Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Größe: px
Ab Seite anzeigen:

Download "Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen"

Transkript

1 Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft: = Oberschicht, = Mittelschicht und = Unterschicht. Das nebenstehende Diagramm gibt an, wie stark diese Umverteilungen im Laufe von Jahren sind: 45% bleiben in der Oberschicht (Pfeil von kehrt zurück), 48% wandern von in die Mittelschicht usw. Zu einem gegeben Zeitunkt befinden sich 5% in der Oberschicht, 6% in der Mittelschicht und 5% in der Unterschicht. Wie ist die Verteilung nach Jahren, d.h. wie groß ist der Anteil der Oberschicht ( ), Mittelschicht ( ) bzw. Unterschicht ( ) dann? Dazu muss man folgende (lineare) Gleichungen berechnen: =,5,45 +,6,5 +,5, =,56 =,5,48 +,6,7 +,5,5 =,69 =,5,7 +,6,5 +,5,49 =,5 Man berechnet also jeweils das Produkt aus dem aktuellen Anteil der sozialen Schicht zu Beginn mal der Wechselwahrscheinlichkeit. Die Summe dieser drei Anteile ergibt den Prozentsatz nach Jahren. Diese drei linearen Gleichungen können auch komakt mit Hilfe einer Matrix ausgedrückt werden:

2 Eine Matrix ist ein rechteckiges Zahlenschema. In unserem Fall werden die Übergangswahrscheinlichkeiten in sie eingetragen. Man definiert die Multilikation zwischen einer Matrix mit n Zeilen und m Salten und einem Vektor mit m Komonenten als Vektor mit n Komonenten. Die i-te Komonente entsteht durch das Skalarrodukt des Vektors mit der i-ten Zeile. In unserem Beisiel sind m= und n= und es ergibt etwa das Skalarrodukt aus der. Zeile mit dem Vektor der Anfangsverteilung die. Komonente der Endverteilung (siehe farbliche Markierung in obiger Abbildung). Interessiert man sich für die Verteilung der sozialen Schichten nach weiteren Jahren, muss der Verteilungsvektor noch einmal mit der Übergangsmatrix multiliziert werden:,45,48,7,5,7,5,,56,6,5,69 =,66,49,5, Wiederholt man diesen Vorgang findet man in der Regel, dass sich eine sog. Grenzverteilung einstellt, ab der sich der Wert nicht mehr ändert: M g = g - und zwar unabhängig vom Startvektor! Hier gilt also, dass die Anwendung der Matrix (anderer Ausdruck für Multilikation mit der Matrix ) den Vektor nicht mehr ändert! Symbolisch: lim x n = g mit M x n n+. Die Verteilung g r stellt also den Endunkt der Zeitentwicklung dar und wird deshalb auch stationäre Verteilung der Übergangsmatrix genannt! Wie man sie systematisch bestimmen kann, werden wir gleich behandeln. Zuvor betrachten wir jedoch: Multilikation von Matrizen mit Matrizen Bisher haben wir nun den Fall Matrix mal Vektor betrachtet. Das Produkt einer Matrix mit einem Startvektor x r hat den Zustand zum nächsten Zeitschritt ergeben: M x und so weiter: M x. Diese letzte Gleichung kann man natürlich auch so schreiben: M ( M x ). Es stellen sich hier zwei zusammenhängende Fragen, nämlich ob man auch eine Matrix finden kann, die den Startvektor x r direkt in den Vektor x r überführt und zweitens, ob die Matrizen M in dem Ausdruck M ( M x ) auch multiliziert werden können. Schreiben wir den Ausdruck für eine x Matrix einfach in Komonenten aus (wir schreiben x x r = ): y M ( M x ) m xm + ym x m xm ym = y + ( xm + ym ) + m ( xm + ym ) x ( xm ym ) m ( xm ym ) = y m + mm mm + mm x r = ( M M ) x m mm mm mm y + + r Plural: Matrizen

3 Dieser Ausdruck (die große Matrix) sieht komliziert aus ist es aber gar nicht! Sie deuten wir als das Produkt aus M mit sich selbst (also M, srich M-Quadrat ). Es ist die gesucht Matrix, d.h. jene, die mit der Verteilung x r multiliziert direkt x r ergibt! Man definiert das Produkt von zwei Matrizen ganz allgemein: Sei A eine Matrix mit m Zeilen und n Salten und sei B eine Matrix mit n Zeilen und Salten. Dann definiert man das Produkt A B = C als die Matrix, deren Komonente c ij (d.h. i-te Zeile und j-te Salte) durch das Skalarrodukt aus der i-ten Zeile von A und der j- ten Salte von B entsteht. Die folgende Abbildung illustriert diese Rechenvorschrift noch einmal: A B = C, mit: Wir können nun einen neuen Blick auf unsere Grenzverteilung werfen! Wir haben gesehen, dass in der Regel die Verteilung x r n mit wachsendem n einen festen Wert g r annimmt, und zwar unabhängig von der Startverteilung! Diese Serie von Verteilungen entsteht aber durch n wiederholte Anwendung der Matrix M auf den Startvektor, d.h. M x n. Zu der Grenzverteilung muss also eine Grenzmatrix lim M n = G gehören, für die G x = g gilt! Diese Gleichung sieht seltsam aus. Wie kann eine Matrix (G) einen beliebigen Startvektor auf den festen Vektor g r abbilden? Offensichtlich müssen alle Salten identisch sein! In einem einfachen x Beisiel: a b a x b y a( x = b( x + y a = + y ) b Wir betrachten hier gerade Vorgänge, bei denen alle Zustände in alle anderen übergehen können. Unsere Matrizen sind also quadratisch, d.h. haben genauso viele Zeilen wie Salten!

4 Die Summe aus x und y ist ( Wahrscheinlichkeitsbedingung ) und die identischen Salten der Grenzmatrix sind also identisch mit der Grenzverteilung g r! Betrachten wir ein numerisches Beisiel:,7,,7,,7,,5,5,5,5,5,5 4,64 =,6,68 =,7,656 =,744,6,4,6,8,64,76 Mit wachsender Potenz nähert sich diese Matrix tatsächlich einer Grenzmatrix an, deren Saltenvektoren identisch sind! Multiliziert man einen beliebigen Vektor mit dieser Matrix, dessen Komonenten die Summe haben, ergibt sich als Ergebnis immer dieser Saltenvektor! Dasselbe Beisiel wird uns auch im nächsten Abschnitt begegnen: Berechnung einer stationären Verteilung Natürlich kann man sich auch sofort auf die Suche nach einem Vektor machen, der die Gleichung M x erfüllt. Es handelt sich schließlich um ein lineares Gleichungssystem. Be- trachten wir ein Beisiel mit einer x Übergangsmatrix: Gesucht wird der Vektor (x, x ), für den gilt:,7,5 x x =,,5 x x,7x,x +,5x +,5x,x,x +,5x,5x = = x =,6 x Man sieht, dass diese Gleichungen nicht unabhängig sind: sie sind jeweils das (-)-fache von einander. Sie können also die Werte für x und x noch nicht eindeutig festlegen. Allerdings wissen wir zusätzlich, dass x + x = gilt. Zusammen also: x x,65 =,75 Dieser Vektor ist also der stationäre Vektor dieser Übergangsmatrix. Gleichzeitig handelt es sich um den Grenzvektor bzw. die Grenzverteilung g r dieser Übergangsmatrix für beliebige Startvektoren (siehe Beisiel oben).

5 Noch einige Anmerkungen und Sezialfälle o Eine Verteilung für die M x gilt nennt man stationäre Verteilung (bzw. Eigenvektor der Matrix M zum Eigenwert ). Allgemein nennt man nämlich einen Vektor x, der die Gleichung M x = λ x (mit λ eineeellen Zahl) erfüllt, einen Eigenvektor der Matrix M zum Eigenwert λ. o Wiederholt man die Anwendung einer Übergangsmatrix auf einen Vektor kann sich unabhängig vom Startvektor eine stabile Verteilung ergeben man nennt sie Grenzverteilung. Symbolisch: M x n n+ und lim x n = g. Für diesen Vektor gilt also: M g = g. Die Grenzverteilung ist also ebenfalls eine stationäre Verteilung. Da die wiederholte Anwendung des Vektors auch als Anwendung des Startvektors auf das n- fache Produkt der Übergangsmatrix ausgedrückt werden kann, gilt ebenso: lim M n = G, mit G der Grenzmatrix, die die BedingungG x = g erfüllt. Dies bedeutet, dass ein beliebiger Startvektor auf den Grenzvektor abgebildet wird! Allerdings muss dieser Grenzwert nicht immer existieren bzw. nicht jede Übergangsmatrix besitzt eine Grenzmatrix. Es gilt der mathematische Satz: Wenn in irgendeiner Potenz der Übergangsmatrix M alle Elemente von Null verschieden sind, existiert die Grenzmatrix und besteht aus lauter gleichen Salten. o Wie oben schon erwähnt, besitzt nicht jede Übergangsmatrix eine Grenzmatrix bzw. eine zugehörige Grenzverteilung. Beisiel:. Diese Matrix vertauscht abwechselnd die Komonenten der Startvektoren und ihre Potenzen haben ebenfalls keinen Grenzwert!,5 o Die obige Matrix hat mit dem Vektor trotzdem eine stationäre Verteilung! Wir sehen also: jede Grenzverteilung ist stationär, aber nicht jede stationäre Ver-,5 teilung ist Grenzverteilung. Beide Begriffe können sinnvoll unterschieden werden. Das sieht man auch am nächsten Beisiel: o Für die Einheitsmatrix ist jeder Vektor stationär, aber ein beliebiger Startvektor wird nicht auf eine feste Grenzverteilung abgebildet, sondern auf sich selbst! Gleichzeitig handelt es sich um keine Grenzverteilung, da die Salten verschieden sind.

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

DynaTraffic Einstiegsaufgaben

DynaTraffic Einstiegsaufgaben DynaTraffic Einstiegsaufgaben Bemerkung: Falls nichts anderes erwähnt, sind die Standard-Einstellungen zu einer Verkehrssituation von DynaTraffic zu verwenden. 1. Interpretation von Verkehrssituation und

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Web Algorithmen. Ranking. Dr. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik. Wintersemester 2008/09

Web Algorithmen. Ranking. Dr. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik. Wintersemester 2008/09 Web Algorithmen Ranking Dr. Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Wintersemester 2008/09 M.Brinkmeier (TU Ilmenau) Web Algorithmen Wintersemester 2008/09

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung)

Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung) Hochschule München, FK 03 SS 2014 Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung) Zulassung geprüft: (Grundlagenteil) Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt MATHEMATIK IN KUNST UND NATUR Fibonacci Zahlen und der goldene Schnitt BEGLEITVORTRAG ZUR AUSSTELLUNG MATHEMATIK ZUM ANFASSEN DES MATHEMATIKUMS GIEßEN AN DER HOCHSCHULE PFORZHEIM Prof. Dr. Kirsten Wüst

Mehr

Übergangsmatrizen. October 27, 2014

Übergangsmatrizen. October 27, 2014 Übergangsmatrizen October 27, 214 Der Begriff Übergangsmatrix wird (unter anderem) für die Matrizen, die das Wechselverhalten von z.b. Käufern oder Wählern darstellen. Bei Wikipedia wird eine Übergangsmatrix

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Microsoft Excel 2010 Matrix-Funktionen

Microsoft Excel 2010 Matrix-Funktionen Hochschulrechenzentrum Justus-Liebig-Universität Gießen Microsoft Excel 2010 Matrix-Funktionen Matrix-Funktionen in Excel 2010 Seite 1 von 7 Inhaltsverzeichnis Einleitung... 2 Integrierte Matrixfunktionen...

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie1 Aufgabe 1.1 Summen Schon bei der Behandlung linearer Gleichungen

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Excel. Funktionen professionell einsetzen

Excel. Funktionen professionell einsetzen Excel Funktionen professionell einsetzen Verlag: BILDNER Verlag GmbH Bahnhofstraße 8 94032 Passau http://www.bildner-verlag.de info@bildner-verlag.de Tel.: +49 851-6700 Fax: +49 851-6624 ISBN: 978-3-8328-0080-2

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr