Neutrinos aus dem All

Größe: px
Ab Seite anzeigen:

Download "Neutrinos aus dem All"

Transkript

1 Johannes Gutenberg-Universität Mainz Vortrag im Rahmen des Fortgeschrittenen Praktikums Neutrinos aus dem All Frank Schellenberger 31. Januar Was sind Neutrinos? 1.1 Historisches Zu Beginn des 20. Jahrhunderts ging man beim β-zerfall von einem Zweikörperzerfall aus. Da das Energiespektrum allerdings kontinuierlich war, postulierte Pauli ein weiteres ungeladenes Teilchen mit Spin 1 2, welches er zunächt Neutron nannte, um den Zerfall zu erklären. Fermi nannte dies später Neutrino, welches den β-zerfall als Dreikörperzerfall vollständig beschreibt: 1.2 Theoretisches n p + e + ν e ν x im Standardmodell Neutrinos sind Fermionen mit Spin 1 2, elektrischund farbneutral und somit nur der schwachen Wechselwirkung unterworfen. Sie treten in allen drei Flavours (ν e, ν µ, ν τ ) auf und sind theoretisch masselos im Standardmodell der Teilchenphysik. Allerdings können die Neutrinos ihren Flavour ändern, was experimentell auch bestätigt wurde. Flavouroszillationen sind allerdings nur mit Masse möglich. Deshalb ist die Masse der Neutrinos ungleich Null. Aus der Zerfallskinematik konnte man folgende oberen Massegrenzen bestimmen: (bei indirektem Nachweis geringere Werte) m(νe) < 2eV m(νµ) < 0, 19MeV m(ντ ) < 18, 2MeV Allerdings geht man davon aus, dass auch die Massen der ν µ und ν τ wesentlich kleiner sind als die bestimmte Obergrenze und sich in der Größenordnung des ν e bewegen sollten Wechselwirkung mit Materie Neutrinos wechselwirken nur sehr schwach mit Materie. Als Besipiel sei der Wirkungsquerschnitt von fraschel@students.uni-mainz.de Neutrinos in Eisen gegeben: E ν σ = 1, cm 2 GeV Somit kann man zum Beispiel die freie Weglänge eines ν µ in Eisen in Abhängigkeit seiner Energie bestimmen und kommt in unserem Beispiel (E ν =1MeV) auf 2, m 30 Lichtjahre. Außerdem unterliegen die ν x nur der schwachen Wechselwirkung und da sie keine Ladung tragen folgt daraus, dass sie keine Ablenkungen in ihrer Flugbahn erfahren. 1.3 Warum sind Neutrinos für uns interessant? Da die Neutrinos sich nahezu ungestört durch All & Materie ausbreiten können und somit die Richtungsinformation erhalten bleibt haben sie einen entscheidenden Vorteil gegenüber Photonen oder geladenen Teilchen, welche absorbiert bzw. abgelenkt werden (Abbildung 1). So erhofft man sich in Zukunft durch die Detektion der Neutrinos unter anderem Aufschlüsse über die Herkunft kosmischer Strahlung höchster Energie, Natur der dunklen Materie und Eigenschaften von schwarzen Löchern. 2 Detektion Wie erwähnt unterliegen die Neutrinos nur der schwachen Wechselwirkung, weshalb man sie auch nur indirekt über das entsprechende geladene Lepton detektieren kann. Dieses geladene Lepton entsteht durch Wechselwirkung des Neutrinos mit Materie. In Abbildung 2 ist das entsprechende Feynmandiagramm für ein ν µ aufgezeigt. 2.1 Cherenkov-Effekt Wenn geladene Leptonen (e, µ, τ) in Materie schneller sind als die Lichtgeschwindigkeit im entsprechenden Medium (c H2O ca: km s ), also > c Medium, werden Photonen im Winkel v Lepton 1

2 φ emittiert (Abbildung 3). Vergleichbar ist das mit dem Machkegel beim Überschall. Das so emittierte Licht können wir mit Photomultipliern detektieren und so über die Intensität Rückschlüsse auf die Energie und durch die Laufstrecke auf die Herkunft der Teilchen ziehen. Für den Winkel φ gilt: cosφ ch = c Medium v Lepton = 1 nβ 1 n [2] Abbildung 1: Wegstrecken von Teilchen aus dem All [6] Abbildung 3: Cherenkov Effekt 2.2 Anspruch an einen Detektor Da Neutrinos einen sehr kleinen Wirkungsquerschnitt haben (z.b. Solare ν s mit 100keV 45 cm2 10 Nukleon ) benötigen wir eine sehr große Detektormasse. Außerdem müssen wir Untergrundprozesse gut abschirmen, da Neutrinoereignisse sehr, sehr selten sind. Des weiteren ist eine hohe Reinheit des Detektionsmaterials wünschenswert, damit keine natürliche Radioaktivität des Detektormaterials Einfluss auf unsere Messungen hat. In der Praxis werden deshalb in den meisten der im Rahmen des Vortrages vorgestellten Neutrinoteleskope mit Wasser bzw. Eis als Detektormedium betrieben. Ein offenes Problem bleibt die Abschirmung des Hintergrundes der in der Atmosphäre entstehenden Neutrinos. Abbildung 2: ν-ww mit Materie [2] 3 Neutrinoquellen Die im Rahmen des Vortrags interessanten Neutrinoquellen (Abbildung 4) kommen aus dem All oder der Erdatmosphäre. Außerdem gibt es natürlich noch weitere irdische Quellen wie Kernkraftwerke, Beschleuniger und natürliche β-zerfälle auf die wir jetzt nicht näher eingehen werden. 3.1 atmosphärische Neutrinos Atmosphärische Neutrinos entstehen beim Zerfall kosmischer Strahlung (Kaonen, Pionen und Myonen) in der Erdatmosphäre (Luftschauer siehe Abbildung 1). 2

3 Später kommt es zu einer extremen Lichtentwicklung durch Aufheizen des Neutronensterns. Allerdings besitzen diese dann abgestrahlten Photonen nur 0.01% der insgesamt abgegebenen Energie. 3.4 Neutrinos aus AGN & GRB Abbildung 4: Erwartungswerte von Neutrinoquellen [7] AGN (Active Galactic Nuclei) und GRB (Gamma Ray Bursts) wirken wie Beschleuniger. Man erwartet, dass die dadurch beschleunigten Teilchen auch in Neutrinos zerfallen und somit hochenergetische Neutrinos entstehen müssten. Bisher sind diese Neutrinos noch theoretischer Natur und nicht nachgewiesen. 4 Neutrinoteleskope [6] Abbildung 5: PP-Prozess Im Vortrag wurden einige Neutrinoteleskope vorgestellt. Zum einen Super Kamiokande (Kamioka Nucleon Decay Experiment) der in Japan steht und Wasser als Detektionsmedium verwendet. Des weiteren das zur Zeit größte existierende Teleskop, IceCube am Südpol. Hier wird das vorhandene Eis als Detektormedium genutzt. In Planung befindet sich KM3NeT (km 3 Neutrino Telescope) welches das Mittelmeer nutzt. All diese Detektoren nutzen den Cherenkoveffekt und Photomultiplier zur Detektion. Im Homestake Experiment nutzte man statt des Cherenkoveffektes ein radiochemisches Verfahren zum Neutrinonachweis. Beispielsweise sei hier der Zerfall eines Myons beschrieben: µ e + ν µ + ν e 3.2 solare Neutrinos Solare Neutrinos stammen überwiegend aus der Kernreaktion p + p D + e + + ν e (Abbildung 5), weitere Neutrinos entstehen im CNO-Zyklus. Insgesamt entstehen in der Sonne so ca ν s pro Sekunde, wovon auf der Erde ν s pro cm 2 pro Sekunde ankommen. Eine ausführliche Behandlung dieser Entstehungsprozesse und Neutrinos wurde im Vortrag Die Sonne zu Beginn des Semesters vorgenommen. 3.3 Supernovaeneutrinos Bei Supernovaeexplosionen werden 99% der gesamten Gravitationsenergie des kollabierenden Sterns durch ν x abgestrahlt. Da die Neutrinos den Stern in der 1. Phase des Kollapses ungehindert verlassen können, wirkt der Gravitation kein Strahlungsdruck mehr entgegen und der Stern fällt in sich zusammen. Es bildet sich also ein Neutronenstern durch Absorption der e der Atomhüllen: e +p n+ν e 4.1 Homestake Im Homestakeexperiment wurde ein 615 t Tetrachlorethylentank 1478m unter der Erde in einer alten Goldmine untergebracht. Aufgebaut wurde dieser in den 60er Jahren von Raymond Davis Jr., der 2002 für seine Neutrinoforschung den Nobelpreis bekam. In Betrieb war dieser Detektor von Den Nachweis eines Neutrinos führt man über den Zerfall des entstehenden Argons in folgender Reaktion: ν x + 37 Cl 37 Ar + e. So konnte man anhand der Zerfallsraten Rückschlüsse auf die Anzahl der eingefallen Neutrinos ziehen. Woher diese kamen oder welchen Flavour sie hatten ist über diese Nachweismethode nicht möglich. 4.2 KM3NeT Dieses Teleskop wurde bisher nicht gebaut, ist aber in Planung. Man möchte hier die von unten, also durch die Erde gekommenen Neutrinos detektieren. Mit dem Standort Mittelmeer kann man diesen Detektor zur Abdeckung der Südhalbkugel nutzen, wohingegen IceCube am Südpol die Nordhalbkugel abdeckt. Ursprünglich bestand das Projekt aus 3 3

4 Prototypen ANTARES: (Astronomy with a Neutrino Telescope and Abyss environmental RESearch (Frankreich)), NEMO (Italien) und NESTOR (Griechenland). Gebaut wurde bisher ANTARES (Abbildung 6), welches 40km vor der Französischen Küste in 2500m Tiefe aus am Boden befestigten Strings mit Photomultipliern besteht, welche durch Bojen senkrecht nach oben ragen. Dies führt dazu, dass durch die Strömungen im Meer die Photomultiplier ständig in Bewegung sind und deshalb die Position auch gemessen werden muss. [2] [9] Abbildung 6: Aufbau ANTARES Abbildung 7: Aufbau IceCube 4.3 IceCube IceCube wurde gebaut um ν s aller Flavours zu detektieren. In einem Eisvolumen von 1km 3 sind in m Tiefe 86 Strings mit zusammen 5160 Photomultipliern eingebracht und können Neutrinos mit Energien von ev detektieren. Fertiggestellt wurde IceCube am und kostete insgesamt 271 Mio $. Wie auch bei ANTARES nutzt man die Erde als Abschirmung von niederenergetischen Teilchen Himmelskarte Vor der vollständigen Fertigstellung von IceCube nahm man mit 40 Strings bei einem halben Jahr Messzeit und Energien von 100GeV - 100TeV Ereignisse auf. So konnte man die Himmelskarte in Abbildung 8 erstellen und 7 Events am heißesten Fleck bestimmen, was allerdings immer noch durch statistische Schwankungen erklärbar ist und somit nicht signifikant. Abbildung 8: Neutrinohimmelskarte [7] Simulierte Ereignisse Da am IceCube noch nicht genügend Daten aufgenommen wurden, werden hier die Simulationen eines im Detektor eintreffenden Myons (a), Elektrons (b) und Tauons (c) aufgezeigt (Abbildung 9). Jeder 4

5 50000t reinem Wasser in 2 Tanks in 2700m Tiefe Photomultiplier mit jeweils 50cm Durchmesser registrieren nun die Cherenkovstrahlung. A ußerer und innerer Tank werden zur Unterscheidung der Myonen/Elektronen aus der Atmospha re und der durch Neutrinos im Wassertank enstandenen Myonen/Elektronen beno tigt. Tritt ein Teilchen koinzident in beiden Kammern auf, so wird das Ereignis dann nicht geza hlt. Abbildung 10: Super KamiokaNDE Cherenkovringe Das Cherenkovlicht breitet sich kegelfo rmig aus. Und wir ko nnen anhand der Detektionsbilder un[3] terscheiden ob es sich um ein Elektron oder Myon handelte. Da ein Elektron leichter ist und sich an den Wassermoleku len mehr streut gibt es hier einen eher ausgefransten Ring (Abbildung 12), wohingegen das schwerere Myon weniger streut und somit einen scha rferen Ring erzeugt (Abbildung 11). (Der farbliche Verlauf gibt die Zeitabfolge der Ereignisse an den einzelnen Photomultipliern wieder) Abbildung 9: Simulierte IceCube Ereignisse Punkt zeigt ein Ereignis an einem dort liegenden Photomultiplier an. Die zeitliche Verteilung la uft von Rot nach Blau. Hier kann man erkennen, dass das Myon seine Energie in einer la ngeren Spur im Detektor deponiert, wohingegen das Elektron mehr streut und das Tauon einen sogenannten double Bang bei seiner Reaktion im Detektor verursacht. 4.4 SuperKamiokaNDE Der Kamiokandedetektor (Abbildung 10) wurde 1983 gebaut um nach Protonzerfa llen zu suchen. Damals bestand der Detektor aus einem mit 3000t reinem Wasser gefu llten Tank. Ab 1985 detektierte man auch kosmische, atmospha rische und solare Neutrinos wurden 11 Neutrinos von SN 1987a nachgewiesen, was dem Kamiokande zu gro ßerer Bekanntheit verhalf. Ende 1996 wurde der Umbau zu Super Kamiokande beendet. Nun besteht der Detektor aus Abbildung 11: Cherenkovring µ 5

6 Zum Vergleich: Der Weltenergieverbrauch beträgt Joule pro Jahr. Sanduleak strahlte während des etwa 10 Sekunden andauernden Neutrinobursts mehr Energie ab als das gesamte restliche Universum zusammen und hundert mal mehr als die Sonne in ihrer gesamten Lebensdauer von etwa 10 Milliarden Jahren. Abbildung 12: Cherenkovring e Die Sonne als Neutrinoquelle Am Kamikoande konnte man auch nachweisen, dass die Sonne eine Neutrinoquelle ist, indem man im Vergleich zum Untergrund eine signifikant erhöhte Rate von Neutrinos aus Richtung Sonne messen konnte (Abbildung 13) Abbildung 14: SN1987a Vorher-Nachheraufnahme 5 Fazit [15] Abbildung 13 Wir können Neutrinos als kosmische Informationsträger nutzen indem wir einen indirekten Nachweis über den Cherenkoveffekt führen. Bis heute sind keine Punktquellen für hochenergetische Neutrinos gefunden worden und somit bleibt die SN1987a die bisher einzige nachgewiesene Neutrinopunktquelle. Mit der Fertigstellung von IceCube und dem in Planung befindlichen KM3Net erhofft man sich in Zukunft hochenergetische Neutrinos nachweisen zu können (im Idealfall Punktquellen) und diese Ereignisse dem Geschehen im Universum zuordnen zu können. Die Suche geht weiter SN1987a Der Blaue Riese Sanduleak explodiert (Abbildung 14)(16M Sonne M 22M Sonne ). Lokalisiert ist der Blaue Riese in der großen Magellanschen Wolke ca Lichtjahre von der Erde entfernt. Einige Stunden vor dem optischen Signal erfolgte der Nachweis in mindestens zwei Neutrinodetektoren. So konnten am Kamiokande II am 23. Februar 1987 um 7:35:35 GMT 11 Ereignisse und am IMB-Detektor um 7:35:41 GMT 8 Ereignisse innerhalb von 10 Sekunden registriert und später der SN1987a zugeordnet werden. Insgesamt wurden bei diesem Sternkollaps Neutrinos mit E ges (6 ± 2)10 46 Joule in 10s erzeugt. 6 Quellen und Weiterführendes Doktor/Diplomarbeiten, Paper: 1 Till Neunhöffer, Die Entwicklung eines neuen Verfahrens zur Suche nach kosmischen Neutrinopunktquellen mit dem AMANDA-Neutrinoteleskop, Mainz Klaus Wiebe, Realisierung der IceCube MonteCarlo- Produktion..., Mainz IceCubeReview2010 Vorträge: 4 Per Olof Hulth, Neutrino Telescopes,Lepton Photon Konferenz Christian Sailer, Neutrino Astronomie, Universität Karlsruhe WWW: tomba/sk fleurot/supernova

Neutrinoteleskope Astrophysikalisches Seminar WS 09/10 7. Dezember Wiebke Eikmann

Neutrinoteleskope Astrophysikalisches Seminar WS 09/10 7. Dezember Wiebke Eikmann Neutrinoteleskope Astrophysikalisches Seminar WS 09/10 7. Dezember 2009 Wiebke Eikmann Inhalt Neutrinos allgemein Quellen Neutrinodetektoren Neutrinos Vorhersage 1930 von Wolfgang Pauli als Erklärung für

Mehr

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg Neutrinophysik Prof. Dr. Caren Hagner Universität Hamburg Überblick über Elementarteilchen Neutrinos: Eigenschaften Das Rätsel der solaren Neutrinos Neutrino Oszillationen Neutrinostrahlen Aufbau der Materie:

Mehr

Nieder-Energie-Neutrino-Physik

Nieder-Energie-Neutrino-Physik Nieder-Energie-Neutrino-Physik Masseterme: m D ν L ν R + m D ν c Lν c R Im Standardmodell kein ν R und kein ν c L keine Neutrinomasse? m n =? Beweis dass m n durch Beobachtung von Neutrinooszillationen

Mehr

Seminarvortrag zur Astro- und Teilchenphysik am

Seminarvortrag zur Astro- und Teilchenphysik am Seminarvortrag zur Astro- und Teilchenphysik am 21.01.2008 Quellen hochenergetischer Neutrinos und Neutrinoteleskope Alexander Enzenhöfer Inhalt Quellen hochenergetischer Neutrinos Quellen hochenergetischer

Mehr

Kosmische Strahlung Teilchen aus den Tiefen des Weltraums. Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16.

Kosmische Strahlung Teilchen aus den Tiefen des Weltraums. Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16. Kosmische Strahlung Teilchen aus den Tiefen des Weltraums Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16. Juli 2009 Kosmische Strahlung: wie alles anfing 1912: Victor Hess entdeckt

Mehr

Neutrinoquellen im Kosmos: Supernovae Martina Davids

Neutrinoquellen im Kosmos: Supernovae Martina Davids Neutrinoquellen im Kosmos: Supernovae Martina Davids Betreuer: Prof. M. Tonutti Neutrino-Seminar, RWTH Aachen, WS Gliederung Supernovae - Typen und Ablauf Cherenkovdetektoren: Funktionsweise Beispiele:

Mehr

Das solare Neutrinoproblem

Das solare Neutrinoproblem Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,

Mehr

c) Elemente oberhalb Fe

c) Elemente oberhalb Fe c) Elemente oberhalb Fe Neutroneneinfang: (Z,A) + n (Z, A+1) + γ β-zerfall: (Z, A+1) (Z+1, A+1) + e + ν e s(low)-process: Rate ω n

Mehr

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%)

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%) Proton-Proton-Zyklus pp-neutrino pep-neutrino p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) 2 H+p => 3 He+γ 3 He+ 3 He => 4 He+2p (86%) 3 He+ 4 He=> 7 Be+γ (14%) 3 He+p => 4 He+ν e +e + (

Mehr

Neutrino - Oszillationen

Neutrino - Oszillationen Neutrino - Oszillationen Geschichte der Neutrinos Theoretische Motivation (Neutrino-Oszillation im Vakuum/Materie) Experimente Solares Neutrino-Problem Super-Kamiokande Interpretation der Messungen, Ergebnisse

Mehr

Einheit 13 Subatomare Physik 2

Einheit 13 Subatomare Physik 2 Einheit 13 Subatomare Physik 2 26.01.2012 Markus Schweinberger Sebastian Miksch Markus Rockenbauer Subatomare Physik 2 Fundamentale Wechselwirkungen Das Standardmodell Elementarteilchen Erhaltungssätze

Mehr

Neutrinooszillationen

Neutrinooszillationen Neutrinooszillationen 10. Dezember 2002 Seminarvortrag von Alexander Floßdorf Betreuung: Prof. Thomas Hebbeker Problematik -solares Neutrinoproblem (es können nur etwa die Hälfte der erwarteten Elektronneutrinos

Mehr

11. Sonne, Neutrinos, Homestake, Kamiokande, SNO

11. Sonne, Neutrinos, Homestake, Kamiokande, SNO 11. Sonne, Neutrinos, Homestake, Kamiokande, SNO Das Neutrino ist seit der Zeit, zu der Wolfgang Pauli diese(s) Teilchen zur 'Rettung' von Energie- und Drehimpulserhaltung beim β -Zerfall postuliert hatte,

Mehr

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52 Kosmische Neutrinos Sommersemester 2015 Universität Siegen Claus Grupen Kosmische Neutrinos p. 1/52 Neutrino Astronomie Solare Neutrinos (MeV-Bereich) Atmospherische Neutrinos (GeV-Bereich) Neutrino Oszillationen

Mehr

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden DAS SOLARE NEUTRINO-PROBLEM...... und wie man damit umgeht Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden Wem kommt das bekannt vor? 2 oder etwas weniger komplex... Fraunhofer Spektrallinien

Mehr

Neutrinos in Kosmologie und Teilchenphysik

Neutrinos in Kosmologie und Teilchenphysik Neutrinos in Kosmologie und Teilchenphysik Thomas Schwetz-Mangold Bremer Olbers-Gesellschaft, 12. Nov. 2013 1 Ein Streifzug durch die Welt der Neutrinos Was ist ein Neutrino? Wie hat man Neutrinos entdeckt?

Mehr

Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern 01. Einführung 15.04.2013 Prof. Dr. Siegfried Bethke Dr. Frank Simon Ziel der Vorlesung Aktuelle und zukünftige Teilchenbeschleuniger

Mehr

Messung kosmischer Myonen

Messung kosmischer Myonen Messung kosmischer Myonen - Fortbildung für Lehrkräfte Belina von Krosigk Prof. Dr. Kai Zuber, Arnd Sörensen 27. 04. 2013 1 Kosmische Strahlung 2 Kosmische Teilchenschauer Primäre kosmische Strahlung:

Mehr

Neutrinooszillation. 37 Cl + ѵe 37 Ar + e -

Neutrinooszillation. 37 Cl + ѵe 37 Ar + e - Neutrinooszillation Neutrinos sind elementare Teilchen, d. h. sie sind nicht aus irgendwelchen Bestandteilen zusammengesetzt. Da sie weder elektromagnetische Ladung, noch Farbladung der Starken Kernkraft

Mehr

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall

Mehr

100 Jahre Kosmische Strahlung: Heute genauso aktuell wie vor 100 Jahren

100 Jahre Kosmische Strahlung: Heute genauso aktuell wie vor 100 Jahren 100 Jahre Kosmische Strahlung: Heute genauso aktuell wie vor 100 Jahren Claus Grupen Universität Siegen Historie Die Goldenen Jahre Beschleuniger und Speicherringe Renaissance der Kosmischen Strahlung

Mehr

Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber

Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber Die Akte X der Teilchenphysik Neutrinos Inhalt Historie Solare Neutrinos Der doppelte Betazerfall Ausblick und Zusammenfassung Entdeckung der Radioaktivität 1895 W. Röntgen entdeckt X-Strahlen 1896 H.

Mehr

Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik

Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik Seminar WS 2001/2002 RWTH: Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik Flügge, Grünewald, Hebbeker, Lanske, Mnich, Schael, Struczinski, Wallraff Elementarteilchenphysik/Astroteilchenphysik

Mehr

Neutrino Oszillation. Von Richard Peschke

Neutrino Oszillation. Von Richard Peschke Neutrino Oszillation Von Richard Peschke Gliederung: 1. Was sind Neutrinos? 2. Eigenzustände 3. Mischung 4. Grundlagen der Neutrino Oszillation 5. Experimente: 5.1 Sonnen-Neutrinos 5.2 Reaktor-Neutrinos

Mehr

Neutrinos Geheimschrift des Kosmos

Neutrinos Geheimschrift des Kosmos Neutrinos Geheimschrift des Kosmos Christian Spiering, DESY Stanislav Lem, 1969 1 Stanislav Lem, 1969 Der Mathematiker Peter E. Hogarth, schildert das Masters Voice Project, das Ende des 20. Jahrhunderts

Mehr

Das GERDA-Experiment am Gran Sasso Untergrundlabor

Das GERDA-Experiment am Gran Sasso Untergrundlabor Das GERDA-Experiment am Gran Sasso Untergrundlabor Nuklearer Prozess Dr. Béla Majorovits 13. Okt. 2007 1 Woraus bestehen wir? Die Materie um uns herum und die uns vertraut ist, besteht aus drei Elementarteilchen:

Mehr

Uli Katz Moderne Physik am Samstagmorgen,

Uli Katz Moderne Physik am Samstagmorgen, Teilchen aus dem Weltraum und ihre Botschaften Uli Katz Moderne Physik am Samstagmorgen, 17.01.2015 Die nächsten 45 Minuten: Was für Teilchen? Teilchen aus dem Weltraum und wie wir sie messen Was verraten

Mehr

Tag der offenen Tür 16. Oktober 2007

Tag der offenen Tür 16. Oktober 2007 Experimentelle Teilchenphysik RWTH Aachen Tag der offenen Tür 16. Oktober 2007 Thomas Hebbeker Teilchenphysik = Elementarteilchenphysik +Astroteilchenphysik Institute und Ansprechpartner Forschungsprojekte

Mehr

Experimente der Teilchen- und Astroteilchenphysik

Experimente der Teilchen- und Astroteilchenphysik V 1.0 Seminar SS 2010 RWTH Experimente der Teilchen- und Astroteilchenphysik Erdmann, Hebbeker, Stahl, Wiebusch et al. III. Phys. Inst. A+B Elementarteilchenphysik und Astroteilchenphysik Seminarthemen

Mehr

Experimente der Teilchen- und Astroteilchenphysik

Experimente der Teilchen- und Astroteilchenphysik V 1.0 Seminar SS 2009 RWTH Experimente der Teilchen- und Astroteilchenphysik Boersma, Erdmann,, Hebbeker, Hoepfner, Klimkovich, Magass, Meyer, Merschmeyer, Pooth, Wiebusch Elementarteilchenphysik und Astroteilchenphysik

Mehr

Netzwerk Teilchenwelt

Netzwerk Teilchenwelt Netzwerk Teilchenwelt Ziel: moderne Teilchenphysik entdecken und erleben 18.10.2011 Carolin Schwerdt, Netzwerk Teilchenwelt c/o DESY Spuren hochenergetischer Teilchen im CMS-Detektor Spuren kosmischer

Mehr

Experimentelle Suche nach Dunkler Materie

Experimentelle Suche nach Dunkler Materie Experimentelle Suche nach Dunkler Materie Überblick Allgemeine Einführung Direkte Suche nach DM Experimente zur Direkten Suche Indirekte Suche nach DM Experimente zur Indirekten Suche Ausblick Zusammensetzung

Mehr

Nachweis des Myon-Neutrinos

Nachweis des Myon-Neutrinos Nachweis des Myon-Neutrinos http://www.bnl.gov/physics/history/images/1980s/1988-nobel-470.jpg http://www.bnl.gov/bnlweb/history/nobel/images/schwartz-335px.jpg Inhalt Neutrinos Erfindung und Entdeckung

Mehr

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne Sonne, Mond und Sterne: Die neue Sicht des Universum III Physik der Sonne und der Sterne Fragen: 1. Wie bilden sich Sterne? 2. Wie wird die Energie im Sterninnern erzeugt? 3. Wie gelangt die Energie aus

Mehr

ν u c t d s b νe νµ ντ e µ τ σ σ n p e e p e + νe p + p d [7] + e + + νe 7 Be + e 7 Li + νe 8 B 8 Be + e + + νe (bis zu 0,42MeV) (bis zu 0,86 MeV) (bis zu 14 MeV) Č v c0 n 4.3.2 AUGER-Experiment

Mehr

Frank Fiedler Kamiokanne

Frank Fiedler Kamiokanne Die Kamiokanne Messung kosmischer Höhenstrahlung im Schulunterricht Frank Fiedler Universität Mainz Übersicht kosmische Strahlung auf der Erde 2 Übersicht kosmische Strahlung auf der Erde Cherenkov Detektoren

Mehr

Entdeckung der Neutrino-Oszillation am SNO

Entdeckung der Neutrino-Oszillation am SNO Entdeckung der Neutrino-Oszillation am SNO Im Rahmen des Seminars: Präzisionsexperimente der Teilchenphysik Thomas Buchner May 23, 2014 T. Buchner Neutrino-Oszillation am SNO May 23, 2014 1 / 39 Gliederung

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell

Institut für Strahlenphysik Dr. Daniel Bemmerer  Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell Institut für Strahlenphysik Dr. Daniel Bemmerer www.fzd.de Mitglied der Leibniz-Gemeinschaft Altes und Neues zum Standardmodell Von den Quarks zum Universum QuickTime and a TIFF (Uncompressed) decompressor

Mehr

10.6. Neutrinos. Seite 46. Kap.10

10.6. Neutrinos. Seite 46. Kap.10 10.6. Neutrinos Seite 46 Eigenschaften der Neutrinos Existenz von v von Pauli vorhergesagt (ß-Zerfall) Nur linkshändige Neutrinos und rechtshändige AntiNeutrinos Genau 3 Leptonfamilien mit erhaltenem Le

Mehr

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Entdeckung neuer Teilchen die niemand brauchte... Elementarteilchen (von lat. elementum Grundstoff ) sind die Bausteine der Materie. So besteht die

Mehr

Neutrinoeigenschaften

Neutrinoeigenschaften Neutrinoeigenschaften Seminarvortrag zur Astro- und Teilchenphysik WS 07/ 08 Sandy Peterhänsel Betreuer: Prof. Dr. G. Anton / Prof. Dr. K. Rith 14.01.2008 Outline Historie und allgemeine Eigenschaften

Mehr

Perspektiven der ecap

Perspektiven der ecap Perspektiven der ecap Astroteilchenphysik in Europa ECAP Inauguration p n γ μ Christian Spiering DESY 19.5.2008 Astroteilchenphysik Teilchenphysik Kosmologie ATP Astrophysik Der Zerfall des Protons Lebensdauer

Mehr

Kosmische Strahlung. Hochenergetische Teilchen aus dem Weltall. Thomas Hebbeker RWTH Aachen Seniorenstudium

Kosmische Strahlung. Hochenergetische Teilchen aus dem Weltall. Thomas Hebbeker RWTH Aachen Seniorenstudium Kosmische Strahlung 1.0 Hochenergetische Teilchen aus dem Weltall Thomas Hebbeker RWTH Aachen Seniorenstudium 14.10.2009 http://www.physik.rwth-aachen.de/~hebbeker/ oder: google hebbeker Kosmische Strahlung

Mehr

MESSUNG VON KO(S)MISCHEN TEILCHEN. Das Szintillationszähler-Experiment im Netzwerk Teilchenwelt

MESSUNG VON KO(S)MISCHEN TEILCHEN. Das Szintillationszähler-Experiment im Netzwerk Teilchenwelt MESSUNG VON KO(S)MISCHEN TEILCHEN Das Szintillationszähler-Experiment im Netzwerk Teilchenwelt 2 Messung von kosmischen Teilchen Ablauf 1. Teil: Kurze Einführung kosmische Strahlung und f Vorstellung der

Mehr

Projekt Poltergeist und der Beta-Zerfall Carsten Hof

Projekt Poltergeist und der Beta-Zerfall Carsten Hof Projekt Poltergeist und der Beta-Zerfall Carsten Hof Betreuerin: Frau Dr. Kerstin Höpfner Neutrino-Seminar, RWTH Aachen, WS 03/04 Der Beta-Zerfall: Grundlagen Fermi-Theorie Gliederung Das Experiment Poltergeist:

Mehr

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge Solare Neutrinos Axel Winter RWTH-Aachen betreut von Prof. Flügge Übersicht Solare Neutrinos: Erzeugung und Problematik Darstellung der experimentellen Detektionsmöglichkeiten Neutrinooszillation Zusammenfassung

Mehr

Myonen, Botschafter aus einer anderen Generation. Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik

Myonen, Botschafter aus einer anderen Generation. Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik Myonen, Botschafter aus einer anderen Generation Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik Übersicht Ein kurzer Ausflug vom Weltall in die Welt des unsichtbaren Kleinen Ein prominentes

Mehr

Neutrinos. Geschichte und Geschichten zum Nobelpreis 2015

Neutrinos. Geschichte und Geschichten zum Nobelpreis 2015 Neutrinos Geschichte und Geschichten zum Nobelpreis 2015 Christian Spiering, Zeuthen, 26.4.2016 NEUTRINOS SIND ÜBERALL Urknall (330 ν/cm³) Supernova (Sternkollaps) Sonne (60 000 000 000 pro cm² s) Teilchenbeschleuniger

Mehr

Gamma-Blitze. Ihre Entdeckung und Entstehung. Seminar: Aktuelle Probleme der Astrophysik - SS2010

Gamma-Blitze. Ihre Entdeckung und Entstehung. Seminar: Aktuelle Probleme der Astrophysik - SS2010 Gamma-Blitze Ihre Entdeckung und Entstehung Seminar: Aktuelle Probleme der Astrophysik - SS2010 18.05.2010 Fachbereich Physik Gamma-Blitze aus dem Universum Christian Schmidt 1 Gliederung 1. Motivation

Mehr

WIMP-Teilchen. Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten

WIMP-Teilchen. Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten Hauptseminar Dunkle Materie in Teilchen- und Teilchenastrophysik SS 05 WIMP-Teilchen Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten Pierre Sauter, 28.06.2005 Übersicht Was sind

Mehr

Das heutige Bild vom Aufbau eines Atoms

Das heutige Bild vom Aufbau eines Atoms 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-19 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V12

Mehr

Indirekte Suche nach Dunkler Materie mit VHE Gamma Strahlung

Indirekte Suche nach Dunkler Materie mit VHE Gamma Strahlung Indirekte Suche nach Dunkler Materie mit VHE Gamma Strahlung 6. Oktober 2012 Indirekte Suche nach Dunkler Materie mit VHE Gamma Strahlung 1 / 17 Introduktion Eine der wichtigsten offenen Fragen in der

Mehr

T.Hebbeker. Thomas Hebbeker RWTH Aachen University. Aachen 10. Juni V 2.1

T.Hebbeker. Thomas Hebbeker RWTH Aachen University. Aachen 10. Juni V 2.1 Hochenergetische Strahlung aus dem Universum Thomas Hebbeker RWTH Aachen University Aachen 10. Juni 2009 V 2.1 http://web.physik.rwth-aachen.de/~hebbeker/ Astronomie Astrophysik - Kosmologie Grundlegende

Mehr

Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos

Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos Der ANTARES-Detektor, der sich im Mittelmeer in 2500 m Tiefe befindet, dient der Detektion von hochenergetischen, kosmischen Neutrinos.

Mehr

Dunkle Materie und Teilchenphysik

Dunkle Materie und Teilchenphysik Universität Hamburg Weihnachtliche Festveranstaltung Department Physik 17. Dezember 2008 Woher weiß man, dass es Dunkle Materie gibt? Sichtbare Materie in Galaxien (Sterne, Gas) kann nicht die beobachteten

Mehr

1) Teilchenbeschleunigung am LHC und im Kosmos

1) Teilchenbeschleunigung am LHC und im Kosmos 1 Übungsblatt 06112013 1) Teilchenbeschleunigung am LHC und im Kosmos Kosmische Beschleuniger wie aktive galaktische Kerne, sog AGN s (active galactic nuclei), beschleunigen Teilchen auf Energien von bis

Mehr

Indirekte Suche nach Dunkler Materie

Indirekte Suche nach Dunkler Materie Indirekte Suche nach Dunkler Materie Friedrich Alexander Universität Erlangen Physikalisches Seminar Astro- und Teilchenphysik SS 2011 Sascha Pfeiffer Was heisst indirekt? Ø Direkt: WIMP trifft auf den

Mehr

1.3 Historischer Kurzüberblick

1.3 Historischer Kurzüberblick 1.3 Historischer Kurzüberblick (zur Motivation des Standard-Modells; unvollständig) Frühphase: 1897,,Entdeckung des Elektrons (J.J. Thomson) 1905 Photon als Teilchen (Einstein) 1911 Entdeckung des Atomkerns

Mehr

Handout zum Masterseminar I Detektorensysteme

Handout zum Masterseminar I Detektorensysteme Handout zum Masterseminar I Philipp Heil 1 15. Juli 2013 1 pheil@students.uni-mainz.de Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 ATLAS Detektor 3 2 Arten von Teilchenvermessung 3 3 Transversal-Hermetischer

Mehr

Hochenergie-Astro-Teilchen- Physik. Vorlesung SS 2006 Hans J. Pirner

Hochenergie-Astro-Teilchen- Physik. Vorlesung SS 2006 Hans J. Pirner Hochenergie-Astro-Teilchen- Physik Vorlesung SS 2006 Hans J. Pirner 2. Standard Model der Teilchenphysik Gliederung 1. Einleitung 2.Standard Modell der Teilchen Physik 2.1 Teilchen Inhalt 2.2 Symmetrien

Mehr

IceCube. Astronomische Boten (Elektromagnetische Strahlung) Auf dem Weg zum 1 km 3 großen Neutrinodetektor. Technisches Seminar 03.

IceCube. Astronomische Boten (Elektromagnetische Strahlung) Auf dem Weg zum 1 km 3 großen Neutrinodetektor. Technisches Seminar 03. IceCube Auf dem Weg zum 1 km 3 großen Neutrinodetektor M.Krasberg Technisches Seminar 03. Juni 2008 Bernhard Voigt Astronomische Boten (Elektromagnetische Strahlung) - The HESS Project - Energy around

Mehr

Die Entdeckung der neutralen Ströme & Die Entdeckung der W- und Z-Bosonen. Sabine Blatt Betreuer: Prof. Dr. J. Mnich 28.

Die Entdeckung der neutralen Ströme & Die Entdeckung der W- und Z-Bosonen. Sabine Blatt Betreuer: Prof. Dr. J. Mnich 28. Die Entdeckung der neutralen Ströme & Die Entdeckung der W- und Z-Bosonen Sabine Blatt Betreuer: Prof. Dr. J. Mnich 28. Januar 2003 Inhalt I. Theorie der schwachen Wechselwirkung - Fermis Strom-Strom-Theorie

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 2, 27.10.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Multimessenger-Methoden: Gammas, Neutrinos, Protonen

Mehr

Protonzerfall. GUT (Grand Unified Theory) Motivation:

Protonzerfall. GUT (Grand Unified Theory) Motivation: Protonzerfall Motivation: Standard-Modell (SM) der Teilchenphysik enorm erfolgreich: Alle Vorhersagen wurden experimentell bestens bestätigt! Problem: zu viele freie Parameter! GUT (Grand Unified Theory)

Mehr

Kerne und Teilchen. Neutrinos. Moderne Experimentalphysik III Vorlesung 21. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Neutrinos. Moderne Experimentalphysik III Vorlesung 21.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 1 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Neutrinos KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008 Kapitel 9.2 Kosmische Beschleuniger Energiespektrum Ein Teilchen

Mehr

Hochenergetische Teilchen als Boten aus dem Kosmos

Hochenergetische Teilchen als Boten aus dem Kosmos Hochenergetische Teilchen als Boten aus dem Kosmos Astroteilchenphysik von den Anfängen bis heute - Das Pierre Auger Observatorium Institut für Kernphysik KIT Universität des Landes Baden-Württemberg und

Mehr

5.4. NEUTRINOOSZILLATIONEN 125

5.4. NEUTRINOOSZILLATIONEN 125 5.4. NEUTRINOOSZILLATIONEN 125 5.4.3 MSW-Effekt Unterschiedliche Wechselwirkungen der Flavoureigenzustände in Materie können die Oszillationen beeinflussen. Zum Beispiel kann im Fall der Sonnenneutrinos

Mehr

Solar Neutrinos: Experimente. Von Florian Albert

Solar Neutrinos: Experimente. Von Florian Albert Solar Neutrinos: Experimente Von Florian Albert Historischer Überblick 1930 Pauli postuliert das Neutrino 1946 Bruno Pontecovo entwirft Davies Experiment 1959 Cowan & Reines: Poltergeistexperiment 1967

Mehr

Teilchen aus den Tiefen des Kosmos

Teilchen aus den Tiefen des Kosmos - Belina von Krosigk - 1 Bild: NASA Eine Frage, bevor wir in den Kosmos schauen... 2 Was sind eigentlich Teilchen? 3 Was sind Teilchen? 0,01m 10-9m 1/10.000.000 10-10m 1/10 10-14m 1/10.000 10-15m 1/10

Mehr

Ergebnisse der TeV Gammastrahlungsastronomie

Ergebnisse der TeV Gammastrahlungsastronomie Ergebnisse der TeV Gammastrahlungsastronomie Was ist Gammastrahlungsastronomie? Detektoren auf der Erde (H.E.S.S., Magic) Woher kommt Sie? Zukunft (Magic( II, H.E.S.S. II) 1 Was ist TeV Gammastrahlungsastronomie?

Mehr

Physik-Nobelpreis Neutrino-Oszillationen

Physik-Nobelpreis Neutrino-Oszillationen Physik-Nobelpreis 2015 Neutrino-Oszillationen Christian Spiering, Schloss Waldthausen, 10.7.2016 NEUTRINOS SIND ÜBERALL Urknall (330 ν/cm³) Supernova (Sternkollaps) Sonne (60 000 000 000 pro cm² s) Teilchenbeschleuniger

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 08, 12.12.2013 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - CTA & Milagro - Neutrino-Teleskope: Techniken -

Mehr

Florian Steyer Seminar zu Kern- und Teilchenphysik WS 2014/ Die ersten Mesonen und Hyperonen

Florian Steyer Seminar zu Kern- und Teilchenphysik WS 2014/ Die ersten Mesonen und Hyperonen Florian Steyer Seminar zu Kern- und Teilchenphysik WS 2014/15 18.11.2014 Die ersten Mesonen und Hyperonen Übersicht Was sind Hadronen? Die starke Kernkraft Das Pion V-Teilchen Die Nebelkammer Das Kaon

Mehr

Neutrino-Astronomie: Neutrinoteleskope am Südpol und im Mittelmeer

Neutrino-Astronomie: Neutrinoteleskope am Südpol und im Mittelmeer Neutrino-Astronomie: Neutrinoteleskope am Südpol und im Mittelmeer Seminar SS06: Neutrinos, rätselhafte Bausteine des Mikrokosmos RWTH-Aachen Joaquin Calvo 18. August 2006 1 Inhaltsverzeichnis 1 Neutrino-Astronomie

Mehr

Das Polarstern-Projekt

Das Polarstern-Projekt Das Polarstern-Projekt Die Untersuchung der Intensität kosmischer Teilchen in Abhängigkeit vom Breitengrad Carolin Schwerdt Technisches Seminar 7.2.2012 CosmicLab Intension und Motivation Carolin Schwerdt

Mehr

(iii) (Super-)Kamiokande

(iii) (Super-)Kamiokande (iii) (Super-)Kamiokande Echtzeit Experiment (im Gegensatz zu den chemischen Exp.), Detektor für Cherenkovstrahlung (s. Kap. 5, wo dieser Detektor dem Antineutrino-Nachweis diente). Nachweis-Reaktion:

Mehr

Solare Neutrinos. Axel Moll Physikalisches Institut IIIB

Solare Neutrinos. Axel Moll Physikalisches Institut IIIB Solare Neutrinos Physikalisches Institut IIIB 5.7.05 1 Inhalt: Reaktionen in der Sonne zur Erzeugung von Neutrinos Der pp Zyklus Der CNO Zyklus Energiespektren der Sonnenneutrinos Nachweis solarer Neutrinos

Mehr

Neutrinos. Geschichte und Geschichten zum Nobelpreis 2015

Neutrinos. Geschichte und Geschichten zum Nobelpreis 2015 Neutrinos Geschichte und Geschichten zum Nobelpreis 2015 Christian Spiering, Zeuthen, 9.3.2016 NEUTRINOS SIND ÜBERALL Urknall (330 /cm³) Supernova (Sternkollaps) Sonne (60 000 000 000 pro cm² s) Teilchenbeschleuniger

Mehr

Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos

Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos Forschungsfeld: Untersuchung von atmosphärischen Myonen und Neutrinos Der ANTARES-Detektor, der sich im Mittelmeer in 2500 m Tiefe befindet, dient der Detektion von hochenergetischen, kosmischen Neutrinos.

Mehr

WIMP-Teilchen. Suche mit astrophysikalischen- und Labor - Experimenten. Paulus Frischholz

WIMP-Teilchen. Suche mit astrophysikalischen- und Labor - Experimenten. Paulus Frischholz WIMP-Teilchen Suche mit astrophysikalischen- und Labor - Experimenten Paulus Frischholz 24.06.2003 Missing Pieces Gliederung Einleitung Woher kommen die WIMPs? Wo sind die WIMPs heute? Wie kann man WIMPs

Mehr

Neutrinos und andere Geisterteilchen. M. Lindner

Neutrinos und andere Geisterteilchen. M. Lindner Neutrinos und andere Geisterteilchen M. Lindner Elementare Bausteine der Materie Bausteine der (normalen) Materie: - Elektron e - - Up-Quark u und Down-Quark d Soweit bekannt punktförmig: < 0.001fm Wechselwirkungen

Mehr

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008 Präsenzübung Welche der folgenden Zerfälle sind nicht erlaubt

Mehr

Standardmodelltests: W- und Z-Bosonen

Standardmodelltests: W- und Z-Bosonen Hauptseminar: Höchstenergetische Teilchenbeschleuniger Standardmodelltests: W- und Z-Bosonen Claudio Heller Inhalt Einführung und Theorie Produktion der Eichbosonen bei Cern und Fermilab Massenbestimmung

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

T.Hebbeker. Astrophysik. Astroteilchenphysik Kosmologie. Thomas Hebbeker RWTH Aachen April

T.Hebbeker. Astrophysik. Astroteilchenphysik Kosmologie. Thomas Hebbeker RWTH Aachen April Astrophysik Astroteilchenphysik Kosmologie Thomas Hebbeker RWTH Aachen April 2002 1.1 Erforschung des Universums 1) Beobachtung der Teilchen/Strahlung Universum Erde 2) Experimente im Labor Kosmologie

Mehr

Neue Ergebnisse der ATLAS Suche nach dem Higgs

Neue Ergebnisse der ATLAS Suche nach dem Higgs Neue Ergebnisse der ATLAS Suche nach dem Higgs Abbildung 1. Kandidat für einen Higgs- Zerfall in vier Elektronen, 2012 von ATLAS aufgezeichnet. Das ATLAS Experiment präsentierte am 4. Juli 2012 seine vorläufigen

Mehr

Neutrinophysik-Experimente

Neutrinophysik-Experimente Physik am Samstagmorgen 2007/2008 Schülertreffen am Max-Planck-Institut für Kernphysik 26. April 2008 Neutrinophysik-Experimente Der Kampf im Untergrund gegen den Untergrund W. Hampel Max-Planck-Institut

Mehr

Der Super-Kamiokande Detektor

Der Super-Kamiokande Detektor Der Super-Kamiokande Detektor (Kamioka Nuclear Decay Experiment) Hauptseminar SoSe 008 Schlüsselexperimente der Elementarteilchenphysik Vortrag am 6.6.008 von Michael Renner Übersicht Grundlagen Neutrino-Oszillationen

Mehr

Standardmodell der Teilchenphysik

Standardmodell der Teilchenphysik Standardmodell der Teilchenphysik Eine Übersicht Bjoern Walk bwalk@students.uni-mainz.de 30. Oktober 2006 / Seminar des fortgeschrittenen Praktikums Gliederung Grundlagen Teilchen Früh entdeckte Teilchen

Mehr

Aktuelle Experimente der Astroteilchenphysik

Aktuelle Experimente der Astroteilchenphysik Aktuelle Experimente der Astroteilchenphysik Prof. Dr. Christian Weinheimer Institut für Kernphysik, Wilhelm-Klemm-Str. 9, 48149 Münster Tel: 0251 833 4971, Email: weinheimer@uni-muenster.de Einleitung

Mehr

Vom Elementarteilchen zum Universum Verbindungen zwischen den Welten des ganz Kleinen und des ganz Großen

Vom Elementarteilchen zum Universum Verbindungen zwischen den Welten des ganz Kleinen und des ganz Großen Vom Elementarteilchen zum Universum Verbindungen zwischen den Welten des ganz Kleinen und des ganz Großen Werner Hofmann MPI für Kernphysik Heidelberg Animationen erfordern spezielle Software und sind

Mehr

Teil II: Sonnen- und Reaktor-Neutrinos

Teil II: Sonnen- und Reaktor-Neutrinos Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern TUM SS15 S.Bethke, F. Simon V11: Sonnen- und Reaktor-Neutrinos 1 Neutrino-Physik Teil II: Sonnen- und Reaktor-Neutrinos Eigenschaften

Mehr

Das Cosmic-Projekt. Moderne (Astro-)Teilchenphysik entdecken und erleben Martin Hawner

Das Cosmic-Projekt. Moderne (Astro-)Teilchenphysik entdecken und erleben Martin Hawner Das Cosmic-Projekt Moderne (Astro-)Teilchenphysik entdecken und erleben 05.04.2012 Martin Hawner Übersicht Fragen der Astroteilchenphysik Welche Experimente können Jugendliche im Rahmen des Netzwerks durchführen

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 3, 3.11.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Luftschauer-Prozesse Einführung elektromagnetische

Mehr

Der Teilchenbeschleuniger. am CERN in Genf

Der Teilchenbeschleuniger. am CERN in Genf Genf Der Teilchenbeschleuniger CERN am CERN in Genf Frankreich CERN 1954-2004 Conseil Européen pour la Recherche Nucléaire European Center for Particle Physics 1953 2000 F CH CERN-Nutzer 538 70 27 4306

Mehr

Suche nach kosmischen Neutrinos auf dem Grund des Mittelmeeres

Suche nach kosmischen Neutrinos auf dem Grund des Mittelmeeres Suche nach kosmischen Neutrinos auf dem Grund des Mittelmeeres Physikalisches Institut -Nürnberg Kosmische Strahlung Kosmische Neutrinos Das Neutrino-Teleskop ANTARES Zukünftige Neutrino-Teleskope kosmische

Mehr

HANDOUT FÜR TEILCHENPHYSIK-MASTERCLASSES

HANDOUT FÜR TEILCHENPHYSIK-MASTERCLASSES HINWEISE HANDOUT FÜR TEILCHENPHYSIK-MASTERCLASSES ATLAS-DATEN: () Liebe Vermittler, das vorliegende Handout unterstützt die Teilnehmer von Teilchenphysik-Masterclasses bei der Messung und ermöglicht ihnen

Mehr