die Aufgabe durch Anwenden der Methoden der Kombinatori gelöst werden ann. Einen Lösungsvorschlag gibt es am Ende des Sripts. Zunächst müssen folgende Begriffe beannt sein: Unter einer Q0HQJH A versteht man eine Menge mit n Elementen. Zum Beispiel ist A = {; ; 3} eine 3-Menge. $ $[$ heißt.uhx]surgxnwyrq$, d. h. man ombiniert jedes Element von A mit jedem Element von A und erhält damit die Menge aller Paare (a i ; a j ), wobei a i, a j A mit i, j n. Also A = {( a i ; a j ) mit a i, a j A und i, j n}. Entprechend bedeutet A n = A A. Ein Element von A n heißt Q7XSHOD D D. n mal Im Folgenden werden die verschiedenen JUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN vorgestellt..rpelqdwruln - Vers. v Seite

2 hehuvlfkw EHUGLHJUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN 'DV=lKOSULQ]LS Gibt es für ein Tupel für die. Stelle n Möglicheiten, für die. Stelle n Möglicheiten,..., für die. Stelle n Möglicheiten, so gibt es insgesamt n n... n Möglicheiten. =lkosulq]ls: Es gibt insgesamt n n... n verschiedene Tupel. Beispiel: Wie viele 3-stellige Zahlen zwischen 00 und 400 gibt es, deren Zehnerstelle prim ist? Lösung: Für die Hunderterstelle gibt es die Ziffern,, 3, also n = 3. Für die Zehnerstelle gibt es die Ziffern, 3, 5, 7, also n = 4. Für die Einerstelle gibt es die Ziffern 0 bis 9, also n 3 = 0. Somit gibt es insgesamt n n n 3 = = 0 Zahlen der gewünschten Art. 3HUPXWDWLRQ Eine 3HUPXWDWLRQ ist ein n-tupel (a,..., a n ) A n mit ODXWHUYHUVFKLHGHQHQD. Es gibt genau Q verschiedene Permutationen. Definition Das Produt Q Q Q heißt Q)DNXOWlW. Man legt fest: 0! =. Beispiel: Es sei A = {,, 3}. Dann lassen sich die Zahlen, und 3 auf folgende Art anordnen: 3, 3, 3, 3, 3, 3. Damit gibt es die Permutationen (3), (3), (3), (3), (3), (3). Die Anzahl von 3-Permutationen ist 3! = 3 = 6. Vergleiche dazu das Zählprinzip! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden DOOH Q.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N7XSHODXVQ0HQJH Ein N7XSHODXVHLQHUQ0HQJH ist von der Form (a, a,..., a ) A mit N ç; A = Menge aller -Tupel. Es gibt genau Q verschiedene -Tupel aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, ), (, 3), (, ), (, ), (, 3), (3, ), (3, ), (3, 3)}. Es gibt also 3 = 9 verschiedene -Tupel aus einer 3-Menge. 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N3HUPXWDWLRQDXVQ0HQJH Eine N3HUPXWDWLRQ DXV HLQHU Q0HQJH ist von der Form (a, a,..., a ) A mit N d Q und ODXWHU YHUVFKLHGHQHQD. Es gibt genau verschiedene -Permutationen aus einer n-menge. (n )! Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, 3), (, ), (, 3), (3, ), (3, )}. Es gibt also 3! = 6 verschiedene -Permutationen aus einer 3-Menge.! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU.RPELQDWRULN - Vers. v Seite

3 N7HLOPHQJHDXVQ0HQJH Eine N7HLOPHQJHDXVHLQHUQ0HQJH ist von der Form {a, a,..., a } mit NdQ und ODXWHUYHUVFKLHGHQHQD Es gibt genau n verschiedene -Teilmengen aus einer n-menge. n Definition Der Ausdruc = heißt %LQRPLDONRHIIL]LHQW (n )!! n wird gelesen als ÄQ EHUN³ bzw. ÄNDXVQ³. Beispiel: Es sei A = {,, 3}, = Dann sind die Ergebnisse von der Form {;}, {;3}, {;3}. 3 3! Es gibt also = = 3 verschiedene -Teilmengen aus einer 3 Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ RKQH %HDFKWXQJ GHU N.RPELQDWLRQDXVQ0HQJH Hinweis: Dieser Punt ist in Bayern nicht abiturrelevant, wird aber der Vollständigeit halber erwähnt! Eine N.RPELQDWLRQDXVHLQHUQ0HQJH ist von der Form (a, a,..., a ), wobei ç. n + Es gibt genau verschiedene -Kombinationen aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann gibt es die Kombinationen (;), (;), (;3), (;), (;3), (3;3) ! Es gibt also genau = = 6 = verschiedene -Kombinationen aus einer 3-Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ RKQH %HDFKWXQJ GHU Q7XSHOPLWJOHLFKHQ(OHPHQWHQ Es sei (a, a,..., a n ) ein n-tupel PLWPHKUHUHQJOHLFKHQ(OHPHQWH. Die Anzahlen der jeweils gleichen Elemente seien n, n,..., n wobei n + n n = n gelten muss. Für die Anzahl der verschiedenen Tupel gilt: Es gibt genau n! n! verschiedene Tupel. Beispiel: Diese Problem ist auch als MISSISSIPPI - Problem beannt, da zum Beispiel gefragt werden ann, auf wie viele verschiedene Arten sich die Buchstaben des Wortes MISSISSIPPI anordnen lassen. Lösung: Sie lassen sich auf! = verschiedene Arten anordnen.!4!!4! Dieses Ergebnis erhält man auch durch die Rechnung = UQHQPRGHOO: Aus einer Urne mit n Kugeln, wobei so und so viele Kugeln gleich sind, werden Q.XJHOQRKQH =XU FNOHJHQXQWHU%HDFKWXQJ gezogen..rpelqdwruln - Vers. v Seite 3

4 hehuvlfkw EHUGLHJUXQGOHJHQGHQ8UQHQPRGHOOH Zu jeder der in Kapitel beschriebenen Methoden gibt es ein entsprechendes 8UQHQPRGHOO. Die Urnenmodelle unterscheiden sich dabei in der $UWGHV$XVZDKOYHUIDKUHQV, also dem =LHKPRGXV. Um das passende Urnenmodell zu finden, müssen folgende Fragen gelärt werden:. Was entspricht den Kugeln und wie viele Kugeln müssen es sein? n =?. Wie viele Kugeln werden gezogen? =? 3. Werden die Kugeln mit oder ohne Zurüclegen gezogen? 4. Muss die Reihenfolge der gezogenen Kugeln berücsichtigt werden? Hat man diese Fragen gelärt, so ennt man die zugehörige Methode aus der Kombinatori und damit die Anzahl der möglichen Ergebnisse.,QGL]LHQ, die zur Klärung dieser Fragen und damit auf einen bestimmten Ziehmodus schließen lassen, sind - mehr oder weniger gut sichtbar - in jeder Aufgabe verstect. 8UQHQPRGHOOHZHQQDOOHQ.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ. )DOO: DOOHQ.XJHOQVLQGYHUVFKLHGHQ und alle n Kugeln werden RKQH=XU FNOHJHQ XQWHU%HDFKWXQJGHU 5HLKHQIROJH gezogen Es handelt sich um das Urnenmodell für 3HUPXWDWLRQHQ )DOO: von den Q.XJHOQ VLQG VR XQG VR YLHOH JOHLFK und alle n Kugeln werden RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ gezogen Es handelt sich um das Urnenmodell für Q7XSHO PLW JOHLFKHQ (OHPHQWHQ und damit dem MISSISSIPPI - Problem 8UQHQPRGHOOHZHQQN.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ;es werden N.XJHOQJH]RJHQ. Die Anzahl der möglichen Ergebnisse hängt nun von dem verwendeten Auswahlverfahren (= Ziehmodus) ab. Folgende Übersicht zeigt die Möglicheiten auf: XQWHU%HDFKWXQJ Auswahlverfahren PLW=XU FNOHJHQ RKQH=XU FNOHJHQ Tupel n Permutationen (n )! RKQH %HDFKWXQJ Kombinationen n + Mengen n Beispiel: Aus einer Urne mit 3 Kugeln werden Kugeln gezogen, d. h. aus einer 3 - Menge A = {; ; 3} werden Elemente gezogen. Die möglichen Ergebnisse sind: XQWHU%HDFKWXQJ Auswahlverfahren ; ; ;3 PLW=XU FNOHJHQ RKQH=XU FNOHJHQ RKQH %HDFKWXQJ ; ; ;3 ( ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ;) ( ;3) ( 3; ) ( 3;) ( 3;3) ( ;) ( ;3) ( 3;3) ( ;) ( ;3) { ;} { ;3 } ( ; ) ( ;3) { ;3} ( 3; ) ( 3;) Beachte die unterschiedlichen Schreibweisen bei den Ergebnisse.RPELQDWRULN - Vers. v Seite 4

5 %HLVSLHOH. Beispiel: Auf wie viele Arten önnen sich 3 Personen auf 3 Stühle verteilen? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 3 Personen Q zu.: die 3 Stühle entsprechen 3 Ziehungen N zu 3.: da sich eine Person nur auf einen Stuhl setzen ann, ann eine Kugel nicht zweimal gezogen werden =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend auf welchem Stuhl eine Person sitzt XQWHU%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHU3HUPXWDWLRQHQ Damit ennt man die Anzahl der Möglicheiten, nämlich = 3! = 6.. Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 4-fachen Würfelwurf? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 4 Würfe N zu 3.: die Augenzahlen önnen sich wiederholen =LHKHQPLW=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7XSHODXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich n = 6 4 = Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 3-fachen Würfelwurf, wenn alle Augenzahlen verschieden sind? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 3 Würfe N zu 3.: die Augenzahlen dürfen sich nicht wiederholen =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN3HUPXWDWLRQHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 6! = = 0. (n )! (6 3)! 4. Beispiel: Wie viele 4-stellige Zahlen haben genau mal die Ziffer? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 4 Stellen Q zu.: die Ziffer soll an Stellen sein N zu 3.: jede Stelle ommt genau mal vor =LHKHQRKQH=XU FNOHJHQ zu 4.: Ergebnisse wie xx, xx, xx usw. sind gleichwertig RKQH%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7HLOPHQJHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 4! = = 6. (n )!! (4 )!! Bemerung: Natürlich ann man jede dieser Aufgabe auch in anderer Art und Weise lösen..rpelqdwruln - Vers. v Seite 5

6 6FKOXVVEHPHUNXQJ Die in Abschnitt beschriebenen Methoden stellen die grundlegenden Methoden der Kombinatori dar. In gewissen Situationen müssen diese 0HWKRGHQJHHLJQHWPLWHLQDQGHUNRPELQLHUW werden. Als Beispiel dazu dient die eingangs gestellte Aufgabe. (LQ/ VXQJVYRUVFKODJI UGLHHLQJDQJVJHVWHOOWH$XIJDEH Ein Doppelpärchen ist von der Form ( a a b b c ), wobei a, b, und c zueinander verschieden sind. In dem Tupel ann die Reihenfolge der a, b und c beliebig vertauscht sein. 5! Es liegt zum Einen das MISSISSIPPI-Problem vor, d. h. es gibt = 30 verschiedene Möglicheiten a, b!!! und c anzuordnen. Zum Anderen sind a und b verschiedene Zahlen von bis 6, die ihre Rolle vertauschen önnen. Somit gibt es für 6 4 a und b = 5 Möglicheiten. Für c bleiben damit = 4 Möglicheiten. 5! 6 4 Insgesamt gibt es damit nach dem Zählprinzip = = 800!!! verschiedene Doppelpärchen..RPELQDWRULN - Vers. v Seite 6

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

II Wahrscheinlichkeitsrechnung

II Wahrscheinlichkeitsrechnung 251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X Aufgabe 1 Schwierigkeit: X Aufgabe 3 Schwierigkeit: X Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel Aufgaben ab Seite 9 I. reignisräume. rgebnis und rgebnisraum; Baumdiagramm xperimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - xperimente, deren rgebnisse

Mehr

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München 1 Vollständige Indution Wir setzen hier das System Z = {..., 2,

Mehr

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Aufgaben und Lösungen

Aufgaben und Lösungen Aufgaben und Lösungen Aufgabe Aus einer Schulklasse von 3 Schülern soll eine Abordnung von Schülern zum Direktor geschickt werden. Auf wie viele Arten kann diese Abordnung gebildet werden? ( ) 3 = 33.649

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen

Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 3 Punkte Beispiele Känguru der Mathematik 2014 Gruppe Ecolier (3. und 4. Schulstufe) Lösungen 1. Der gegebene Stern hat 9 Strahlen. Nur ein Ausschnitt weist diese Anzahl an Strahlen auf: (D) 2. Damit die

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung a.: Du bearbeitest die Aufgabe in Einzelarbeit. Lies dir die Aufgabe genau durch und überlege dir einen Lösungsansatz. Danach versuche eine Lösung zu erarbeiten. Für diese Phase hast du 10 Minuten Zeit.

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Archivierung. Modulbeschreibung. Archivierung Modulbeschreibung. Software-Lösungen. Stand: 26.09.2011. Seite 1

Archivierung. Modulbeschreibung. Archivierung Modulbeschreibung. Software-Lösungen. Stand: 26.09.2011. Seite 1 Seite 1 Inhalt Einleitung / Übersicht...3 Funktionsweise...3 Anlegen von Beleg-Archiven...4 Bestücken von Beleg-Archiven...5 Informatorische Nutzung von Beleg-Archiven...7 Auswertung von Beleg-Archiven...8

Mehr

Stochastik Kombinatorik

Stochastik Kombinatorik Stochastik Kombinatorik In der Kombinatorik werden Techniken behandelt, mit deren Hilfe ohne direktes Abzählen die Anzahl möglicher Ausgänge bei einem Experiment bestimmt werden können. Wie viele Einstellungen

Mehr

Barbara Hofmann THE BEAUTY TOOLS COMPANY. BEAUTY TOOLS and Make-up Guide

Barbara Hofmann THE BEAUTY TOOLS COMPANY. BEAUTY TOOLS and Make-up Guide Barbara Hofmann THE BEAUTY TOOLS COMPANY BEAUTY TOOLS and Make-up Guide Liebe Barbara Hofmann Kundin, lieber Barbara Hofmann Kunde, wir haben uns lange Gedanken darüber gemacht, wie wir Sie noch besser

Mehr

%YXSV;SPJKERK1YWGLRIV -RLEPXPMGLIW0IOXSVEX7MPOI/ERIW %YXSQEXMWMIVYRK4VSKVEQQMIVYRK F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF,

%YXSV;SPJKERK1YWGLRIV -RLEPXPMGLIW0IOXSVEX7MPOI/ERIW %YXSQEXMWMIVYRK4VSKVEQQMIVYRK F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, ;;4 %YXSV;SPJKERK1YWGLRIV -RLEPXPMGLIW0IOXSVEX7MPOI/ERIW %YJPEKIZSQ.ERYEV F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, &SHIRLIMQ -RXIVRIX[[[LIVHX]SYHIEXGL [[[LIVHXFYWMRIWWHIEXGL [[[LIVHXZLWHIEX %PPI 6IGLXI ZSVFILEPXIR

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Microsoft Windows Server 2003 W2003SPS. Autoren: Michael Raith, Dr. Hendrik Siegmund. Überarbeitete Ausgabe vom 10. August 2006.

Microsoft Windows Server 2003 W2003SPS. Autoren: Michael Raith, Dr. Hendrik Siegmund. Überarbeitete Ausgabe vom 10. August 2006. W2003SPS Autoren: Michael Raith, Dr. Hendrik Siegmund Microsoft Windows Server 2003 Überarbeitete Ausgabe vom 10. August 2006 by HERDT-Verlag für Bildungsmedien GmbH, Bodenheim Support: Server Internet:

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell

Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell MK 19.1.2008 Zusammen_Ueb2.mcd Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell (1) Was bedeuten A \ B, B \ A, A B = { } und A B für die Ereignisse A und B?

Mehr

%YXSV.ÚVKIR)RKIQERR -RLEPXPMGLIW0IOXSVEX)PQEV*YGLW F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, 7]WXIQEHQMRMWXVEXMSR

%YXSV.ÚVKIR)RKIQERR -RLEPXPMGLIW0IOXSVEX)PQEV*YGLW F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, 7]WXIQEHQMRMWXVEXMSR 27% %YXSV.ÚVKIR)RKIQERR -RLEPXPMGLIW0IOXSVEX)PQEV*YGLW %YJPEKIZSQ2SZIQFIV F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, &SHIRLIMQ -RXIVRIX[[[LIVHX]SYHIEXGL [[[LIVHXFYWMRIWWHIEXGL [[[LIVHXZLWHIEX %PPI 6IGLXI ZSVFILEPXIR

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 14.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathemati II (LVA 401-0622-00 U) Lösung 10 Zur Übungsstunde vom 14.05.2010 Aufgabe 28 (Die Gleichverteilung)

Mehr

Der Binomialkoeffizient (Einführung):

Der Binomialkoeffizient (Einführung): Der Binomialoeffizient (Einführung): ) Wie viele Kombinationsmöglicheiten gibt es, Kugeln in Kästchen anzuordnen? Lösung: ) Beispiel: Fragen sollen beantwortet werden. Die Antwort ann richtig (r) oder

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

5 Kombinatorik. 5.1 Vollständige Listen. 5 Kombinatorik 1

5 Kombinatorik. 5.1 Vollständige Listen. 5 Kombinatorik 1 1 5 Kombinatorik Kombinatorik ist die Lehre vom Zählen bzw. Abzählen. Abgezählt werden Kombinationsmöglichkeiten, Auswahlen oder einfach nur die Elemente von Mengen. Das klingt einfach und ist es auch,

Mehr

Sachinformation Umkehrzahlen

Sachinformation Umkehrzahlen Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 13. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 13. Tutoriumsblatt Mathematisches Institut der Universität München Wintersemester 2013/14 Daniel Rost Lukas-Fabian Moser Grundlagen der Mathematik I Lösungsvorschlag zum 13. Tutoriumsblatt Aufgabe 1. a) (i) Eine Verlosung

Mehr

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Inhalt: Absolute und relative Häufigkeit Wahrscheinlichkeit Voraussagen mit Wahrscheinlichkeit

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 Inhalt A Grundlegende Begriffe 6 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 2 Relative Häufigkeit und abstrakter Wahrscheinlichkeitsbegriff 13 Aufgaben 16 3 Laplace scher Wahrscheinlichkeitsbegriff

Mehr

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Alexander Schwarz www.mathe-aufgaben.com November 2015 1 Aufgabe 1: Ist der Zufallsversuch eine Bernoulli-Kette? Wenn ja,

Mehr

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern.

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern. U2 verläufe Definition Der verlauf spiegelt wider, wie sich die mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stüczahl) ändern. Variable Die variablen sind in der betriebswirtschaftlichen

Mehr

Data Mining: Hilfstechniken

Data Mining: Hilfstechniken Data Mining: Hilfstechnien Hagen Knaf Studiengang Angewandte Mathemati Hochschule RheinMain 2. Januar 2016 Einleitung Das vorliegende Sript enthält eine Sammlung von Hilfstechnien für die Analyse von Daten,

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Statistik 1: Einführung

Statistik 1: Einführung Seite Stat- Statistik : Einführung Die mathematische Disziplin der Stochastik, die die Teilgebiete Wahrscheinlichkeitstheorie und mathematische Statistik umfaßt, beschäftigt sich mit der Beobachtung, Aufzeichnung

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

&6%5$66 &RPSDFW3&,:LGH8OWUD6&6,+RVWDGDSWHU &6%5$66 $QRUGQXQJ6WHFNYHUELQGHU

&6%5$66 &RPSDFW3&,:LGH8OWUD6&6,+RVWDGDSWHU &6%5$66 $QRUGQXQJ6WHFNYHUELQGHU 3URGXNWLQIRUPDWLRQ 6%5$66 RPSDFW3, Š :LGH8OWUD66,+RVWDGDSWHU Dokument Nr. 1756 Edition 03/2001 'HU6%5$66YRQ(.)LVWHLQXQLYHUVHOOHU DXIGHPRPSDFW3, Š 6WDQGDUGEDVLHUHQGHU :LGH8OWUD66,+RVWDGDSWHUJHHLJQHW]XP

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Jetzt lerne ich Stochastik für die Oberstufe

Jetzt lerne ich Stochastik für die Oberstufe Jetzt lerne ich Stochastik für die Oberstufe von Dr. rer. nat. Marco Schuchmann, Dipl.-Math. - 2 - - 3 - Vorwort In diesem Buch werden Anwendungen der Stochastik in der Oberstufe mit vielen Beispielen

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Grundlagen der Wahrscheinlichkeitsrechnung KAPITEL 3 Kapitel 3 Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

%YXSVIR&EVFEVE,MVWGL[EPH;SPJ;MPG^IO -RLEPXPMGLIW0IOXSVEX*VERO7GLEFIVX +VYRHPEKIR F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, -RXIVRIX[[[LIVHXGSQ

%YXSVIR&EVFEVE,MVWGL[EPH;SPJ;MPG^IO -RLEPXPMGLIW0IOXSVEX*VERO7GLEFIVX +VYRHPEKIR F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, -RXIVRIX[[[LIVHXGSQ 30 %YXSVIR&EVFEVE,MVWGL[EPH;SPJ;MPG^IO -RLEPXPMGLIW0IOXSVEX*VERO7GLEFIVX %YJPEKIZSQ.ERYEV F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, &SHIRLIMQ -RXIVRIX[[[LIVHXGSQ %PPI 6IGLXI ZSVFILEPXIR /IMR 8IMP HIW ;IVOIW HEVJ

Mehr

3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli Aufgabe 1: Der Quader liefert noch für weitere 8 Tage Pulver.

3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli Aufgabe 1: Der Quader liefert noch für weitere 8 Tage Pulver. 3. Bayreuther Tag der Mathematik Mathematikwettbewerb 12. Juli 2008 Klassenstufen 7 und 8 Bitte jeweils in Teams von 3 bis 5 Schülern bearbeiten. Die Bewertung hängt neben der Korrektheit auch von der

Mehr

%YXSVMRRIR&EVFEVE,MVWGL[EPH%RHVIE7GL[EV^ F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF,

%YXSVMRRIR&EVFEVE,MVWGL[EPH%RHVIE7GL[EV^ F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, //-28-) %YXSVMRRIR&EVFEVE,MVWGL[EPH%RHVIE7GL[EV^ %YJPEKIZSQ2SZIQFIV F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, &SHIRLIMQ -RXIVRIX[[[LIVHX]SYHIEXGL [[[LIVHXFYWMRIWWHIEXGL [[[LIVHXZLWHIEX %PPI 6IGLXI ZSVFILEPXIR

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

)'(0;7*4%8 %YXSVMR0MRHE=SVO -RLEPXPMGLIW0IOXSVEX&EVFEVE,MVWGL[EPH F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, -RXIVRIX[[[LIVHX]SYHIEX [[[LIVHXFYWMRIWWHIEX

)'(0;7*4%8 %YXSVMR0MRHE=SVO -RLEPXPMGLIW0IOXSVEX&EVFEVE,MVWGL[EPH F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, -RXIVRIX[[[LIVHX]SYHIEX [[[LIVHXFYWMRIWWHIEX )'(0;7*4%8 %YXSVMR0MRHE=SVO -RLEPXPMGLIW0IOXSVEX&EVFEVE,MVWGL[EPH %YJPEKIZSQ1EM F],)6(8:IVPEKJÚV&MPHYRKWQIHMIR+QF, &SHIRLIMQ -RXIVRIX[[[LIVHX]SYHIEX [[[LIVHXFYWMRIWWHIEX [[[LIVHXZLWHIEX (EW )'(00SKS MWXIMRIIMRKIXVEKIRI

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Spiele mit. Spiele mit

Spiele mit. Spiele mit Einmal Eins Nimm zwei weiße und einen bunten Würfel. Würfel mit allen drei Würfeln gleichzeitig. Zähle die Augen der beiden weißen Würfel zusammen und nimm das Ergebnis mit der Augenzahl des bunten Würfels

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

$XIHUVWHKXQJDOV*HLVWZHVHQRGHUPLWHLQHP. USHU"

$XIHUVWHKXQJDOV*HLVWZHVHQRGHUPLWHLQHP. USHU (LQOHLWXQJ $XIHUVWHKXQJDOV*HLVWZHVHQRGHUPLWHLQHP. USHU" Zeugen Jehovas lehren, dass Christus und die 144000 als Geistwesen auferstanden und in den Himmel gefahren sind. Die Erlösten auf der Erde bekommen

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

5 Die Anwaltausbildung

5 Die Anwaltausbildung 5 Die Anwaltausbildung (Theoretischer Kurs zur DAV-Anwaltausbildung) Projektleiterin: Prof. Dr. Gabriele Zwiehoff Telefon 02331/987 2911, e-mail: gabriele.zwiehoff@fernuni-hagen.de Kursbetreuerinnen/-betreuer:

Mehr