31 Die Potentialgleichung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "31 Die Potentialgleichung"

Transkript

1 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace- Gleichung u = 0. Bemerkung: Ein wirbelfreies Vektorfeld F (dh rot F = 0 ist (zumindest lokal als Gradient eines Skalarfeldes V darstellbar F = V. Ist das Vektorfeld zusätzlich quellenfrei (dh div F = 0, so genügt V der Laplace-Gleichung: V = div ( V = div F = 0. Beispiele sind in der Elektrostatik das elektrische Feld E = V, wobei typischerweise das Potential V an der Oberfläche eines Gebietes vorgegeben ist, oder in der Magnetostatik die magnetische Induktion B = V, wobei typischerweise V N = 0 am Rand eines Gebietes gilt (dh B ist am Rand tangential zur Oberfläche. 3. Harmonische Funktionen Sei R n ein Gebiet. Eine C 2 -Funktion u : R heißt harmonisch in, falls gilt Ende Woche u = 0 in. Beispiele: Für n = und I R Intervall sind die in I harmonischen Funktionen u alle von der Form u(x = ax + b, x I. 2 Sei n = 2 und R 2 = C, sowie f : C, f(x + iy = u(x, y + iv(x, y eine holomorphe Funktion ( Kap. 24 in HM II bzw. KAI. Dann sind u und v beliebig oft differenzierbar, und es gelten die Cauchy-Riemannschen Differentialgleichungen Durch Differenzieren erhalten wir u x = v y, u y = v x in. u xx + u yy = v yx v xy = 0, v xx + v yy = u yx + u xy = 0, dh Real- und Imaginärteil einer holomorphen Funktion sind harmonisch. Umgekehrt ist eine harmonische Funktion u : R zumindest lokal Realteil einer holomorphen Funktion (der passende Imaginärteil v heißt konjugiert harmonische Funktion von u. Insbesondere ist für n = 2 eine harmonische Funktion immer beliebig oft differenzierbar. Dies gilt auch für n > 2. 37

2 3 In Beispiel 2.0(5 haben wir gesehen, dass die durch u( x = x definierte Funktion u in R 3 \ { 0} harmonisch ist. 3.2 Mittelwerteigenschaft Sei R 3. Ein stetiges u : R ist genau dann harmonisch, wenn für jede Kugel B( x 0, r = { x R 3 : x x 0 < r} gilt u( x 0 = u dτ B( x 0, r B( x 0,r bzw. genau dann, wenn für jede solche Kugel gilt u( x 0 = u do B( x 0, r B( x 0,r (Kugelmittel sphärisches Mittel. Hierbei bezeichnet B( x 0, r = 4π 3 r3 das Volumen von B( x 0, r und B( x 0, r = 4πr 2 die Oberfläche der Kugel. Die entsprechenden Aussagen gelten aber für jedes n Maximumsprinzip Sei u harmonisch im Gebiet. Gibt es ein x 0 mit u( x 0 u( x für alle x (u hat lokales Maximum in x 0 oder u( x 0 u( x für alle x (u hat lokales Minimum in x 0, so ist u auf konstant. Ist zusätzlich beschränkt und u stetig auf, so gilt für jedes x : min u( y u( x max u( y, y y dh harmonische Funktionen nehmen Maximum und Minimum auf dem Rand von an. 3.4 Grundlösung der Laplace-Gleichung Die für x R n \ { 0} definierte Funktion Γ( x := { 2π ln x für n = 2, 4π x für n = 3 heißt Grundlösung der Laplacegleichung oder auch Fundamentallösung. Häufig schreibt man dann Γ( x, y = Γ( x y für x, y R n mit x y. 38

3 Bemerkung: Für allgemeines n 3 lautet die Formel für die Grundlösung Γ( x = n(2 nω n x 2 n, wobei ω n das Volumen der n-dimensionalen Einheitskugel bezeichnet (es ist also ω 2 = π, ω 3 = 4 3 π. Man erhält Γ( x, wenn man eine Lösung u der Laplacegleichung der Form u( x = g( x sucht, wobei g = g(r eine C 2 -Funktion auf (0, ist. Das führt auf die Gleichung g (r + n g (r = 0, r > 0 r mit Lösung g (r = cr n. Dies bestimmt g bis auf eine additive Konstante, c wird so gewählt, dass die Formel in 3.5 unten gilt. Wir konzentrieren uns im folgenden auf den Fall n = 3. Eigenschaften (n = 3: Für j =,..., 3 gilt x j Γ( x = 4π x j x 3, also Γ( x = 4π x x 3 und x Γ( x, y = 4π ( x y x y 3, y Γ( x, y = 4π ( y x x y 3. Weiter ist Γ( x = 0 ( x 0, x Γ( x, y = 0 ( x y, y Γ( x, y = 0 ( y x, dh Γ ist in R 3 \ { 0} harmonisch, x Γ( x, y in R 3 \ { y} und y Γ( x, y in R 3 \ { x}. 3.5 Greensche Darstellungsformel Sei ein beschränktes Gebiet in R 3 mit C 2 -Rand, und sei V R n offen mit V. Ist u C 2 (V, so gilt für jedes x : u( x = u( y Γ N ( x, y Γ( x, y u y N ( y do( y + Γ( x, y u( y dτ( y. Beachte hierbei u N ( y = u( y N( y und Γ N y ( x, y = y Γ( x, y N( y = 39 y x 4π x y 3 N( y.

4 Beweisidee: Verwende für festes x die zweite Greensche Formel in 2.0(3, dh g f N f g ( N do = g f f g dτ für g( y = u( y und f( y = Γ( x, y, sowie die Rechnung von 2.0(6, dh ϕ( y dτ( y = 4πϕ( 0 für 0 G, woraus folgt: G Γ( x, y u( y dτ( y = u( x. Ende Woche Greensche Funktion Sei ein beschränktes Gebiet. Eine Funktion G( x, y, welche für x, y mit x y definiert ist, heißt Greensche Funktion von, falls G symmetrisch ist (dh G( x, y = G( y, x gilt und für jedes y gilt: G( x, y = 0 für alle x und x h( x, y := G( x, y Γ( x, y ist harmonisch in. Bemerkung: Die zweite Bedingung bedeutet, dass G und Γ in x = y die gleiche Singularität haben. Zusammen bedeuten die Bedingungen, dass für festes y die Funktion x G( x, y Lösung des Dirichlet-Problems ist. u = δ y, u = 0, Wendet man (bei genügend glattem Rand die zweite Greensche Formel an auf f( y = h( x, y und g = u und addiert das Ergebnis zu 3.5, so erhält man u( x = u( y G N ( x, y do( y + G( x, y u( y dτ( y, y dh man kann mithilfe der Greenschen Funktion (wenn sie existiert! eine Lösung u C 2 (V des Dirichletproblems u = f, u = ϕ, im Inneren von aus den Daten f und ϕ rekonstruieren. Bemerkung: Ist beschränkt mit C 2 -Rand, so existiert eine Greensche Funktion für. Beispiel: Die Greensche Funktion für die Kugel B(0, R ist gegeben durch: { Γ( x, y Γ( R G( x, y = x, R y, y 0 Γ( x Γ( R x, y = 0. x 40

5 Beachte dazu, dass für y 0 gilt R x R 2 y = 2 x 2 2 x y + R 2 R 2 und dass der rechte Ausdruck symmetrisch in x und y ist. Außerdem ist G( x, y = 0 für = R. Für festes y B(0, R ist die Singularität von G( x, y Γ( x, y in x = R2 y und 2 liegt außerhalb von B(0, R. 3.7 Dirichletproblem auf der Kugel Betrachte die Kugel B(0, R R 3. Sei ϕ : B(0, R R stetig. Dann ist die Funktion u : B(0, R R, definiert durch u( x := { R 2 x 2 ϕ( y x y 3 do( y für x B(0, R 4πR B(0,R ϕ( x für x B(0, R, (PF harmonisch in B(0, R und stetig in B(0, R. Dies ist die Poissonsche Darstellungsformel für die nach 3.3 eindeutige Lösung des Dirichletproblems u = 0 in B(0, R, u B(0,R = ϕ. Beachte, dass man die Formel (PF aus 3.6 erhält, wenn man für die Greensche Funktion der Kugel B(0, R den Ausdruck G N y ( x, y = y G( x, y N( y, y B(0, R, unter Berücksichtigung von N( y = y R berechnet. 4

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Übungen für Partielle Differentialgleichungen Wintersemester 2007/08

Übungen für Partielle Differentialgleichungen Wintersemester 2007/08 Übungen für Partielle Differentialgleichungen Wintersemester 27/8 1. Leite eine bekannte partielle Differentialgleichung von physikalischen Prinzipien her. 2. Berechne die variationelle Ableitung des folgenden

Mehr

Elliptische Differentialgleichungen zweiter Ordnung

Elliptische Differentialgleichungen zweiter Ordnung Springer-Lehrbuch Masterclass Elliptische Differentialgleichungen zweiter Ordnung Eine Einführung mit historischen Bemerkungen Bearbeitet von Ernst Wienholtz, Hubert Kalf, Thomas Kriecherbauer 1. Auflage

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Strömungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204 200W/ Wintersemester

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

1.Übung Mathematik I

1.Übung Mathematik I 1Übung Mathematik I 1) Ist folgende Aussage eine Implikation? ( Begründung!) (( A B) -> ( A C) ) = > (C A) 2 Onkel Dagobert wurde Geld aus seinem Geldspeicher gestohlen Er hat drei Tatverdächtige: Die

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Die Weierstaÿ'sche -Funktion

Die Weierstaÿ'sche -Funktion Die Weierstaÿ'sche -Funktion Kapitel : Konstruktion Motivation: Ziel dieses Kapitels ist es ein möglichst einfaches Beispiel für eine elliptische Funktion zu nden.wir wissen bereits, dass keine elliptische

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Harmonische und Holomorphe Funktionen

Harmonische und Holomorphe Funktionen Harmonische und Holomorphe Funktionen Jonathan Bischoff LMU München illertal am 14.12.2014 Jonathan Bischoff Harmonische und Holomorphe Funktionen 1/14 Definition harmonische Funktion Sei G R 2 ein Gebiet.

Mehr

Rotation, Divergenz und Gradient

Rotation, Divergenz und Gradient Gottlieb Strassacker, Roland Süße Rotation, Divergenz und Gradient Einführung in die elektromagnetische Feldtheorie 6. durchgesehene und ergänzte Auflage Mit 151 Abbildungen, 17 Tabellen und 70 Beispielen

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y))

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y)) Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 30./3.08.008 Kurseinheit 6: Die Potentialgleichung Aufgabe : Wir untersuchen, für welche λ R die

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Rotation, Divergenz und das Drumherum

Rotation, Divergenz und das Drumherum Rotation, Divergenz und das Drumherum Eine Einführung in die elektromagnetische Feldtheorie Von Akad. Direktor i. R. Dr.-Ing. Gottlieb Strassacker Universität Fridericiana (TH) Karlsruhe 4., vollständig

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr