2 Darstellung von Zahlen und Zeichen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2 Darstellung von Zahlen und Zeichen"

Transkript

1 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f (X ). Beispiele: Berechnungen: Y aus X berechnen; z.b. X = zwei Vektoren, Y = Skalarprodukt Dokument drucken: X = Dokument; Y = Befehle/Daten, die den Drucker dazu bringen, ein Dokument zu drucken Rastern von Grafiken: X = Repräsentation eines Objekts; Y = Farbintensitätswerte von Pixeln Die Art und Weise, wie diese Transformationen durchgeführt werden, ist durch die Programme festgelegt, die vom Prozessor ausgeführt werden: Eingabe X Programm Prozessor Ausgabe Y X und Y sind Datenstrukturen (Skalare, Vektoren, Matrizen oder sonstige Zusammenfassungen), d.h. Ansammlungen von Daten. Als Datentypen werden Zahlen oder Zeichen verwendet. 2.1 Analoge und digitale Darstellung von Werten Digitale Darstellung ) Verwendung von Binärzahlen

2 8 2 Darstellung von Zahlen und Zeichen 2.2 Festkommazahlen Festkommazahlen sind Zahlen, bei denen das Komma an einer zuvor festgelegten/vereinbarten Stelle steht. Vorzeichenlose Festkommazahlen Vorzeichenlose Festkommazahlen haben kein Vorzeichen, d.h. sie sind stets positiv. Der Wert v (v = value) einer vorzeichenlosen Festkommazahl ergibt sich zu: v =(a n 1 b n a 1 b 1 + a b ) b i n ist die Stellenzahl, d.h. die maximale Menge an Ziffern, mit denen die Zahl dargestellt werden kann. b ist die Basis des Zahlensystems, z.b. 1 für das system (Ziffern...9) oder 2 für Binärzahlen. Ziffern an der Stelle j haben die Wertigkeit b j. Die Koffizienten a j sind die Ziffern an den Stellen j. Die Werte der Ziffern liegen im Bereich...(b 1) und geben an, wie oft die Wertigkeit der jeweiligen Stelle zum Wert der Zahl beiträgt. Der Wert von i legt die Position des Kommas fest: i =: Dieser Fall ist der Normalfall: Durch Multiplikation mit b i = b =1 bleibt v = a n 1 b n a 1 b 1 + a b. Das Komma steht hinter der Einer-Stelle und wird weggelassen. Es werden ganze Zahlen mit den Werten, 1,..., b n 1 dargestellt. i > : Durch Multiplikation mit b i können größere Zahlen dargestellt werden, jedoch auf Kosten geringerer Genauigkeit. Die Ziffern der Zahl werden um i Stellen nach links geschoben, die frei werdenden Positionen werden mit Nullen aufgefüllt. Das Komma wird weggelassen. Darstellungsbeispiel einer Festkommazahl für n = 8 und i = 3: xxxxxxxx. Die Zeichen x stehen dabei jeweils für eine der Ziffern a n 1... a. i < : Da i <, entspricht die Multiplikation mit b i einer Division durch b i, d.h. das (nach der Einer-Stelle implizit stehende) Komma wird um i Stellen nach links geschoben. Die Genauigkeit erhöht sich auf Kosten der größtmöglich darstellbaren Zahl. Darstellungsbeispiel für n =8und i = 3: xxxxx,xxx. Im folgenden werden nur noch zahlen (b = 1) und Binärzahlen (b = 2) betrachtet.

3 2.2 Festkommazahlen 81 Nachfolgender Zahlenring zeigt die Zuordnung von Binär- zu zahlen für diese Kodierung: Richtung steigender Werte Die Darstellung zeigt: Bei Binärwerten tritt ein Überlauf auf, wenn sich der Wert des höherwertigsten Bits, auch MSB (most significant bit) genannt, ändert Die Richtung steigender Werte ist bei beiden Kodierungen gleich; Beispiel: = = 11 2

4 82 2 Darstellung von Zahlen und Zeichen Aufgaben Die folgenden Aufgaben betrachten Binärzahlen, d.h. b =2. a) Welches ist die kleinste darstellbare vorzeichenlose Festkommazahl? b) Wieviele unterschiedliche vorzeichenlose Festkommazahlen können mit n Bit dargestellt werden? c) Geben Sie für i =den Wert der größten vorzeichenlosen Festkommazahl in Abhängigkeit von n an. d) Geben Sie für n =8und i =2den Wert der größten vorzeichenlosen Festkommazahl an. e) Betrachten Sie den Zahlenring. Wie kann man einen Überlauf von vorzeichenlosen Zahlen feststellen? f) Sind alle Abstände vorzeichenloser Binärzahlen zum nächst kleineren und nächst größeren Nachbarn gleich weit entfernt? Skizzieren Sie für i = 2 und n = 3die entsprechenden Werte auf dem Zahlenstrahl.

5 2.2 Festkommazahlen 83 Im Folgenden gilt i =. g) Wandeln Sie für n =8folgende zahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos h) Berechnen Sie = 3 im Binärsystem, n =8. i) Berechnen Sie in vorzeicher Binärkodierung, n =8.

6 84 2 Darstellung von Zahlen und Zeichen T j) Berechnen Sie in vorzeichenloser Binärkodierung, n =8. k) Wandeln Sie für n = 6 und i = 3 folgende zahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos,125 1,75 3,375 5 T l) Geben Sie für n =6und i =3den Wert der größten vorzeichenlosen Festkommazahl an.

7 2.2 Festkommazahlen 85 T m) Wandeln Sie für n = 8 und i = folgende zahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos T n) Wandeln Sie für n = 6 und i = 3 folgende zahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos,375 7, ,5 17,625

8 86 2 Darstellung von Zahlen und Zeichen Vorzeichenbehaftete Festkommazahlen Es gibt verschiedene Möglichkeiten, binäre vorzeichenbehaftete Festkommazahlen darzustellen: Vorzeichen und Betrag Einer-Komplement Zweier-Komplement Vorzeichen und Betrag Bei dieser Darstellung werden Vorzeichen und Betrag der Zahl separat abgespeichert: Das Vorzeichen wird repräsentiert durch das höherwertigste Bit: Hat das Bit den Wert, ist die Zahl positiv, hat das Bit den Wert 1, ist die Zahl negativ. Der Betrag der Zahl wird durch die restlichen Bits dargestellt. Ob eine Zahl positiv oder negativ ist, kann direkt am MSB abgelesen werden. Zur Negation einer Zahl muss nur das höherwertigste Bit geändert werden. Ein Problem bei dieser Darstellung ist die doppelte Null:... 2 ) ) Nachfolgende Abbildung zeigt für n =4die Zuodnung von Binär- zu zahlen. Für positive Zahlen ist die Richtung steigender Werte für Binär- und zahlen die selbe. Für negative Zahlen ist die Richtung jedoch unterschiedlich; Beispiel: = : Bewegung im Uhrzeigersinn = 1 1 : Bewegung gegen den Uhrzeigersinn Ergebnis falsch: 1 1 6= 111 2

9 2.2 Festkommazahlen negativ positiv Aufgaben a) Welche Auswirkungen hat es, dass für negative Zahlen die Richtung steigender Werte nicht übereinstimmt? b) Ist der Wertebereich symmetrisch? Begründung!

10 88 2 Darstellung von Zahlen und Zeichen c) Geben Sie den Wertebereich für i =in Abhängigkeit von n an. d) Kodieren Sie für n =8und i =die folgenden Zahlen binär in der Darstellung Vorzeichen und Betrag. Binär Vorzeichen/Betrag -1 2 e) Kodieren Sie für n = 6 und i = 2 die folgenden Zahlen in der Darstellung Vorzeichen und Betrag. Binär Vorzeichen/Betrag -2,25 5,5 T f) Kodieren Sie für n =8und i =die folgenden Zahlen binär in der Darstellung Vorzeichen und Betrag. Binär Vorzeichen/Betrag

11 2.2 Festkommazahlen 89 T g) Kodieren Sie für n = 6 und i = 2 die folgenden Zahlen in der Darstellung Vorzeichen und Betrag. Binär Vorzeichen/Betrag -3,75 -,5 7,25

12 9 2 Darstellung von Zahlen und Zeichen Einer-Komplement Bei dieser Darstellung werden zur Negierung einer Zahl alle Bits invertiert. Um eine eindeutige Unterscheidung zwischen positiven und negativen Zahlen zu gewährleisten, ist der Betrag der Zahlen auf 2 n 1 1 beschränkt. Dadurch kann das Vorzeichen der Zahl wieder direkt am MSB abgelesen werden ( ) positiv; 1 ) negativ). Der Vorteil dieser Darstellung im Vergleich der Darstellung Vorzeichen und Betrag liegt darin, dass die Kodierung der negativen Zahlen in derselben Richtung erfolgt wie die Kodierung der positiven Zahlen, so dass positive und negative Zahlen auf die gleiche Art und Weise addiert (bzw. subtrahiert) werden können negativ positiv

13 2.2 Festkommazahlen 91 Aufgaben a) Geben Sie den Wertebereich der Einer-Komplement-Darstellung für i = in Abhängigkeit von n an. b) Ist der Wertebereich asymmetrisch? c) Kodieren Sie für n =8und i =die folgenden Zahlen binär im Einer-Komplement. Binär Einer-Kompl d) Kodieren Sie für n = 6 und i = 2 die folgenden Zahlen im Einer-Komplement. Binär Einer-Kompl. -2,25 5,5

14 92 2 Darstellung von Zahlen und Zeichen T e) Kodieren Sie für n =8und i =die folgenden Zahlen binär im Einer-Komplement. Binär Einer-Kompl T f) Kodieren Sie für n = 6und i = 2 die folgenden Zahlen binär im Einer-Komplement. Binär Einer-Kompl. -3,75 -,5 7,25 g) Zeigen Sie an einem Beispiel, wie sich bei dieser Kodierung zur Addition von Binärzahlen derselbe Algorithmus verwendet lässt wie zur Addition von zahlen sowohl bei positiven als auch bei negativen Werten. h) Wann gibt es bei Verwendung der Einer-Komplement-Kodierung Probleme bei der Addition?

15 2.2 Festkommazahlen 93 i) Wie könnte man das Problem lösen?

16 94 2 Darstellung von Zahlen und Zeichen Zweier-Komplement Beim Zweier-Komplement wird zunächst das Einer-Komplement gebildet und dann noch binär der Wert 1 addiert. Auf diese Weise wird die doppelte Null vermieden. Der Wertebereich wird asymmetrisch, was jedoch kein Problem darstellt. Berechnungen können in dieser Kodierung mit demselben Algorithmus durchgeführt werden wie im system. Aus diesem Grund werden vorzeichenbehaftete Festkomma-Zahlen in der Regel im Zweier-Komplement kodiert negativ positiv a) Kodieren Sie für n =8und i =die folgenden Zahlen binär im Zweier-Komplement. Binär Vorzeichen/Betrag -1 2

17 2.2 Festkommazahlen 95 b) Kodieren Sie für n = 6 und i = 2 die folgenden Zahlen im Zweier-Komplement. Binär Vorzeichen/Betrag -2,25 5,5 T c) Kodieren Sie für n =8und i =die folgenden Zahlen binär im Zweier-Komplement. Binär Einer-Kompl T d) Kodieren Sie für n = 6 und i = 2 die folgenden Zahlen binär im Zweier- Komplement. Binär Einer-Kompl. -3,75 -,5 7,25

18 96 2 Darstellung von Zahlen und Zeichen e) Wie lässt sich ein Überlauf von Zahlen feststellen, die im Zweier-Komplement kodiert sind? f) Berechnen Sie im Zweier-Komplement.

19 2.2 Festkommazahlen 97 T g) Berechnen Sie im Zweier-Komplement.

20 98 2 Darstellung von Zahlen und Zeichen 2.3 Gleitkommazahlen nach IEEE 754 Durch die fest definierte Kommastelle sind bei Festkommazahlen die Abstände zwischen den einzelnen Zahlenwerten äquidistant. Aus diesem Grund (und aufgrund der endlichen Anzahl an Stellen n) können mit Festkommazahlen nicht gleichzeitig sehr große Zahlen und sehr kleine Zahlen dargestellt werden. Bei Gleitkommazahlen ist diese Einschränkung aufgehoben. Die Abstände zwischen den einzelnen Zahlenwerten sind um den Wert herum sehr klein. Für große Zahlen werden die Abstände sehr groß, wie in nachstehender Grafik skizziert. Erreicht wird diese Eigenschaft dadurch, dass die Position des Kommas nicht festgelegt ist, sondern in der Zahl durch Angabe eines Exponenten e definiert wird. Der Exponent legt fest, um wieviel die Kommastelle nach links oder rechts verschoben werden muss. Gleitkommazahlen werden wie folgt kodiert: s e f Bei 32 Bit breiten Gleitkommazahlen (einfache Genauigkeit) gilt die Aufteilung s = 1 Bit e = 8 Bit f = 23 Bit, bei 64 Bit breiten Gleitkommazahlen (doppelte Genauigkeit) gilt die Aufteilung s = 1 Bit e = 11 Bit f = 52 Bit. Als Wert ergibt sich für für normalisierte Gleitkommazahlen (Normalfall) v =( 1) s 1,f 2 e K, für de-normalisierte Gleitkommazahlen (Spezialfall) v =( 1) s,f 2 1 K.

21 2.3 Gleitkommazahlen nach IEEE Die Konstante K hat bei einfacher Genauigkeit (32 Bit) den Wert K = 127, bei doppelter Genauigkeit (64 Bit) den Wert K = 123. Eine Gleitkommazahl gilt als normalisiert, wenn beim Exponenten e weder alle Bits gesetzt noch alle Bits gelöscht sind, d.h. < e < 255 bei 32 Bit < e < 247 bei 64 Bit. Eine denormalisierte Gleitkommazahl liegt vor, wenn e =und gleichzeitig f >. Spezialfälle: : e = f = ±1: s: +1 ); 1 ) 1 e: alle Bits gesetzt ) 255 bei 32 Bit, 247 bei 64 Bit f: alle Bits NaN (Not a Number) e: alle Bits gesetzt ) 255 bei 32 Bit, 247 bei 64 Bit f: >

22 1 2 Darstellung von Zahlen und Zeichen Diese Seite ist absichtlich leer.

23 2.3 Gleitkommazahlen nach IEEE Diese Seite ist absichtlich leer.

24 12 2 Darstellung von Zahlen und Zeichen Aufgaben Format von Gleitkommazahlen a) Geben Sie das Format von 32 Bit und 64 Bit Gleitkommazahlen an. b) Wie berechnet sich der Wert einer 32 bzw. 64 Bit breiten normalisierten Gleitkommazahl aus ihrem Bitmuster? Geben Sie den Wert der Konstanten K an! c) In welchem Bereich liegt e bei normalisierter Zahldarstellung? d) Wie wird die Zahl. dargestellt in Bezug auf s, e and f?

25 2.3 Gleitkommazahlen nach IEEE e) Was ist eine denormalisierte Gleitkommazahl, wie wird sie kodiert und wie berechnet sich ihr Wert? f) Welchen Nutzen haben denormalisierte Gleitkommazahlen? g) Wie kodiert man die Gleitkommazahl unendlich? h) Mit welchen Werten von e und f wird ausgesagt, dass es sich um keine Zahl (NaN = not a number) handelt? i) Geben Sie ein Beispiel an, wie es zu einem Ergebnis kommen kann, das keine Zahl ist.

26 14 2 Darstellung von Zahlen und Zeichen Rechnen mit Gleitkommazahlen a) Kodieren Sie 3,625 und 13,5 als 32 Bit breite Gleitkommazahlen und tragen Sie das Bitmuster in die angegebene Tabelle ein. 3,625: 13,5:

27 2.3 Gleitkommazahlen nach IEEE b) Berechnen Sie 3, ,5 im Binärsystem bei Verwendung einer 32 Bit Gleitkommakodierung. Bitmuster des Ergebnisses:

28 16 2 Darstellung von Zahlen und Zeichen c) Bestimmen Sie aus dem Ergebnis-Bitmuster das Ergebnis der Addition 3, ,5 T d) Kodieren Sie 1,75 und 5,125 als 64 Bit breite Gleitkommazahlen und tragen Sie das Bitmuster in die angegebene Tabelle ein. 1,75 5,125

29 2.3 Gleitkommazahlen nach IEEE T e) Berechnen Sie 1,75 + 5,125 im Binärsystem bei Verwendung einer 64 Bit Gleitkommakodierung. Bitmuster des Ergebnisses:

30 18 2 Darstellung von Zahlen und Zeichen T f) Bestimmen Sie aus dem Ergebnis-Bitmuster das Ergebnis der Addition 1,75 + 5,125

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen 2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

g) Wandeln Sie folgende Dezimalzahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos

g) Wandeln Sie folgende Dezimalzahlen in vorzeichenlose Binärzahlen um. Binär vorzeichenlos 12 2 Darstellung von Zahlen und Zeichen Im Folgenden gilt n 8und r g) Wandeln Sie folgende zahlen in vorzeichenlose zahlen um vorzeichenlos 75 127 128 255 256 h) Wandeln Sie folgende hexadezimale Zahlen

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, stiller@ifi.uzh.ch Fabio Hecht, Telefon:

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

a) Aus welchen logischen Grundeinheiten besteht ein Prozessor? Einheit zur Adress-Übersetzung/Virtueller Speicher

a) Aus welchen logischen Grundeinheiten besteht ein Prozessor? Einheit zur Adress-Übersetzung/Virtueller Speicher 85 Prozessor a) Aus welchen logischen Grundeinheiten besteht ein Prozessor? Rechenwerk/ALU Registerblock Steuerwerk/Leitwerk Befehlsregister Befehlszähler Flags Bus-Treiber-Logik Cache Einheit zur Adress-Übersetzung/Virtueller

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

1 Aufgaben Wie funktioniert ein Computer. a) Welche Spannungen werden von PC-Netzteilen bereitgestellt? 12 V

1 Aufgaben Wie funktioniert ein Computer. a) Welche Spannungen werden von PC-Netzteilen bereitgestellt? 12 V 81 1 Aufgaben Wie funktioniert ein Computer Netzteil a) Welche Spannungen werden von PCNetzteilen bereitgestellt? 3,3 V, 5 V, 12 V, 5 V, 12W b) Warum können PCNetzteile hohe Leistungen liefern, obwohl

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 1 AM 04.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Informatik I: Abschnitt 7

Informatik I: Abschnitt 7 Informatik I: Abschnitt 7 Inhalt: 7. Interne Informationsdarstellung 7.1 Ganzzahlige Datentypen 7.2 Gleitkomma-Datentypen Die Folien basieren zum Teil auf einen Foliensatz von R. Großmann und T. Wiedemann

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 1 am 05.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Informatik I Übung, Woche 41

Informatik I Übung, Woche 41 Giuseppe Accaputo 8. Oktober, 2015 Plan für heute 1. Fragen & Nachbesprechung Übung 3 2. Zusammenfassung der bisherigen Vorlesungsslides 3. Tipps zur Übung 4 Informatik 1 (D-BAUG) Giuseppe Accaputo 2 Nachbesprechung

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm 5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr