Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert"

Transkript

1 Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert 2

2 Repräsentation von Information: Bits und Bitfolgen Bits ❿ ❿ ❿ kleinstmögliche Informationseinheit, die zwei Möglichkeiten zulässt ja oder nein, hell oder dunkel, gross oder klein Zur Darstellung reicht ein Code mit zwei Zeichen, meist 0 und 1 technisch realisiert durch elektrische Ladung (0 = ungeladen, 1 = geladen), oder elektrische Spannungen (0 = 0 Volt, 1 = 5 Volt) Bitfolgen ❿ Für Informationen mit mehr als zwei Möglichkeiten ❿ Bei drei oder vier Möglichkeiten benötigt man 2 Bits, für 5 bis 8 Möglichkeiten benötigt man 3 Bits usw. ❿ Beispiel: Himmelsrichtungen 00 = Süd, 01 = West, 10 = Nord, 11 = Ost ❿ Bitfolgen lassen sich als Zahlen im Dualsystem interpretieren ❿ Es gilt: Es gibt genau 2 N Bitfolgen der Länge N 3 Binärziffern 2 0 = = = = = = = = = = =

3 Binärdarstellung positiver ganzer Zahlen Will man nur positive Zahlen darstellen, so kann man mit N Bits 2 N Zahlen, d.h. den Bereich der Zahlen von 0 bis 2 N - 1 darstellen Beispiel: N = 3: 000 = = = = = = = = 7 Beispiel: N = 4: 0000 = = = = = = = = = = = = = = = = 15 5 Binärdarstellung positiver ganzer Zahlen Will man nur positive Zahlen darstellen, so kann man mit N Bits 2 N Zahlen, d.h. den Bereich der Zahlen von 0 bis 2 N - 1 darstellen Die einzelnen Ziffern einer n-stelligen Zahl sind die Koeffizienten der Potenzen der Basis: ❿ Beispiel: Dezimalzahlen 4711 = 4 * * * * 10 0 ❿ 4 * * * * 1 Beispiel: Binärzahlen = 1 * * * * * * * * 1 = Darstellung: Die tiefgestellt Zahl gibt die Basis der Zahl an 6

4 Verfahren zur Umwandlung in Binärdarstellung Bei fortgesetztem Dividieren durch 2 ergeben die Reste nacheinander die Ziffern der Darstellung der ursprünglichen Zahl z im Zweiersystem Beispiel: Die Umwandlung der Dezimalzahl 2001 ins Binärsystem ergibt z z div 2 z mod Analoges gilt für die Umwandlung in andere Zahlensysteme, z.b. ❿ Umwandlung ins Oktalsystem: fortlaufendes Dividieren durch 8 ❿ Umwandlung ins Haxadezimalsystem: fortlaufendes Dividieren durch 16 7 Umwandlung in das Binärsystem: Hintergrund Bei der Division einer natürlichen Zahl durch eine andere natürliche Zahl d, so erhalten wir einen Quotienten q und einen Rest r: z = q * d + r (wobei 0 < r < d) Sei div die ganzzahlige Division und mod die Berechnung des Rest der Division (Beispiel: 35 div 8 = 4 und 35 mod 8 = 3) Dann gilt z = (z div d) * d + (z mod d) Dies nutzen wir aus für die Umwandlung einer natürlichen Zahl z in die entsprechende Binärzahl b n b n-1...b 1 b o z = (b n b n-1...b 1 b o ) 2 = b n * 2 n +b n-1 * 2 n b 1 * 2 1 +b o = (b n * 2 n-1 +b n-1 * 2 n b 1 * 2 0 )* 2 + b o = (b n b n-1...b 1 ) 2 * 2 + b o Somit ist die letzte Ziffer b 0 genau der Rest, der beim Dividieren durch 2 entsteht (z mod 2) und die restlichen Ziffern b n b n-1...b 1 muss sich als Binärdarstellung von z div 2 ergeben. 8

5 Oktal- und Hexadezimalsystem Neben dem Dezimal- und Binärsystem sind in der Informatik in Gebrauch Oktalsystem - Zahlen zur Basis 8 ❿ Verwendung der Ziffern 0 bis 7 ❿ Die einzelnen Ziffern einer mehrstelligen Oktalzahl sind Koeffizienten der Potenzen zur Basis 8 ❿ Beispiel = 4 * * * * 8 0 = (2505) 10 Hexadezimalsystem - Zahlen zur Basis 16 ❿ Verwendung der Ziffern 0 bis 9 und der Buchstaben A bis F (für 10 bis 15) ❿ Die einzelnen Ziffern einer mehrstelligen Hexadezimalzahl sind Koeffizienten der Potenzen zur Basis 16 ❿ Beispiel 2C73 16 = 2 * * * * 16 0 = (11379) 10 9 Umrechnung Binär- in Hexadezimal- und Oktalzahlen Die Bedeutung von Oktal- und Hexadezimalsystem liegt darin, dass man zwischen Binärsystem und Oktal- bzw. Hexadezimalsystem einfach umrechnen kann Der einfachen Lesbarkeit wegen gruppiert man grosse Bitfolgen in 4er-Gruppen und erhält die Hexadezimaldarstellung Jeder Gruppe gibt man einen Namen unter Verwendung der Ziffern 1 bis 9 und der Buchstaben A bis F: 0000 = = = = C 0001 = = = = D 0010 = = = A 1110 = E 0011 = = = B 1111 = F Die Bitfolge lässt sich dann kompakter schreiben als 4 F C 6 C 16 Analog kann man Dreiergruppen von Binärziffern zusammenfassen und erhält daraus eine Oktalzahl 10

6 Übungsaufgaben Wandeln Sie folgende Binärzahlen in Dezimalzahlen um 101 = = = = = 195 Wandeln Sie folgende Dezimalzahlen in Binärzahlen, Oktalzahlen (Basis 8) und Hexadezimalzahlen (Basis 16) um 101 = = 145 = = = 377 = FF 167 = = 247 = A = = = 11E6 256 = = 400 = Zeichendarstellung: ASCII Binärzahlen werden zur Informationsspeicherung verwendet. Information, die man mit der Tastatur eintippt wird als Text (Zeichenfolge) interpretiert. Jedes Zeichen wird als Bitfolge codiert Die ASCII-Codierung benutzt 7 Bits eines Byte (2 7 = 128 Möglichkeiten) zur Darstellung eines Zeichens Prinzipien: ❿ die Kleinbuchstaben sind in der alphabetischen Reihenfolgen durchnumeriert (ASCII 97 = a,... ASCII 122 = z ) ❿ die Grossbuchstaben sind in der alphabetischen Reihenfolgen durchnumeriert (ASCII 65 = A,... ASCII 90 = Z ) ❿ die Ziffern 0 bis 9 stehen in der natürlich Reihenfolge (ASCII 48 = 0,... ASCII 57 = 9 ) ❿ Die Zeichen ASCII 0 bis ASCII 31 sowie ASCII 127 dienen Steuerungszwecken. Eingabe über Tastatur durch Drücken der Steuerungstaste ( Strg bzw Ctrl ) ASCII 1 = Ctrl-A,..., ASCII 26 = Ctrl-Z ASCII (American Standard Code for Information Exchange) 12

7 ASCII-Tabelle 13 Informationsdarstellung: Text - ASCII Fortlaufenden Text kodiert man einfach durch aneinanderreihen der Codes einzelner Zeichen incl. des Codes für Lehrzeichen (Zeichenkette = string) ❿ Beispiel: Knut liest wird kodiert als ASCII-Code Bitfolge Hexcode 4B 6E C Bemerkung: Wenn Sie jemand auffordert, ihm ein Dokument in ASCII zu schicken, so meint er in der Regel: Schicken Sie mir den reinen Text ohne Formatanweisungen. 14

8 ASCII-Erweiterungen Das achte Bit eines Byte wurde bei ASCII früher als Kontrollbit für die Datenübertragung genutzt: Es wurde auf 0 oder 1 gesetzt, damit die Anzahl der 1en immer gerade war (even parity). Trat bei der Datenübertragung ein kleiner Fehler auf (1 Bit gedreht), wurde dies erkannt Wegen verbesserter Qualität der Datenübertragung wurde das Kontrollbit überflüssig. Man konnte es für die Kodierung verwenden, so dass nun 2 8 = 256 Zeichen zur Verfügung stehen Die International Standardization Organization (ISO) hat verschiedene ASCII- Erweiterungen normiert. In Europa ist die ASCII-Erweiterung Latin-1 nützlich, die z.b. sprachspezifische Zeichen enthält, wie z.b. Umlaute ( ä, ö, ü, Ä, Ö, Ü ) Probleme: ❿ Einige Rechner (z.b. unter UNIX-Betriebssystem) verwenden nur die genormten ASCII-Zeichen 0 bis 127 (Umlaute nicht so einfach darstellbar); andere haben eigene Erweiterungen. ❿ Beim Austausch von Daten, s usw. müssen Sender und Empfänger die gleiche ASCII-Erweiterung verwenden (Lösung: Umcodierung einer Datei in ASCII mittels der Programme uuencode und Dekodierung mittels uudecode) 15 Unicode Wegen der Problematik der ASCII-Erweiterungen entstand in den letzten Jahren ein neuer Standard: Unicode Ziel: sämtliche relevanten Zeichen aus den unterschiedlichen Kulturkreisen in universellem Code zusammenfassen Unicode verwendet 16-Bit-Codierung (maximal 2 16 = Zeichen) ❿ Die ersten 128 Zeichen sind identisch mit ASCII ❿ die nächsten 128 Zeichen sind identisch mit ISO-Latin 1 Programmiersprachen lassen meist keine Zeichen aus ASCII-Erweiterungen zu (Ausnahme: Java) 16

9 Bearbeitung binär codierter Information ASCII, Unicode ❿ für Beschreibung von Daten ❿ nicht für Berechnung geeignet Datentypen in Programmiersprachen werden speziell repräsentiert, damit man mit ihnen rechnen kann ❿ Ganze Zahlen (Integer): Zweierkomplement ❿ Gebrochene Zahlen ❿ Gleitkommazahlen ❿ Boolesche Werte 17 Arithmetische Operationen auf Binärzahlen: Addition Zwei aus mehreren Ziffern bestehende Binärzahlen werden addiert, wie man es von Dezimalzahlen gewohnt ist ❿ Ein an einer Ziffernposition entstehender Übertrag wird zur hächsthöheren Ziffernposition addiert ❿ Ein Übertrag entsteht, wenn bei der Addition zweier Ziffern der Wert grösser oder gleich dem Basiswert ist ❿ Bei Binärzahlen entsteht ein Übertrag schon bei 1+1 Beispiel Binär Oktal Hexadezimal Dezimal C A A F = D 7 5 D Problem: Wenn durch Übertrag die reservierten Stellen für die Zahl nicht ausreichen, kann es zu Fehlern kommen! 18

10 Darstellung ganzer Zahlen Als ganze Zahlen bereichnet man die Vereinigung der natürlichen Zahlen und der negativen Zahlen Für positive ganze Zahlen, kann man die Binärdarstellung verwenden Kommen negative Zahlen hinzu, müssen wir ein Bit für das Vorzeichen verwenden Erste Überlegung: Vorzeichendarstellung ❿ Nehme gewöhnliche Binärzahlen und füge ein Bit für Vorzeichen hinzu ❿ Beispiel: Bei 4 Ziffern kann man den Bereich von -7 bis +7 darstellen Diese Darstellung hat eine Reihe von Nachteilen ❿ Die Null wird durch zwei Bitfolgen für +0 und -0 dargestellt: 0000 und 1000 ❿ Addition muss berücksichtigen, welches Bit das Vorzeichen darstellt Alternative: Zweierkomplementdarstellung 19 Die Zweierkomplementdarstellung für ganze Zahlen Zahlenbereich bei N Bits: -2 N-1 bis +2 N-1-1 Bei der Zweikomplementdarstellung wird das erste Bit negiert betrachtet wird. Die restlichen Bits behalten ihre Bedeutung. Die Ziffernfolge b n b n-1...b 1 b 0 bezeichnet also folgende Zahl z = -b n * 2 n +b n-1 * 2 n b 1 * b 0 Wir betrachten dies am Beispiel mit 4 Bits (Darstellung 16 ganzer Zahlen) 1000 = = = = = = = = = = = = = = = = 7 Prinzip: Seien N Bits für die Zahlendarstellung zur Verfügung ❿ Zähle von 0 aufwärts bis obere Grenze (2 N-1-1) ❿ anschliessend wird an der unteren Grenze (-2 N-1 ) fortgesetzt bis -1 20

11 Zweierkomplementdarstellung 21 Zahlenbereiche für ganze Zahlen in Programmiersprachen Je nach dem, wieviel Bit für die Zahlendarstellung zur Verfügung gestellt wird, können in den einzelnen Programmiersprachen unterschiedliche Zahlenbereiche genutzt werden Bereich Bits Datentypen in Delphi Java Bit Shortint byte Bit Integer short Bit Longint int Bit long Bit Byte Bit Word 22

12 Gebrochene (rationale) Zahlen Zwischen je zwei Zahlen gibt es unendlich viele rationale Zahlen Eine feste Anzahl von N Bits reicht also nicht aus, um alle rationalen Zahlen eines Intervalls exakt darzustellen Rationale Zahlen werden als Kommazahlen mit einer festen Anzahl n von Stellen vor dem Komma und m Stellen nach dem Komma repräsentiert Die Ziffernfolge b n b n-1... b 1 b 0, c 1 c 2... c m wobei b i,c i, in {0,1} steht dabei für den Zahlenwert z = b n * 2 n +... b 1 * b 0 * c 1 * c 2 * c m * 2 -m Beispiele: gebrochene Binärzahl gebrochene Dezimalzahl Gleitpunktdarstellung für Reelle Zahlen Gesucht ist eine Darstellung, die bei festem Bitformat ❿ ein möglichst grosses Intervall der reellen Zahlen umfasst und ❿ deren Genauigkeit bei kleinen Zahlen sehr hoch ist, bei grossen Zahlen niedriger Eine Gleitpunktzahl besteht aus drei Teilen: ❿ dem Vorzeichenbit V ❿ dem Exponenten E ❿ der Mantisse M Eine normierte Gleitpunktzahl mit Vorzeichen V, Mantisse m 1...m n und Exponent E stellt folgenden Zahlenwert dar: (-1) V * (1 + m 1 * m n * 2 n ) * 2 E Da die Null formal nicht darstellbar ist, wird die kleinste darstellbare Zahl also Null interpretiert. Die IEEE (Institute for Electrical and Electronics Engineers) hat zwei Normen verabschiedet ❿ Short Real: Vorzeichen: 1 Bit, Exponent: 8 Bit, Mantisse: 23 Bit ❿ Long Real: Vorzeichen: 1 Bit, Exponent: 11 Bit, Mantisse: 52 Bit 24

13 Zahlenbereiche für reelle Zahlen in Programmiersprachen Je nach dem, wieviel Bytes für die Zahlendarstellung zur Verfügung gestellt werden, können in den einzelnen Programmiersprachen unterschiedliche Zahlenbereiche genutzt werden Bytes Datentypen in Delphi Java 6 Real 4 Single float 8 Double double 10 Extended 25 Repräsentation von Information: Bytes Ein Rechner arbeitet immer mit Gruppen von Bits, entweder 8 Bits, 16 Bits, 32 Bits oder 64 Bits Eine Gruppe von 8 Bits nennt man Byte Eine Datei ist eine beliebig lange Folge von Bytes. Unter der Grösse einer Datei versteht man die Anzahl der darin enthaltenen Bytes Für grosse Dateien verwendet man die bekannten Präfixe kilo (für tausend), mega (für million) usw. allerdings für Zweierpotenzen k= 1024 = 2 10 (k = Kilo) M = 1024 * 1024 = 2 20 (M = Mega) G = 1024 * 1024 * 1024 = 2 30 (G = Giga) T = 1024 * 1024 * 1024 * 1024 = 2 40 (T = Tera) P = 1024 * 1024 * 1024 * 1024 * 1024 = 2 50 (P = Peta) E = 1024 * 1024 * 1024 * 1024 * 1024 * 1024 * 1024 = 2 60 (E = Exa) 26

14 Codierung logischer Werte Da es nur zwei Wahrheitswerte gibt, könnte man diese durch 1 Bit darstellen Da aber ein Byte die kleinste adressierbare Einheit ist, spendiert man ein ganzes Byte für einen Wahrheitswert Gängige Codierung: ❿ F = und T = Daten - Information Information hat eine Bedeutung und einen Zweck (z.b. Austausch von Nachrichten) ❿ Heute ist es 15 kalt ❿ Der Umsatz im Jahr 1999 betrug Fr. und im Jahr 2000 betrug er Fr. Information wird im Rechner durch Daten (Folgen von Bits) repräsentiert. Zu den elementaren Fähigkeiten eines Rechners gehören ❿ das Lesen von Daten ❿ das Speichern von Daten (intern im Hauptspeicher oder auf externem Medium) ❿ die Verknüpfung von Daten durch arithmetische oder logische Operationen Die Tätigkeit des Rechners wird ebenfalls durch Daten (das Programm) gesteuert Um Informationen zu verarbeiten, muss man die informationsverarbeitenden Operationen durch Operationen auf den entsprechenden Daten nachbilden ❿ Beispiel: Berechnung der Umsatzsteigerung zwischen 1999 und

15 Informationsverarbeitung - Datenverarbeitung Information Informationsverarbeitung Information Repräsentation Abstraktion Daten Datenverarbeitung Daten 29 Repräsentation von Information Um die geeignete Repräsentation hängt ab von ❿ der Information selbst ❿ der gewünschten Verarbeitung Um Informationen zu Vermitteln genügt die Repräsentation als Text (z.b. Versenden als oder Schreiben eines Briefes) Um Information zu berechnen benötigt man entsprechende Datenstrukturen ❿ Beispiel: Umsatzentwicklung: Repräsentation als Gleitkommazahl 30

16 Abstraktion bzw.. Interpretation von Information Information hat eine Bedeutung und einen Zweck, Daten dagegen haben keine Bedeutung Um aus den Daten deren Bedeutung zur erkennen muss man sie interpretieren ❿ Die Interpretation von Daten nennt man auch Abstraktion Beispiel: Etwas lesbarer als Hexadezimalzahl C 6C E 64 2E Interpretationsmöglichkeiten ❿ Als Folge 1-Byte-Zahlen: ❿ Als Folge von 2-Byte-Zahlen: ❿ Als Folge von 8-stelligen Zweierkomplementzahlen: ❿ Als ASCII: Der Ball ist rund. 31 Übungsaufgaben Wandeln Sie folgende Binärzahlen in Dezimalzahlen um 101 = = = = = 195 Wandeln Sie folgende Dezimalzahlen in Binärzahlen, Oktalzahlen (Basis 8) und Hexadezimalzahlen (Basis 16) um 101 = = 145 = = = 377 = FF 167 = = 247 = A = = = 11E6 256 = = 400 =

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Wozu wird ein Rechensystem genutzt? Informationsverarbeitung Information. Information. Interpretation, Abstraktion. Repräsentation.

Wozu wird ein Rechensystem genutzt? Informationsverarbeitung Information. Information. Interpretation, Abstraktion. Repräsentation. Wozu wird ein Rechensystem genutzt? Wunsch: Informationsverarbeitung Information Repräsentation Daten Informationsverarbeitung Datenverarbeitung Wirklichkeit: Datenverarbeitung Information Daten Interpretation,

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko dorozhko@hlrs.de Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten Hauptspeicherinhalt Programmcode Daten numerisch logisch alphanumerisch Ton Grafik Ganze Zahlen Gleitkommazahlen Zeichen Zeichenketten vorzeichenlos mit Vorzeichen Vektorgrafik Bitmapgrafik Digit. Video

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

3. Informationsdarstellung

3. Informationsdarstellung Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 204/205 3. Informationsdarstellung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 3 Informationsdarstellung Bitfolgen

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Datendarstellung Teil 2

Datendarstellung Teil 2 Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 24. Oktober 2017 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18 EINI LogWing/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 17/18 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Zahlensysteme Das 10er-System

Zahlensysteme Das 10er-System Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Darstellung von Informationen

Darstellung von Informationen Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten?

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten? Herzlich Willkommen zur Informatik I Bits und Bytes Zahlen im Computer: Binärzahlen, Hexadezimalzahlen Text im Computer: ASCII-Code und Unicode Quelle: http://www.schulphysik.de/rgb.html Bit: eine binäre

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11 EINI I Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 10/11 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Kodierung. Bytes. Zahlensysteme. Darstellung: Zahlen

Kodierung. Bytes. Zahlensysteme. Darstellung: Zahlen 2 Einführung in die Informationstechnik VI Information und ihre Darstellung: Zahlen, Zeichen, Texte Heute 1. Information und Daten 2. Informationsdarstellung 1. Zahlen 1. Binärsystem 2. Dezimalsystem 3.

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Variablen. CoMa-Übung VIII TU Berlin. CoMa-Übung VIII (TU Berlin) Variablen / 15

Variablen. CoMa-Übung VIII TU Berlin. CoMa-Übung VIII (TU Berlin) Variablen / 15 Variablen CoMa-Übung VIII TU Berlin 4.12.2013 CoMa-Übung VIII (TU Berlin) Variablen 4.12.2013 1 / 15 Themen der Übung 1 Typanpassungen 2 Operatoren 3 Variablen-Gültigkeit CoMa-Übung VIII (TU Berlin) Variablen

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Abschnitt 2: Daten und Algorithmen

Abschnitt 2: Daten und Algorithmen Abschnitt 2: Daten und Algorithmen 2. Daten und Algorithmen 2.1 Zeichenreihen 2.2 Datendarstellung durch Zeichenreihen 2.3 Syntaxdefinitionen 2.4 Algorithmen 2 Daten und Algorithmen Einf. Progr. (WS 08/09)

Mehr

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen Rückblick Addition in der b-adischen Darstellung wie gewohnt 5 0 C E + D 4 2 D = 44 Rückblick Multiplikation in der b-adischen Darstellung wie gewohnt 1 0 1 0 1 0 1 = 45 Rückblick Darstellung negativer

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Kapitel 3. Codierung von Text (ASCII-Code, Unicode)

Kapitel 3. Codierung von Text (ASCII-Code, Unicode) Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

7. Übung zur Vorlesung Grundlagen der Informatik

7. Übung zur Vorlesung Grundlagen der Informatik 7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Zahlen- und Buchstabencodierung. Zahlendarstellung

Zahlen- und Buchstabencodierung. Zahlendarstellung Dezimalsystem: Zahlen- und Buchstabencodierung Zahlendarstellung 123 = 1 10 2 + 2 10 1 + 3 10 0 1,23 = 1 10 0 + 2 10-1 + 3 10-2 10 Zeichen im Dezimalsystem: 0,1,...9 10 ist die Basis des Dezimalsystems

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr