Zum Begriff des Erwartungswertes

Größe: px
Ab Seite anzeigen:

Download "Zum Begriff des Erwartungswertes"

Transkript

1 Zum Begriff des Erwartungswertes Wie man den Erwartungswert in der Schule einführt! Christopher Hirsch Institut für Mathematik Humboldt-Universität zu Berlin 13. Juli 2010

2 Das Wissensquiz 1. Die Aufgabe Der Sender RTV 10 möchte in Deutschland eine Konkurrenzsendung zu Wer wird Millionär ausstrahlen: das Wissensquiz. Allerdings muss der Produzent noch überprüfen, ob die erwarteten Werbeeinnahmen ausreichen, um die Preisgelder zu finanzieren. In den Ländern, in denen die Sendung bisher ausgestrahlt wurde, wurde gezählt, welche Gewinne die Kandidaten jeweils erzielt haben. Pro Sendung spielten durchschnittlich zwei Kandidaten. Lassen sich die Preisgelder der Kandidaten finanzieren, wenn pro Sendung Werbeeinnahmen von e zur Verfügung stehen?

3 Das Wissensquiz Gewinnstufe Anteil der Kandidaten e 2,0% e 3,0% e 7,5% e 14,8% e 22,0% e 20,0% e 19,2% e 6,7% e 4,3% e 0,5% den Schülern muss die Gelegenheit gegeben werden sich an der Lösung der Aufgabe zu Probieren, noch bevor der Lehrer den neuen Begriffe des Erwartungswertes einführt

4 Das Wissensquiz ein wichtiges Ziel ist, dass Schüler erkennen, dass sich viele Aufgaben ohne Kalküle lösen lassen auch danach sollten sich die Schüler fragen, ob es notwendig ist, Kalküle zu verwenden oder, ob Nachdenken nicht schneller und sicherer zum Ziel führt

5 Lösung ohne das Kalkül: Erwartungswert Schüler kennen die Begriffe Zufallsgrösse und Wahrscheinlichkeitsverteilung einer Zufallsgrösse aufbauend auf der Wahrscheinlichkeitsverteilung ist folgende Überlegung naheliegend: Von Kandidaten ausgehend, wie viele Kandidaten gewinnen 1 500e, 3 000e, 5 000e, usw.? Gewinn 1 500e 3 000e 5 000e e... Anzahl der Kandidaten Preisgelder für Kandidaten summieren sich zu: 1 500e e e e 5 = e Fehler im Text

6 Lösung ohne das Kalkül: Erwartungswert im Durchschnitt gewinnt jeder Kandidat e:1 000=84 375e e sind der Gewinn die der Sender RTV 10 pro Kandidat erwarten sollte

7 Hinführung zum Erwartungswert Trick: Schreibe die Gleichung wie folgt um 1 500e e e e 5 = e = Somit kommt man mit folgender Rechnung auf den gleichen Wert: 1 500e e = e e = e e =

8 Hinführung zum Erwartungswert Leichtes Umschreiben führt zu: e e e e e = = e }{{} e e e +... relativehaeuf e + } {{} e = = e relativehaeuf. also kann man jeden Wert der Zufallsgrösse direkt mit der relativen Häufigkeit multiplizieren anschließendes Aufsummieren der Produkte liefert den durchschnittlichen Gewinn pro Kandidat

9 Hinführung zum Erwartungswert ist die Äquivalenzschreibweise: 0, 02 2% bekannt, kann die Gleichung auch geschrieben werden, als: 1 500e 2% e 3% e 7, 5% e 0, 5% = 8 437, 50e Definition Nimmt die Zufallsgrösse X die Werte x 1, x 2, x 3,... x n mit den Wahrscheinlichkeiten p 1, p 2, p 3,...,p n an, so heißt E(X ) = x 1 p 1 + x 2 p 2 + x 3 p x n p n der Erwartungswert der Zufallsgrösse X.

10 Erwartungswert - Bewertung der Aufgabe gute und ausreichende Formulierung des Begriffes Erwartungswert im Schulgebrauch es ist fraglich, ob die Schüler anhand des obigen Beispiels die Notwendigkeit der Einführung des neuen Begriffes verstehen Aufgabe ist leicht mit Überlegung zu lösen

11 Erwartungswert Wahrscheinlichkeit p i E[X ] Var[X ]) Abbildung: Punktediagramm der Tabelle aus dem Text. Es besteht eine starke Asymmetrie, da die Differenz der Punkte immer stärker zunimmt.

12 Erwartungswert und Varianz Wahrscheinlichkeit p i Abbildung: Punktediagramm der Tabelle aus dem Text. Einfach Logarithmisch aufgetragen. Durchgezogene Linie ist eine Gaußfunktion mit den berechneten Parametern. Die Funktion hat die Gestalt: f (x) = 1 µ)2 (x e σ 2 2πσ µ wurde berechnet: µ = E[log(X )] = 10 i=1 log(x i)p i σ wurde berechnet: σ 2 = E[(logX ) 2 ] [E(logX )] 2 µ σ 10,51 1,34

13 Erwartungswert und Varianz Wahrscheinlichkeit p i Abbildung: Punktediagramm der Tabelle aus dem Text. Auf der Abszissenachse ist die Nummerierung der Gewinnstufe abgetragen siehe Tabelle aus dem Text. Durchgezogene Linie ist eine Gaußfunktion mit den berechneten Parametern. µ wurde berechnet: µ = E[X ] = 10 i=1 i p i σ wurde berechnet: σ 2 = E[X 2 ] (E[X ]) 2 µ σ 5,51 1,78

14 Erwartungswert und Varianz Zusammenfassende Tabelle µ σ ,51 1,34 5,51 1,78 durch leichte Variierung der Bedingungen gehen Informationen über den Erwartungswert verloren durch Logarithmierung der Skala erhält man Glockenverlauf, jedoch ist kein Rückschluss mehr möglich auf den Erwartungswert unserer Zufallsgröße Führt man eine andere Zufallsgrösse ein, wie es im dritten Diagramm gezeigt wurde: Gewinnstufe in e Nummer der Gewinnstufe ist kein Rückschluss mehr auf den Erwartungswert unserer Zufallsgröße möglich

15 Der Begriff der Varianz V (X ), bzw. der Standardabweichung σ(x ) kann durch die Tschebyscheffsche Ungleichung eindrucksvoll veranschaulicht werden: P( X E(X ) kσ(x )) 1 k 2 mögliche Frage: Wie groß ist die Wahrscheinlichkeit, dass der Sender mit seiner Schätzung für den ersten Kandidaten um e neben dem erwarteten Wert liegt? Berechne das k aus obiger Gleichung: σ k = e Mit σ = e erhält man: k = 1.52 Und damit: P( X E(X ) ) P( X E(X ) ) 0.43 = 43%

16 Visualisierung der Tchebyschewschen Ungleichung Wahrscheinlichkeit p i Abbildung: Graphische Darstellung der Tschebyscheffschen Ungleichung: Funktion f (x i ) = σ2 x 2 i Wahrscheinlichkeit p i Abbildung: Graphische Darstellung der Tschebyscheffschen Ungleichung im Intervall, des schwarzen Kastens links

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Stochastik 03 Zufallsgröÿen und Verteilung

Stochastik 03 Zufallsgröÿen und Verteilung 29. August 2018 Grundlagen der Stochastik (bis Klasse 10) Grundlagen der Statistik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik (Testen von Hypothesen) Bernoulli-Experimente Ziele

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Nichttechnik - S I - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Nichttechnik - S I - Lösung Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Nichttechnik - S I - Lösung Bei den folgenden Aufgaben sollen relative Häufigkeiten als Wahrscheinlichkeiten interpretiert werden Teilaufgabe 10

Mehr

Demo-Text für STOCHASTIK. Tschebyscheff-Ungleichung. Einführung mit Anwendungsbeispielen. Datei Nr Friedrich W.

Demo-Text für   STOCHASTIK. Tschebyscheff-Ungleichung. Einführung mit Anwendungsbeispielen. Datei Nr Friedrich W. STOCHASTIK Tschebyscheff-Ungleichung Einführung mit Anwendungsbeispielen Datei Nr. 36111 Friedrich W. Buckel Stand 1. April 010 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de Inhalt 1 Wiederholung:

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

Abitur 2013 Mathematik Stochastik IV

Abitur 2013 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 201 Mathematik Stochastik IV In einer Großstadt steht die Wahl des Oberbürgermeisters bevor. 12% der Wahlberechtigten sind Jungwähler, d. h. Personen

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Mathematik W30 Mag. Rainer Sickinger LMM, BR v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Einführung Heute nehmen wir uns die Normalverteilung vor. Bis jetzt konnte unsere Zufallsvariable (das X in

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Abitur 2016 Mathematik NT Stochastik S II

Abitur 2016 Mathematik NT Stochastik S II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2016 Mathematik NT Stochastik S II Am Pausenstand einer Schule werden Kaltgetränke in Glasflaschen (G), Plastikflaschen (P) und Tetrapaks (T) angeboten.

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage Aufgaben ~ Beispiele A1. Wir spielen Roulette mit einem Einsatz von 5 mit der Glückszahl 15. Die Wahrscheinlichkeiten und Auszahlungen beim Roulette sind in folgender Tabelle zusammengefasst: Ereignis

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung. Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für

Mehr

1 Zur Klassenkonferenz sind 3 Schüler, 2 Eltern und 10 Lehrer erschienen.

1 Zur Klassenkonferenz sind 3 Schüler, 2 Eltern und 10 Lehrer erschienen. 7.0.004 Klausur 1 Kurs Ma4 Mathematik Lk Lösung 1 Zur Klassenkonferenz sind 3 Schüler, Eltern und 10 Lehrer erschienen. a) Berechnen Sie, wie viele verschiedene Möglichkeiten es gibt, Schüler, Eltern und

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

77) auf zwei Nachkommastellen genau, und geben Sie den wesentlichen Unterschied der Verfahren an μ 0.

77) auf zwei Nachkommastellen genau, und geben Sie den wesentlichen Unterschied der Verfahren an μ 0. Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - B I - Lösung Aufgabe.0 Eine Zufallsgröße X ist binomial verteilt mit n 0 und der Trefferwahrscheinlichkeit p 0.7. Aufgabe. (7 BE) Bestimmen Sie

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

DIFFERENZIAL- UND INTEGRALRECHNUNG. 7. bzw. 8. Klasse

DIFFERENZIAL- UND INTEGRALRECHNUNG. 7. bzw. 8. Klasse DIFFERENZIAL- UND INTEGRALRECHNUNG 7. bzw. 8. Klasse 28. FREIER FALL Für einen frei fallenden Körper ist eine Zeit Weg Funktion s(t) durch s(t) Dabei ist g 0 m/s² die Fallbeschleunigung. a) Welchen Weg

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Θ Mathematik Stochastik

Θ Mathematik Stochastik Θ Mathematik Stochastik Aufgabe 1: Als Spam-Nachricht wird eine unerwünschte E-Mail bezeichnet, die dem Empfänger unverlangt zugestellt wird. a) Statistische Untersuchungen an der Mailbox eines Benutzers

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II, Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - S II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 01 Mathematik 1 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Eine Agentur vertreibt Tickets für Sportveranstaltungen (S), Konzerte (K), Musicals (M) und Eventreisen

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Düngersäcke (3) Mehrere Maschinen füllen Säcke mit Dünger ab. Als Füllmenge sind laut Aufdruck 25 kg vorgesehen.

Düngersäcke (3) Mehrere Maschinen füllen Säcke mit Dünger ab. Als Füllmenge sind laut Aufdruck 25 kg vorgesehen. Düngersäcke (3) Aufgabennummer: B_155 Technologieeinsatz: möglich S erforderlich Mehrere Maschinen füllen Säcke mit Dünger ab. Als Füllmenge sind laut Aufdruck 25 kg vorgesehen. a) Langfristige Überprüfungen

Mehr

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren Vorlesungscharts Vorlesung 7 Schätzverfahren Konstruktion von Konfidenzintervallen Konfidenzintervalle für den Erwartungswert normalverteilter Grundgesamtheiten Konfidenzintervalle für Anteilswerte Seite

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung Lösungen zu Übungs-Blatt Wahrscheinlichkeitsrechnung Diskrete Zufallsgrößen Zu Aufgabe ) Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung?

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests 5 Regression Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Dr. Markus Kalisch Statistik I für Biol./Pharm. Wiss./HST) FS 15 Musterlösung zu Serie 8 1. a) Damit fx) eine Dichte ist, muss die Fläche des Dreiecks gleich 1 sein. Es muss also gelten c = 1. Daraus folgt

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 1 / 11 1 Einleitung 2 Zufallsvariablen 3 Linearität und Varianz

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 03.07.208 Aufgabe Statistik-Dozent K.R. lehrt an einer privaten FH in Köln, wohnt aber in Frankfurt am Main. Er hat - wegen möglicher saisonaler Schwankungen - zwei Semester

Mehr

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze,

Mehr

1 Verteilungsfunktionen, Zufallsvariable etc.

1 Verteilungsfunktionen, Zufallsvariable etc. 4. Test M3 ET 27 6.6.27 4. Dezember 27 Regelung für den.ten Übungstest:. Wer bei den Professoren Dirschmid, Blümlinger, Vogl oder Langer die UE aus Mathematik 2 gemacht hat, sollte dort die WTH und Statistik

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 2 - Varianz, Standardabweichung, Kovarianz Das zweite Übungsblatt umfasst die Themen Varianz, Standardabweichung und Kovarianz. Hinter den Aufgaben steht wie gewohnt in Klammern die durchschnittliche

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable.

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. Aufgabe 1 (5 + 2 + 1 Punkte) Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. a) Wie lautet die Verteilungsfunktion von X? Zeichnen Sie diese! 0 x < 2 1 F (x) = x 0.5 2 x 6

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Weinbau (2)* Überprüfen Sie nachweislich mithilfe der Volumsformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.

Weinbau (2)* Überprüfen Sie nachweislich mithilfe der Volumsformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind. Weinbau (2)* Aufgabennummer: B_413 Technologieeinsatz: möglich erforderlich T a) Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

3 Schätzwerte und ihre Unsicherheiten ( Fehler )

3 Schätzwerte und ihre Unsicherheiten ( Fehler ) Lernziele Lektion 3 Sie wissen, dass die Posteriorverteilung das vollständige Ergebnis einer Parameterabschätzung ist, wohingegen Schätzwerte und ihre Unsicherheiten nur eine näherungsweise Beschreibung

Mehr

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Zufallsvariable X. 30 e. 40 e = 33,33...% 6 Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Übung zur Stochastik

Übung zur Stochastik Übung zur Stochastik 1.) Die G-Partei hat bei der vergangenen Kommunalwahl in einer Stadt mit etwa 700 000 wahlberechtigten Bürgern rund 9 % der Stimmen erhalten. Nun werden 1 000 rein zufällig ausgewählte

Mehr

Abitur 2013 Mathematik NT Stochastik S II

Abitur 2013 Mathematik NT Stochastik S II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2013 Mathematik NT Stochastik S II Eine Agentur vertreibt Tickets für Sportveranstaltungen ( S ), Konzerte ( K ), Musicals ( M ) und Eventreisen ( E

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 4. Auflage Übungsaufgaben zu Kapitel 7 [Tet

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Prüfungsteil 2, Aufgabe 6. Stochastik. Nordrhein-Westfalen 2014LK. Aufgabe 6. Abitur Mathematik: Musterlösung

Prüfungsteil 2, Aufgabe 6. Stochastik. Nordrhein-Westfalen 2014LK. Aufgabe 6. Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 2, Aufgabe 6 Nordrhein-Westfalen 2014LK Aufgabe 6 a) (1) 1. SCHRITT: MODELLIERUNG MIT EINER BERNOULLIKETTE Wir modellieren die Situation mit einer Bernoullikette der Länge

Mehr

Bio- Statistik 1. mit 87 Abbildungen, 40 Tabellen und 102 Beispielen

Bio- Statistik 1. mit 87 Abbildungen, 40 Tabellen und 102 Beispielen Bio- Statistik 1 Beschreibende und explorative Statistik - Wahrscheinlichkeitsrechnung und Zufallsvariablen - Statistische Maßzahlen - Wichtige Verteilungen - Beurteilende Statistik - Vertrauensintervalle

Mehr

Staatliche Berufliche Oberschule für Wirtschaft München. 2. Schulaufgabe aus der Mathematik BOS

Staatliche Berufliche Oberschule für Wirtschaft München. 2. Schulaufgabe aus der Mathematik BOS Staatliche Berufliche Oberschule für Wirtschaft München 2. Schulaufgabe aus der Mathematik BOS 12 03.02.2013 Arbeitszeit 75 min 2 3 2 1. Gegeben ist die Polynomfunktion f k ( 0,1 x (16 k ) x 0,8x 0, k

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

3.5 Beschreibende Statistik. Inhaltsverzeichnis

3.5 Beschreibende Statistik. Inhaltsverzeichnis 3.5 Beschreibende Statistik Inhaltsverzeichnis 1 beschreibende Statistik 26.02.2009 Theorie und Übungen 2 1 Die Darstellung von Daten 1.1 Das Kreisdiagramm Wir beginnen mit einem Beispiel, welches uns

Mehr