C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

Größe: px
Ab Seite anzeigen:

Download "C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)"

Transkript

1 C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen Die üblichen Thermometersubstanzen wie Quecksilber, Alkohol oder dergleichen sind bei linearer Skalenteilung, die mit Hilfe zweier Fixpunkte nur an zwei Punkten geeicht ist, normalerweise nur innerhalb enger Temperaturbereiche zu Temperaturmessungen brauchbar, d. h. die lineare Inter- bzw. Extrapolation ist nur in kleinen Temperaturbereichen mit hinreichender Genauigkeit möglich. Der Grund hierfür liegt einerseits in den hohen Gefrierpunkten und niedrigen Siedepunkten der Substanzen, andererseits darf die Volumenausdehnung V meist nur in kleinen Bereichen als der Temperatur proportional angesehen werden. Diese Nachteile werden durch Gasthermometer weitgehend vermieden, sofern man das verwendete Gas als ideal annehmen kann. Gasthermometer, bei denen das Verhalten des benutzten Gases dem idealer Gase sehr nahe kommt (z.b. He oder H 2 ), sind von wenigen Kelvin [K] bis über 1600 K gut brauchbar. 4.1 Ideale und reale Gase Der Zustand eines idealen Gases ist allgemein durch seinen Druck p, sein Volumen V und seine Temperatur T bestimmt. Bei einer gegebenen Gasmenge können zwei von diesen Zustandsgrößen unabhängig voneinander geändert werden. Die dritte ist dann durch die beiden anderen bestimmt. Für ein Mol eines idealen Gases mit dem Molvolumen V wird dieses Verhalten durch die Zustandsgleichung idealer Gase beschrieben: F (2) p V = R T T ist die absolute Temperatur in [K]. Die Größe R ist die universelle Gaskonstante, also eine für alle Stoffe gleiche Konstante. Sie hat die Dimension Energie / (Temperatur Mol), denn p V = (Kraft / Fläche) Volumen = Kraft Weg = Energie. Die universelle Gaskonstante hat den Wert R = 8, 314 J / mol K. Ist im allgemeinen Fall das betrachtete Gasvolumen V, so ist dieses gleich dem Molvolumen V, multipliziert mit der Anzahl n der im Volumen V enthaltenen Mole: F (3) V = n V Für ein beliebiges Volumen V lautet also die ideale Gasgleichung (oder auch ideales Gasgesetz): F (4) p V = n R T Beachten Sie bitte, dass die Temperatur hier immer in Kelvin [K] und nicht in Grad Celsius [ C] angegeben wird. Die Umrechnung lautet: T [K] = 273,15 + T [ C] Von der Gasgleichung F (4) aus kommt man zu Gasgesetzen verschiedener Form, die für den jeweiligen Fall gelten, dass eine der drei Zustandsgrößen konstant gehalten wird. a) Bei einer isothermen Zustandsänderung bleibt die Temperatur T konstant, und aus F (2) folgt das Boyle-Mariotte sche Gesetz: F (5) p V = const. 7

2 Die Kurven p V = const. heißen Isothermen eines idealen Gases. Im p-v-diagramm sind es die Kurven p = const. / V, wobei die Konstante ein temperaturabhängiger Parameter ist. Die Kurven sind im mathematischen Sinne Hyperbeln (Abb. 1). Abb. 1: Isothermen eines idealen Gases im p-v-diagramm b) Bei einer isobaren Zustandsänderung wird der Druck konstant gehalten, und das Gasgesetz F (4) nimmt die Gestalt an: F (6) V (1 = V, 0 + αt ) (T hier in C) Das ist das Gay-ussac sche Gesetz. α hat hier die Bedeutung eines Volumenausdehnungskoeffizienten. c) Bei einer isochoren Zustandsänderung bleibt das Volumen konstant, und man erhält das Gay- ussac sche Gesetz in der Form: F (7) p (1 = p, 0 + αt ) (T hier in C) Dieses Gesetz wird manchmal auch Amonton sches Gesetz genannt. α hat in diesem Fall die Bedeutung eines Druckkoeffizienten. Für ideale Gase hat der Koeffizient α in F (6) und F (7) den Wert 1/273,15 C. Diese Gay- ussac schen Gleichungen gelten in ihrer Gestalt auch für reale Gase, nur müssen dann die Koeffizienten getrennt als Volumenausdehnungskoeffizient bzw. Druckkoeffizient experimentell ermittelt werden, denn beide Koeffizienten sind bei realen Gasen über größere Temperaturbereiche gemessen selbst temperaturabhängig. Bei realen Gasen muss nämlich folgendes beachtet werden: Bei der Ableitung der Zustandsgleichung für ideale Gase wurde vernachlässigt, dass zwischen den Molekülen anziehende Kräfte vorhanden sind und die Moleküle ein endliches Eigenvolumen haben. Diese Vernachlässigungen werden in der van-der-waals schen Zustandsgleichung berücksichtigt: a V F (8) p ( V b) = R T + 2 8

3 Die Korrektur a/v ² zum Druck stellt einen Binnen- oder Kohäsionsdruck dar, den man dadurch erklären kann, dass eine Anziehung der Teilchen untereinander einem Druck entspricht, den ein Teilchen auf ein anderes ausübt. Die Volumenkorrektur b nennt man Kovolumen, das ungefähr dem 4-fachen des Eigenvolumens aller Teilchen in einem Mol entspricht. Die Größen a und b sind also für jedes Gas stoffspezifische Konstanten. Die Isothermen eines realen Gases im p-v-diagramm sind in Abb. 2 dargestellt. Abb. 2: p-v-diagramm des realen Gases CO 2 Beachte: Die Kurven der Abb. 2 sind nur außerhalb der schraffierten Fläche die van-der- Waals schen Kurven des realen Gases (hier am Beispiel CO 2 ), wie sie sich als graphische Darstellung der Gl. (12) ergeben. Innerhalb der schraffierten Fläche (das sog. Nassdampf- oder Koexistenzgebiet ), in der Flüssigkeit und Gas gleichzeitig vorkommen, ist der Druck immer konstant, was zu den eingezeichneten Geraden führt. Aus der Abb. 2 ist zu entnehmen, dass ein reales Gas dem idealen Gaszustand umso näher ist, je höher die Temperatur ist. (Vgl. dazu die Isothermen eines idealen Gases.) Andererseits zeigt sich, dass die Abweichungen vom Verhalten eines idealen Gases bei hohen Drücken und kleinen Volumina auftreten. Das ist auch plausibel, da in diesen Fällen die Abstände der Teilchen klein und damit Anziehungskräfte wirksamer sind. Außerdem spielt in diesem Fall auch deren Eigenvolumen eine größere Rolle als bei weit voneinander entfernten Teilchen. Aus den Formeln F (6) und F (7) lassen sich zwei verschiedene Methoden der Temperaturbestimmung durch Messung der Zustandsgrößen eines Gases ableiten: a) Man erwärmt ein gasgefülltes Gefäß bekannten und konstanten Volumens auf die zu messende Temperatur T und bestimmt die Druckzunahme. Aus Formel F (7) folgt bei bekanntem α die Temperatur T in Grad Celsius. b) Man hält den Druck konstant, erwärmt das gasgefüllte Gefäß auf die zu messende Temperatur und bestimmt die Volumenzunahme. Aus F (6) folgt wiederum bei bekanntem α die Temperatur T in Grad Celsius. Sie haben in diesem Versuch das Gasthermometer nach a) benutzt und dabei den thermischen Druckkoeffizienten α von uft bestimmt, während Sie die Temperatur des Gases mit einem bereits geeichten Flüssigkeitsthermometer gemessen haben. 9

4 4.2 Temperaturskalen In der Temperaturmessung haben sich eine ganz Fülle von verschiedenen Temperaturskalen und deren Einheiten eingebürgert, die zum großen Teil auf historisch-empirischen Vergleichs- oder Fixpunkten basieren. In der Natur gibt es jedoch eine absolute Temperaturskala. Die Einheit dieser thermodynamischen Temperatur T ist das Kelvin mit dem Einheitenzeichen K und auch gleichzeitig die SI-Basiseinheit der Temperatur. 1 Kelvin ist demnach der 273,16te Teil der thermodynamischen Temperatur des Tripelpunktes von Wasser, bei dem dessen feste, flüssige und gasförmige Phase gleichzeitig vorliegen. Den Nullpunkt der Kelvinskala nennt man auch den absoluten Temperatur-Nullpunkt. Negative absolute Temperaturen kommen in der Natur nicht vor und sind daher bedeutungslos. Selbst eine Temperatur von exakt 0 K ist prinzipiell nicht erreichbar, was durch den dritten Hauptsatz der Thermodynamik ausgedrückt wird. Man kommt aber heute mit zum Teil sehr aufwändigen Verfahren sehr nahe an 0 K heran, nämlich bis ca K. In unserem täglichen eben ist die Celsius-Skala am weitesten verbreitet. Sie basiert auf zwei empirischen Fixpunkten, nämlich dem Gefrierpunkt von Wasser (0 C) und dem Siedepunkt von Wasser (100 C) jeweils bei Normaldruck (1013 mbar). Heutzutage bestimmen nach der modernen Definition jedoch nicht mehr die empirischen Temperaturen der historischen Fixpunkte die Celsius-Skala, sondern vielmehr die thermodynamische Temperatur der Kelvin-Skala nach folgender Vorschrift: F (9) T ( C) = T ( K) 273, 15 Hier zeigt sich, warum für ein ideales Gas der Druck- bzw. Volumenkoeffizient gerade 1/273,15 C beträgt und dass ein mit einem idealen Gas betriebenes Gasthermometer zur Darstellung der absoluten thermodynamischen Temperatur verwendet werden kann. Der Tripelpunkt von Wasser z. B. liegt mit der Vorschrift F (9) bei einer Temperatur von 0,01 C (bei einem Druck von ca. 6 mbar). Die Einheit Grad Celsius ( C) ist eine abgeleitete SI-Einheit. Differenzen auf der Celsius-Skala sind identisch mit Differenzen auf der Kelvin-Skala, was sich nach Formel F (9) auch zwingend ergibt. Temperaturdifferenzen werden üblicherweise in K angegeben. Manchmal findet man jedoch die Differenz zweier Celsius-Temperaturen auch in C; der Zahlenwert ist in beiden Fällen gleich. Eine weitere, in den USA immer noch übliche Temperaturangabe ist das Grad Fahrenheit ( F). Fahrenheit wählte als Nullpunkt (0 F) seiner Temperaturskala die tiefste Temperatur des strengen Winters 1708/1709 in seiner Heimatstadt Danzig. Er konnte danach diesen Fixpunkt mit Hilfe einer genau definierten Kältemischung aus Eis, Wasser und Salmiak oder Seesalz einigermaßen reproduzieren (ungefähr 17,8 C). Als zweiten und dritten Fixpunkt legte er 1714 den Gefrierpunkt des reinen Wassers bei 32 F und die Körpertemperatur eines gesunden Menschen bei 96 F fest. Der Nachteil dieser Skala bestand darin, dass insbesondere der untere und der obere Fixpunkt nach heutigen Maßstäben nicht hinreichend genau definiert sind. Heutzutage gibt es daher eine festgelegte Umrechnungsvorschrift zwischen F und C bzw. K: F (10) T ( F) = 1,8 T ( C) + 32 = 1,8 T ( K) 459, 67 Weitere, heute kaum noch gebräuchliche Temperaturangaben sind die Réaumur-, Rømer-, Delisle-, Rankine- oder Newton-Skala. 4.3 Thermometer Je nach zu messendem Temperaturbereich, Einsatzgebiet oder Genauigkeit können zur Temperaturmessung eine ganze Reihe von verschiedenen Geräten verwendet werden. Alle bedienen sich dabei der Temperaturabhängigkeit einer physikalischen Größe, wie z. B. der Volumenausdehnung. 10

5 4.3.1 Ausdehnungsthermometer Ein Ausdehnungsthermometer haben Sie bereits in Form des Gasthermometers kennen gelernt. Wenn Sie es so betreiben, dass der Druck des Gases immer konstant ist, können Sie über die Volumenausdehnung und den entsprechenden Ausdehnungskoeffizienten α, der ja für ein ideales Gas 1/273,15 C beträgt, die Temperatur messen. Sehr viel weiter verbreitet sind jedoch Flüssigkeitsthermometer, wie man sie zur Messung der Umgebungstemperatur oder auch zum Teil immer noch als Fieberthermometer verwendet (Abb. 3). Das Messprinzip basiert darauf, dass sich eine Flüssigkeit in der Regel mit wachsender Temperatur ausdehnt. Diese Flüssigkeit befindet sich in einer dünnen Kapillare. Proportional zur Temperaturänderung verändert sich das Volumen der Flüssigkeit, wodurch der Stand in der Kapillare steigt beziehungsweise sinkt. Die Grenzen werden durch die jeweiligen Eigenschaften des Materials gesetzt, zum Beispiel den Siedepunkt oder die Erstarrungstemperatur. Fehler können zum Beispiel durch thermische Nachwirkung des Glasröhrchens sowie nicht gleichmäßige Ausdehnung des Stoffes und der Kapillare über den gesamten Temperaturbereich verursacht werden. Abb. 3: Flüssigkeits-Ausdehnungsthermometer Problematisch sind auch Dichteanomalien, wie man sie beispielsweise von Wasser kennt. Wasser hat seine größte Dichte bei ca. 4 C, d. h. sowohl unterhalb als auch oberhalb von 4 C dehnt sich Wasser aus, was es als Thermometerflüssigkeit für diesen Temperaturbereich unbrauchbar macht. Daher verwendet man für solche Thermometer eher Alkohole oder auch Quecksilber. Auch Festkörper können als Ausdehnungsthermometer verwendet werden sind. Ein Beispiel sind sog. Bimetallstreifen, bei denen zwei Streifen unterschiedlicher Metalle fest miteinander verbunden werden. Durch ihre unterschiedlichen Ausdehnungskoeffizienten dehnen sie sich bei Temperaturveränderung verschieden stark aus, wodurch sich der Bimetallstreifen verbiegt. Dies wird z. B. als Thermoschalter im Bügeleisen ausgenutzt Thermoelemente Thermoelemente basieren auf dem Seebeck-Effekt, nach dem zwischen zwei Stellen eines eiters, die sich auf unterschiedlicher Temperatur befinden, eine Spannung auftritt, die zur Temperaturdifferenz proportional ist. Verbindet man zwei verschiedene eiter (z.b. Kupfer und Konstantan oder Nickel und Chrom usw.) durch jeweils eine ötstelle (Abb. 4) und bringt die ötstellen auf unterschiedliche Temperaturen, dann spricht man von einem Thermoelement. Je nach Temperaturdifferenz und verwendeten Metallen misst man Thermospannungen im Bereich von Mikro- bis Millivolt. Abb. 4: Thermoelement 11

6 Um damit nicht nur Temperaturdifferenzen, sondern absolute Werte der Temperatur messen zu können, bringt man eine der beiden ötstellen auf eine definierte Temperatur (meistens 0 C) und kann dann anhand der Thermospannung aus Tabellen die Temperatur der anderen ötstelle ablesen Widerstandsthermometer Widerstandsthermometer sind elektrische Bauteile, die die Temperaturabhängigkeit des elektrischen Widerstandes von der Temperatur ausnutzen. Ihre Vorteile bestehen darin, dass sie eine kleine Bauform haben und bereits die Temperatur in eine elektrische Größe überführen, so dass diese sehr leicht elektronisch dargestellt werden kann. Nahezu alle elektronischen Thermometer im Alltag mit Digitalanzeige verwenden solche Widerstandsthermometer. Man unterscheidet zwei grundsätzlich unterschiedliche Thermometertypen, nämlich die sog. NTCund die PTC-Widerstände: PTC steht für positiver Temperatur-Koeffizient und bezeichnet Materialien, deren Widerstand mit wachsender Temperatur ebenfalls ansteigt. Dieses ist bei Metallen der Fall, wie z. B. beim Platin, das am häufigsten als PTC-Widerstandsthermometer verwendet wird. NTC steht für negativer Temperatur-Koeffizient und bezeichnet Materialien, deren Widerstand mit wachsender Temperatur kleiner wird. Solch ein Verhalten findet man bei Halbleitern, die anders als bei PTC-Elementen allerdings einen stark nicht-linearen Zusammenhang zwischen Temperatur und Widerstand haben. 12

7 5. Aufgaben Versuchen Sie, die folgenden Aufgaben zu beantworten, und diskutieren Sie Ihre ösungsvorschläge mit Ihrem Assistenten im Kolloquium. 5.1 Welche Aussage trifft zu? Das Volumen eines idealen Gases werde isotherm verdoppelt. Dabei (A) (B) (C) (D) (E) wird der Druck verdoppelt und die Temperatur ändert sich nicht. wird der Druck halbiert und die Temperatur ändert sich nicht. bleibt der Druck konstant und die Temperatur ändert sich nicht. wird der Druck verdoppelt und die Temperatur vervierfacht. Keine der genannten Möglichkeiten trifft zu. 5.2 Im allgemeinen ändert sich bei steigender Temperatur der elektrische eitwert (bei vorgegebener Form eines eiters) bei Metallen und gebräuchlichem Halbleitermaterial wie folgt: Metalle Halbleiter (A) Zunahme Zunahme (B) Zunahme Abnahme (C) keine Änderung Zunahme (D) Abnahme Zunahme (E) Abnahme keine Änderung 5.3 Das Produkt p V entspricht dimensionsgemäß (hinsichtlich der Größenart) (A) (B) (C) (D) (E) einer Energie einer Dichte einer Wärmeleistung einer Temperatur einem Wirkungsgrad 13

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 12: Gasthermometer 1. Ziel des Versuchs In diesem Versuch soll die Temperaturmessung durch Druckmessung erlernt werden. ußerdem soll der absolute Nullpunkt des Thermometers bestimmt werden.

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Der zentrale Begriff der Thermodynamik ist die Temperatur. Bsp.: Menschlicher Temperatursinn - Eisen vs.

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Versuch C2: Gasthermometer

Versuch C2: Gasthermometer Physikalisch-chemisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!). Kurzbeschreibung In diesem Versuch werden

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und hermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - heorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und Messgenauigkeit

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Thermodynamik (Wärmelehre) I Die Temperatur

Thermodynamik (Wärmelehre) I Die Temperatur Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

SCHULUNG. Temperaturmesstechnik

SCHULUNG. Temperaturmesstechnik Technische Änderungen vorbehalten Fon +49 771 83160 Fax +49 771 831650 info@bb-sensors.com bb-sensors.com 1 / 12 Inhaltverzeichnis 1. Temperatursensoren... 3 2. Temperatursonden... 4 3. Temperatur... 5

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik für Nicht-Physikerinnen und Nicht-Physiker Prof. W. Meyer 5. Juni 2014 Wärmelehre Lernziele Alle Körper haben eine Temperatur Die Temperatur

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen 18a Temperatur 1 Thermodynamik Thermodynamik ist eine phänomenologische Wissenschaft Sie beschreibt die Wechselwirkung von Systemen mit ihrer Umgebung Aus der Erfahrung und durch zahllose Beobachtungen

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Technische Thermodynamik

Technische Thermodynamik Thermodynamik 1 Technische Thermodynamik 2. Semester Versuch 2 Thermodynamik Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik Prof. Dr. Regier / PhyTa Vera Bauer 02/2010 Thermodynamik

Mehr

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum Versuch: RG Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: E. Beyer Aktualisiert: am 01. 10. 2010 Bearbeitet: J. Kelling F. Lemke S. Majewsky M. Justus Reale Gase Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 12: Wärmelehre Dr. Daniel Bick 09. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. Dezember 2016 1 / 35 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

Vorbereitung: Temperaturskalen, Zustandsgrößen, ideale Gasgesetze, einfache Vorstellungen der kinetischen Gastheorie, Maxwell- Verteilung.

Vorbereitung: Temperaturskalen, Zustandsgrößen, ideale Gasgesetze, einfache Vorstellungen der kinetischen Gastheorie, Maxwell- Verteilung. 1 Ideales Gas Versuchsziele: Verständnis der Abhängigkeiten der thermodynamischen Zustandsgrößen beim idealen Gas; Kenntnis von Temperaturskalen und -messverfahren Vorbereitung: Temperaturskalen, Zustandsgrößen,

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Die Zustandsgleichung realer Gase

Die Zustandsgleichung realer Gase Die Zustandsgleichung realer Gase Grolik Benno, Kopp Joachim 2. Januar 2003 1 Grundlagen des Versuchs Der Zustand eines idealen Gases wird durch die drei elementaren Zustandsgrößen Druck p, Temperatur

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Messung der Körpertemperatur

Messung der Körpertemperatur Messung der Körpertemperatur Jahrgangsstufen Fach/Fächer Lernbereich Übergreifende Bildungsund Erziehungsziele Zeitrahmen Benötigtes Material 10 (Vorklasse) Technologie Wärmelehre Technische Bildung Alltagskompetenz

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 1 Thermodynamik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 13.09.2010 1 Allgemeines und Grundbegriffe Grundlegend für das nun folgende Kapitel Thermodynamik

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrbuch Physik - Gesamtband Sekundarstufe I

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrbuch Physik - Gesamtband Sekundarstufe I Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lehrbuch Physik - Gesamtband Sekundarstufe I Das komplette Material finden Sie hier: School-Scout.de #83653_S_259_312.fm Seite 260

Mehr

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung Aufgabenstellung: 1. Bestimmen Sie den Taupunkt. Berechnen Sie daraus die absolute und relative Luftfeuchtigkeit. 2. Schätzen Sie die Messunsicherheit ab! Stichworte zur Vorbereitung: Temperaturmessung,

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform und

Mehr

Grundpraktikum T4 Zustandsgleichung idealer Gase

Grundpraktikum T4 Zustandsgleichung idealer Gase Grundpraktikum T4 Zustandsgleichung idealer Gase Julien Kluge 4. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Luisa Esguerra Raum: 316 Messplatz: 2 INHALTSVERZEICHNIS

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind.

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind. 1 Versuch 220 Reale Gase 1. Aufgaben 1.1 Nehmen Sie ein Isothermennetz für Schwefelhexafluorid (SF 6 ) auf. Bestimmen Sie daraus die kritischen Daten, und berechnen Sie die Konstanten der Van-der-Waals-Gleichung.

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

Bestimmung des Spannungskoeffizienten eines Gases

Bestimmung des Spannungskoeffizienten eines Gases Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung.

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. Teilchenmodell Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. *Zwischen den Teilchen wirken anziehende bzw. abstoßende Kräfte.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Die kinetische Gastheorie beruht auf den folgenden drei Annahmen:

Die kinetische Gastheorie beruht auf den folgenden drei Annahmen: Physikalische Chemie Modul II Versuch: Reales Gas 20. Juli 2010 1 Einleitung Die kinetische Gastheorie beruht auf den folgenden drei Annahmen: 1. Das Gas besteht aus Molekülen der Masse m und dem Durchmesser

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wärmelehre Dr. Daniel Bick 13. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 13. Dezember 2017 1 / 36 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Brown sche Bewegung. Beobachtung von Robert Brown in den 1820er Jahren: Pollen in Wasser bewegen sich unter dem Mikroskop betrachtet zitterförmig.

Brown sche Bewegung. Beobachtung von Robert Brown in den 1820er Jahren: Pollen in Wasser bewegen sich unter dem Mikroskop betrachtet zitterförmig. Wärmelehre Brown sche Bewegung Beobachtung von Robert Brown in den 1820er Jahren: Pollen in Wasser bewegen sich unter dem Mikroskop betrachtet zitterförmig. Dieses Phänomen wurde als Brownsche Bewegung

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, ) Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung F Temperatur In der Wärmelehre lernen wir

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden.

Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Inhalt Themengebiet Beschreibung Millimeterpapier-Vorlage Versuch zum Temperaturverlauf

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Lösungsvorschlag Übung 1

Lösungsvorschlag Übung 1 Lösungsvorschlag Übung Aufgabe : Physikalische Einheiten a) Es existieren insgesamt sieben Basisgrössen im SI-System. Diese sind mit der zugehörigen physikalischen Einheit und dem Einheitenzeichen in der

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Einleitung in die Wärmelehre

Einleitung in die Wärmelehre Einleitung in die Wärmelehre Im ersten Teil der Experimentalphysik, Mechanik, haben wir die Grundlagen geschaffen, Bewegung von einzelnen Massepunkten und später von starren Körpern zu berechnen. Wir hatten

Mehr

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 1. Temperatur-Umrechnung (6 Punkte) a) Die tiefste natürliche Temperatur, die jemals auf der Erde gemessen wurde, beträgt 89.2 C (Wostok-Station in

Mehr

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Lennart Schmidt 08.09.2011 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Temperatur und Wärme............................ 3 1.2 0. und 1. Hauptsatz..............................

Mehr

Grundlagen. 2.1 Die wichtigsten Definitionen und Formeln

Grundlagen. 2.1 Die wichtigsten Definitionen und Formeln Grundlagen 2 In diesem Kapitel werden Aufgaben angegeben, die für das zweite Kapitel des Lehrbuchs relevant sind. Die wichtigsten Formeln werden zusammengefasst. Kurzfragen und Rechenaufgaben werden vorgestellt

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr