VERSUCH 7: HALBLEITEREIGENSCHAFTEN UND DIODE

Größe: px
Ab Seite anzeigen:

Download "VERSUCH 7: HALBLEITEREIGENSCHAFTEN UND DIODE"

Transkript

1 VERSUCH 7: HALBLEITEREIGENSCHAFTEN UND DIODE 43 7 A Halbleitereigenschaften Das wichtigsten Halbleitermaterialien sind Silizium und Germanium. Sie besitzen die chemische Wertigkeit 4, d.h. es stehen in der äußeren Atomschale 4 Elektronen zu Bindungszwecken zur Verfügung. Im Kristall aus reinen Silizium (und Germanium) werden diese "Valenzelektronen" allesamt für kovalente Bindungen zu den 4 nächsten Nachbaratomen benutzt, die jedes Siliziumatom umgeben. In dieser kovalenten Bindung sind die Elektronen der äußeren Atomschale mit je einem Nachbaratom verkettet, so dass sie (wie die Innenelektronen) praktisch ortsgebunden sind. Geometrisch sind diese Nachbaratome in den Ecken eines Tetraeders angeordnet, in dessen Zentrum das betrachtete Siliziumatom sitzt. Die kovalenten Bindungen sind relativ stabil. Sie verhindern bei normalen Bedingungen, dass sich Elektronen im Kristall bewegen können. Der reine Halbleiter ist daher nahezu ein Isolator, wenn nicht durch besondere Umstände doch frei bewegliche Ladungsträger geschaffen werden (Licht, Temperatur, Fremdatome). Um ein Bindung aufzubrechen, benötigt man beim Silizium die Energie von E g =1,1eV. Der Unterschied zu Isolatoren besteht darin, dass die Bindungsenergie bei Isolatoren noch wesentlich größer ist (Diamant z.b. E g 7eV). Ganz wenige dieser Bindungen werden beim Silizium bei Zimmertemperatur aber durch thermische Anregung aufgelöst. Es entsteht dann je ein frei bewegliches Elektron. Ein Atom, das in dieser Weise von seinem Valenzelektron verlassen wurde, weist in seiner Bindung zu seinem Nachbarn eine Lücke auf, ein sog. Elektronen Loch (eine Bindung, der ein Elektron fehlt). Diese Lücke, die eine positive Ladung darstellt (das ursprüngliche Bindungselektron soll sich schon ein Stück von der Defektstelle entfernt haben), kann nun von einer Nachbarbindung wieder aufgefüllt werden, wodurch der Defekt zur Nachbarbindung wandert (s. Bild). Im Endeffekt entstehen also durch Aufbrechen einer Bindung zwei bewegliche Ladungsträger: ein bewegliches Elektron und eine beweglicher Defekt, der mit einer positiven Elementarladung verknüpft ist. Diesen Defekt nennt man auch Defektelektron Loch. Im elektrischen Feld laufen die freien Elektronen als negative Ladungsträger gegen die Feldrichtung, die Löcher dagegen in Feldrichtung, verhalten sich also wie positive Ladungsträger. Beide Ladungsträgerarten verleihen dem Halbleiter elektrische Leitfähigkeit, die sogenannte Eigenleitung, welche mit der Temperatur stark zunimmt. Man veranschaulicht sich die Vorgänge üblicherweise im sog. Bändermodell, das die Energie der Elektronen als Funktion des Ortes im Halbleiter angibt. Im reinen Halbleiterkristall besetzen die Elektronen der kovalenten Bindungen das

2 44 ganze Valenzband bis obenhin, so dass keinerlei Bewegungsfreiheit zwischen den besetzten Plätzen mehr besteht. Thermische auch optische Anregungen können die Elektronen über die Energielücke E g hinweg in das nahezu unbesetzte Leitungsband anheben, wo sie sich frei bewegen können. Dabei entsteht im Valenzband ein ebenfalls bewegliches Loch (s. Bild unten). Beide Ladungsträger tragen zur elektrischen Leitfähigkeit bei. Das große Anwendungspotential der Halbleiter besteht darin, dass durch Einbau von Fremdatomen die Dichte der beweglichen Ladungsträger gezielt erhöht werden kann. Dieser Vorgang heißt Dotierung. Er geschieht z.b. durch Diffusion aus der Gasphase bei hohen Temperaturen ( ca C). Dotiert man Silizium mit 5wertigem Arsen (As) ( mit 5wertigem Antimon Phosphor), so können diese 5wertigen Atome auf einigen Gitterplätzen ein Siliziumatom ersetzen. Da für die Kristallbindungen nur 4 Elektronen nötig sind, bleibt von vorne herein ein Elektron übrig, das sich nahezu frei im Kristall bewegen kann. Das As schenkt so zu sagen dem Kristall ein Elektron und wird dadurch zum Ion As +. Man bezeichnet es daher als Donator DonorAtom. Im Bänderschema befindet sich das überzählige Elektron des Donors knapp unterhalb des Leitungsbandes. Die energetische Anhebung durch thermische Anregung geschieht auf Grund der kleinen Energiedifferenz (54meV bei As) sehr leicht, so dass bei Zimmertemperatur praktisch alle Donoren ionisiert sind. Man spricht dann von n leitendem Silizium. Die Dotierungskonzentrationen liegen üblicherweise im Bereich bis 10 6 Dot.Atome/SiAtom. Die Leitfähigkeit steigt dabei drastisch an. Erst diese Dotierung macht die Halbleiter brauchbar für elektronische Anwendungen.

3 Entsprechend kann man auch mit 3wertigen Substanzen wie z.b. Bor (B) ( mit 3 wertigen Aluminium, Gallium, Indium) dotieren. Diese Fremdatome benötigen im Halbleitergitter ein Elektron zur Ausbildung der 4 Nachbarbindungen. Dieses fehlende Elektron entreißt das Bor sehr leicht den Atomen der Umgebung, wodurch dort ein beweglicher Elektronen Defekt Loch entsteht (daher der Name AkzeptorAtom). Im Bändermodell liegt das Energieniveau des fehlende Elektrons sehr nahe am Valenzband (Abstand bei B: 45meV) und kann daher sehr leicht aus dem Valenzband besetzt werden. Auch hier sind bei Zimmertemperatur praktisch alle B Atome zu B ionisiert. Der so behandelte Halbleiter wird pleitend genannt B Funktion des pn Übergangs als Diode Durch gleichförmige Dotierung entstehen noch nicht allzu interessante elektronische Bauteile. Trotzdem finden diese in der Sensortechnik (z.b. zur Temperaturmessung) schon ihre Anwendung. Größte Bedeutung haben dagegen Übergangsschichten zwischen p und n dotiertem Material, sog. pnübergänge. Technisch werden sie durch eine Aufeinanderfolge unterschiedlicher Diffusionsprozesse in einem Halbleiterkristall erzeugt. Am pnübergang stehen sich die unterschiedlichen Ladungsträger Elektronen und Löcher auf engstem Raum gegenüber. Sie können in dieser Zone sehr leicht wieder miteinander verbinden und sich so gegenseitig vernichten: die Elektronen füllen einfach die Defektelektronen (Elektronenlöcher) auf. Man kann sich auch vorstellen, dass die von den Donoren frei gewordenen Elektronen zur Ionisierung der Akzeptoren verwendet werden. Dieser Prozess pflanzt sich allerdings nicht durch den ganzen Halbleiter hindurch fort, sondern wird durch Raumladungsfelder gestoppt, die durch die ionisierten Donoren und Akzeptoren an der Grenzschicht entstehen. So verhindern z.b. die B Ionen auf der p Seite durch ihre elektrostatische Anziehungskraft auf die Löcher deren weiteres Diffundieren in die Grenzschicht. Im Endeffekt entsteht eine Zone mit geringer Konzentration von La

4 46 dungsträgern und hoher Raumladung (von den ionisierten Dotierungsatomen), die sog. Sperrschicht (s. Bild). Die Dicke dieser Schicht beträgt meist weniger als 1µm. Die Raumladung von den ionisierten Dotierungsatomen baut dabei eine Spannung auf, die Diffusionsspannung, die meist unter 1V liegt. Legt man nun an einen solchen pnübergang mit Hilfe von Elektroden eine äußere Spannung an, so zeigt sich je nach Polarität ein stark unterschiedliches Verhalten: Liegt an der pzone der negative Pol, so werden die Löcher der pzone noch weiter vom pnübergang weggezogen und die Dicke der Sperrschicht steigt. Da in der Sperrschicht keine Ladungsträger vorhanden sind, wirkt diese wie eine Isolationsschicht und verhindert nahezu vollständig jeglichen Stromfluss. Man sagt, der pnübergang ist in SperrRichtung gepolt. Liegt dagegen der positive Pol an der pzone, so treibt das äußere Feld die Löcher in die Sperrschicht. Auf der anderen Seite werden die Elektronen ebenfalls vom negativen Pol an der nzone in die Sperrschicht gezwungen und können dort mit den Löchern vereinigen. Dieser Prozess findet kontinuierlich statt, da ständig neue Ladungsträger von den Elektroden zur Verfügung gestellt werden. Es kommt also zu einem starken Stromfluss durch den pn Übergang, der nun in DurchlassRichtung gepolt ist. Dabei muss die angelegte Spannung größer als die Diffusionsspannung sein. Man hat damit eine Stromventil Diodenfunktion des pnüberganges erhalten. Je nach Polarität der angelegten Spannung sperrt die Diode wird sie stromdurchlässig. Das Schaltungssymbol der Diode zeigt das nebenstehende Bild. Der Pfeil zeigt von der p zur nzone. Positive Spannung in Pfeilrichtung bewirkt Stromdurchgang. Damit man beim Experimentieren die Anschlüsse der Dioden nicht verwechselt, sind diese üblicherweise wie angegeben gekennzeichnet. Ebenso sieht man im Bild eine typische Diodenkennlinie. Die Sperrströme liegen bei Si im na Bereich, bei Ge im µa Bereich und können nur mit hochempfindlichen Messgeräten nachgewiesen werden. In Durchlassrichtung steigt der Strom oberhalb der "Kniespannung" (ca. 0,6V bei Si) steil an. Diese Kniespannung ist gleich der Diffusionsspannung und ist zunächst notwendig, um die Dicke der Sperrschicht auf 0 zu reduzieren. Sie verursacht in Durchlassrichtung eine gewisse Verlustleistung, die je nach Bauart der Diode einen bestimmten Wert nicht überschreiten darf (Diode = Gleichrichter, im Laborjargon ausgesprochen: gleich riecht er.).

5 7 C Leuchtdiode 47 Wird die Sperrschicht mit einer Spannung (größer als die Diffusionsspannung) in Durchlassrichtung verbunden, so fließt ein Strom aus Elektronen und Löchern. In der Sperrschicht kombinieren die Elektronen mit den Löchern (siehe Abbildung unten). LICHTEMITTIERENDE _ DIODE = LED nur bei Halbleitern mit direkter Bandlücke z. B. GaAs anderen IIIV Verbindungen U D PSchicht Halbleiter NSchicht Lichtteilchen= Photon= Lichtquant Energie W=hf λ = hc/w + D + Metall U /2 D U /2 D Metall I Sperrschicht = Raumladungsgebiet + U > U bei Lichtwirkung D Besteht die Diode aus einem Halbleiter mit direkter Bandlücke, z. B. GaAs einem anderen IIIV Verbindungs Halbleiter, so wird die dabei frei werdende Energie als Licht frei. Darauf beruht die lichtemittierende Diode, auch Leuchtdiode LED genannt. Da die Elektronen sich auf einem Energieniveau um die Bandlücke W D größer als die Energie der Löcher bewegen, wird beim Kombinieren diese Energie W D frei und in Licht umgesetzt. Die Umrechnung von Energie der Bandlücke in Lichtwellenlänge des ausgesandten Lichtes erfolgt mit der Formel: λ = h c /W D = 6, Js m/s /(W D 1, J/eV) = 1, m / (W D /ev) λ = 1,24 mm / (W D /ev) Die Bandlücke von GaAs ist 1,43 ev. Die Wellenlänge des ausgesandten Lichtes ist: λ = 1,24 µm/(1,43) = 0,867 µm = 867 nm Die Wellenlänge liegt somit an der Grenze zwischen sichtbarem und infrarotem Licht. Durch Beimengung von AlAs (Aluminiumarsenid) wird die Bandlücke vergrößert und es wird sichtbares rotes Licht erzeugt.

6 48 7 D Dioden als Gleichrichter Eine wichtige Anwendung von Dioden ist die Umwandlung von Wechselstrom in Gleichstrom z. B. in Rechner Stromversorgungen. Die einfachste dabei mögliche Schaltung ist die Einphasen Einwegschaltung (unten im Bild als Schaltbild dargestellt). Dabei wird eine Wechselspannung û über eine Diode an einen Widerstand R (=Verbraucher) angeschlossen. Während der einen Hälfte einer jeden Periode der Wechselspannung u = û sin(ωt) fließt durch R ein Strom i= u/r während der anderen Hälfte ist der Strom gesperrt. u, i und Spannung u R an R verlaufen gemäß Bild unten. Der zeitliche Mittelwert der Spannung u R ergibt sich aus _ der Integration von der Sinuswelle û sin(ωt) zu: u R = û / π Bei Wechselspannungen wird meist nicht der Scheitelwert û, sondern der Effektivwert u eff = û / 2, den das Voltmeter anzeigt, angegeben. Bei Einführung dieser Effektivwertes wird der Mittelwert der Spannung u R zu: (ohne Kondensator) u R = û / π = u eff 2 / π = 0,45 u eff In der Praxis wird zur Umwandlung von Wechselstrom in Gleichstrom z. B. in Rechner Stromversorgungen meist die sogenannte Brückenschaltung aus 4 Dioden verwendet, um die zweite Halbwelle des Wechselstomes auch zu nutzen. Dadurch erhöht sich die erhaltene Gleichspannung um den Faktor 2 auf. _ u R =0,90 u eff In der Praxis ist der durch obige Schaltungen erhaltene Gleichstrom zu wellig und muss noch geglättet werden. Dies geschieht durch einen Kondensator größerer Kapazität, welcher dem Verbraucher R parallel geschaltet wird, siehe Schaltbild unten, als C dargestellt. Der Kondensator lädt sich auf, wenn die Quelle durch die Diode Strom liefert, und gibt Ladung in den Zeiten wo die Quelle wenig kein Strom liefert wieder an R ab. Bei geringer Stromentnahme durch den Verbraucher R wird dadurch der Strom in R fast eingeebnet (geglättet). Der Scheitelwert û= 2 u eff wird sozusagen gespeichert und bleibt über die Periode erhalten. Dieser Wert stellt sich bei Einsatz eines Kondensators ohne Strombelastung ein. Bei Stromentnahme zeigt sich wieder eine zunehmende Welligkeit (Mittelwert u ist dann etwa u R bei Brückenschaltung aus 4 Dioden ). > 1. Es wird die Strom Spannungs Kennlinie einer Diode (BAY 157, BAY 45, BAY 44, AA114, 1N4141 ähnlich, A= Germanium B= Silizium, 1N= Leistungsdiode) Leuchtdiode (LED = GaAs GaP Diode) bestimmt. 2. In einer Einphasen Einwegschaltung mit einer Diode (unten im Bild als Schaltbild dargestellt) wird das Verhältnis der Verbraucherspannung u R zu Wechselspannung u eff und û bei verschiedenen Stromentnahmen durch den Verbraucher (= Widerstand R) und verschiedenen Glättungen durch verschiedene Kondensatoren C gemessen.

7 49 3. Zur Einphasen Einwegschaltung werden mit Hilfe eines Oszilloskopes Skizzen zum Spannungsverlauf angefertigt. 1. Bauen Sie zunächst gemäß Schaltskizze die Anordnung zur Messung der Durchlassrichtung auf. Der Widerstand soll zu große Ströme bei Fehlbedienungen verhindern. Stellen Sie am Netzgerät die in der Tabelle angegebenen Ströme ein und messen Sie die zugehörige Durchlass Spannung. Diodentyp: Halbleitermaterial: I/mA 45, ,5 0,2 0,1 U / mv bei LED: leuchtet? Sperrichtung: Spannung: U= Strom I= Zur Messung der Sperrströme wird die Diode umgepolt und der Schutzwiderstand wird entsprechend Schaltskizze vergrößert. Die verwendeten Amperemeter besitzen eine Empfindlichkeitsgrenze von 1µA. Da die Sperrströme bei Si wesentlich niedriger liegen, können wir im Praktikum nur ihre praktisch verschwindende Größe qualitativ nachweisen.(spannung in SperrRichtung: 5V) * Netzteil, maximal 5 V * A, V Digital Messinstrumente, geeigneter Messbereich 2. Ein einfacher Einweg Gleichrichter mit verschiedenen Glättungs Kondensatoren entsprechend Schaltskizze wird aufgebaut und die Spannung u eff und der Wert der Verbraucherspannung u R gemessen. Zur Messung der Wechselspannung u eff (û) dient Messinstrument MX 112, sie darf 16V nicht überschreiten. Gleichstrom i und Gleichspannung U R werden mit Digitalinstrumenten M2011 auf entsprechende Gleichstrom Messbereichen gemessen.

8 50 Bei Dioden ist auf die richtige Durchlassrichtung zu achten. Die Schaltung darf nur vom Betreuer in Betrieb genommen werden. Zur Messung i=0 wird der Stecker beim Gleichstrom Digitalinstrumenten herausgezogen, zur Messung C=0 wird die Brücke bei C herausgezogen. Beim Anschluss der Kondensatoren C ist auf die richtige Polung (+, ) zu achten. Diodentyp:... Halbleitermaterial: u eff /V C/µF i/ma , , ,0 U R / V U R /u eff U R /u eff nach Formel * R: Reihenschaltung von 100 Ω ( 63 Ω) fest und in Reihe 1 kω Schiebewiderstand zum Einstellen des Stromes *û: Messinstrument MX 12 zur Messung der Wechselspannung u eff, maximal 16V * i, u Digital Messinstrumente, Gleichspannung, Gleichstrom

9 51 3. Zur Einphasen Einwegschaltung werden mit Hilfe eines Osszilloskopes Skizzen zum Spannungsverlauf angefertigt. Die jeweiligen Oszilloskop Bilder für den Wert C =100µF werden direkt auf durchsichtiges mm Papier abgepaust, und zwar 4 Bilder in ein Graph, (durchsichtiges mm Papier ist am Platz.) Die Graphen werden mit U und t Achsen und mit Maßstäben versehen. Auswertung: / \/ <=>? 1. Stellen Sie die Kennlinie der Diode I über U graphisch auf mm Papier im Maßstab 0,1V > 20mm und 1mA > 4 mm ( 5 mm) dar. 2. Die Tabelle zu 2 wird ergänzt und zwar die letzte beiden Zeilen. 3. Die Tabelle zu 2 wird mit U R /u eff nach den Formeln in Kapitel 7 D ergänzt.

VERSUCH 8: HALBLEITER UND BIPOLAR- TRANSISTOR

VERSUCH 8: HALBLEITER UND BIPOLAR- TRANSISTOR 63 8 A Halbleitereigenschaften VERSUCH 8: HALBLEITER UND BIPOLAR- TRANSISTOR Das wichtigsten Halbleitermaterialien sind Silizium und Germanium. Sie besitzen die chemische Wertigkeit 4, d.h. es stehen in

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Arbeitsblatt: U-I-Kennlinien von Dioden

Arbeitsblatt: U-I-Kennlinien von Dioden Arbeitsblatt: U-I-Kennlinien von Dioden Mit dem folgenden Versuch soll die U-I-Kennlinie von Dioden (Si-Diode, Leuchtdiode, Infrarot-Diode (IR-Diode) aufgenommen werden. Aus der Kennlinie der IR-Diode

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

Einfaches Halbleitermodell

Einfaches Halbleitermodell Kapitel 9 Einfaches Halbleitermodell 9.1 Aufbau des liziumkristallgitters Der Inhalt dieses Kapitels ist aus Bauer/Wagener: Bauelemente und Grundschaltungen der Elektronik entnommen. Auf der äußeren Schale

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Elektronen und Löcher 3 2 3 2L 2mkT Eg nn e p exp 2 2 kt n e 3 3/2 2L 2mkT Eg np exp 2 2 2kT Die FermiEnergie liegt in der

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Die Silizium - Solarzelle

Die Silizium - Solarzelle Die Silizium - Solarzelle 1. Prinzip einer Solarzelle Die einer Solarzelle besteht darin, Lichtenergie in elektrische Energie umzuwandeln. Die entscheidende Rolle bei diesem Vorgang spielen Elektronen

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Bestimmung des planckschen Wirkungsquantums aus der Schwellenspannung von LEDs (A9)

Bestimmung des planckschen Wirkungsquantums aus der Schwellenspannung von LEDs (A9) 25. Juni 2018 Bestimmung des planckschen Wirkungsquantums aus der Schwellenspannung von LEDs (A9) Ziel des Versuches In diesem Versuch werden Sie sich mit Light Emitting Diodes (LEDs) beschäftigen, diese

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen Halbleiter Dotierung = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau von Atomen mit 5 Valenzelektronen = Donatoren Elektronengeber (P, Sb, As) p-dotierung Einbau

Mehr

2. Halbleiterbauelemente

2. Halbleiterbauelemente Fortgeschrittenpraktikum I Universität Rostock» Physikalisches Institut 2. Halbleiterbauelemente Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 20. April 2006 Protokoll erstellt:

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

5. Kennlinien elektrischer Leiter

5. Kennlinien elektrischer Leiter KL 5. Kennlinien elektrischer Leiter 5.1 Einleitung Wird an einen elektrischen Leiter eine Spannung angelegt, so fliesst ein Strom. Als Widerstand des Leiters wird der Quotient aus Spannung und Strom definiert:

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur wolfgang.koch@uni-jena.de Inhalt Grundlagen der Techn.

Mehr

Geschichte der Halbleitertechnik

Geschichte der Halbleitertechnik Geschichte der Halbleitertechnik Die Geschichte der Halbleitertechnik beginnt im Jahr 1823 als ein Mann namens v. J. J. Berzellus das Silizium entdeckte. Silizium ist heute das bestimmende Halbleitermaterial

Mehr

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante E7 Diodenkennlinie und PLANCK-Konstante Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen

Mehr

Transistorkennlinien 1 (TRA 1)

Transistorkennlinien 1 (TRA 1) Physikalisches Praktikum Transistorkennlinien 1 (TRA 1) Ausarbeitung von: Manuel Staebel 2236632 Michael Wack 2234088 1. Messungen, Diagramme und Auswertungen Der Versuch TRA 1 soll uns durch das Aufstellen

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Tobias Scheinert / (Heiko Falk) Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität

Mehr

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen das PLANCKsche Wirkungsquantum h.

Mehr

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals Halbleiter Halbleiter sind stark abhängig von : - der mechanischen Kraft (beeinflusst die Beweglichkeit der Ladungsträger) - der Temperatur (Zahl und Beweglichkeit der Ladungsträger) - Belichtung (Anzahl

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Die kovalente Bindung

Die kovalente Bindung Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit

Mehr

Versuch: h-bestimmung mit Leuchtdioden

Versuch: h-bestimmung mit Leuchtdioden Lehrer-/Dozentenblatt Gedruckt: 22.08.207 2:35:42 P4800 Versuch: h-bestimmung mit Leuchtdioden Aufgabe und Material Lehrerinformationen Zusätzliche Informationen Das plancksche Wirkungsquantum h ist eine

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K Bild 1.2 Das ideale Silizium-Gitter (Diamantgitterstruktur). Die großen Kugeln sind die Atomrümpfe; die kleinen Kugeln stellen die Valenzelektronen dar, von denen je zwei eine Elektronenpaarbrücke zwischen

Mehr

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung 2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF 6 VERSUCH TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF Oft ist es notwendig, Strom-, Spannungs- und Leistungsaufnahme eines Gerätes regelbar einzustellen.ein solches "Stellen"

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode-

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode- -Dioden- Dioden sind Bauelemente, durch die der Strom nur in eine Richtung fliessen kann. Sie werden daher häufig in Gleichrichterschaltungen eingesetzt. Die Bezeichnung Diode ist aus der griechischen

Mehr

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007 Versuch E21 - Transistor als Schalter Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Halbleiter und ihre Eigenschaften..................

Mehr

Transistorkennlinien 1 (TRA 1) Gruppe 8

Transistorkennlinien 1 (TRA 1) Gruppe 8 Transistorkennlinien 1 (TRA 1) Gruppe 8 1 Einführung Dieser Versuch beschäftigt sich mit Transistoren und ihren Kennlinien. Ein Transistor besteht aus drei aufeinanderfolgenden Schichten, wobei die äußeren

Mehr

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Universität - GH Essen Fachbereich 7 Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 7 - Dioden

Universität - GH Essen Fachbereich 7 Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 7 - Dioden niversität - GH Essen Fachbereich 7 Physik 20.9.01 PHYSIKALISCHES PRAKTIKM FÜR ANFÄNGER Versuch: E 7 - Dioden 1. Grundlagen nterschied zwischen Leitern, Halbleitern und Isolatoren, Dotierung von Halbleitern

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

Leiter, Halbleiter, Isolatoren

Leiter, Halbleiter, Isolatoren eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der

Mehr

Festkörper. Festkörper

Festkörper. Festkörper Festkörper Einteilung der Materie in drei Aggregatszustände: fest, flüssig, gasförmig Unterscheidung Festkörper behält seine Form Nachteil: Ungenaue Abgrenzung Beispiel: Ist Butter Festkörper oder Flüssigkeit

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien UniversitätQOsnabrück Fachbereich Physik Dr. W. Bodenberger Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien Betrachtet man die Kontakstelle zweier Metallischer Leiter mit unterschiedlichen

Mehr

Lernaufgabe: Halbleiterdiode 1

Lernaufgabe: Halbleiterdiode 1 1 Organisation Gruppeneinteilung nach Plan / Zeit für die Bearbeitung: 60 Minuten Lernziele - Die Funktionsweise und das Schaltverhalten einiger Diodentypen angeben können - Schaltkreise mit Dioden aufbauen

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

Versuchsprotokoll. Diodenkennlinien und Diodenschaltungen. Dennis S. Weiß & Christian Niederhöfer. SS 98 / Platz 1. zu Versuch 2

Versuchsprotokoll. Diodenkennlinien und Diodenschaltungen. Dennis S. Weiß & Christian Niederhöfer. SS 98 / Platz 1. zu Versuch 2 Dienstag, 5.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 2 Diodenkennlinien und Diodenschaltungen 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

Praktikum Lasertechnik, Protokoll Versuch Halbleiter

Praktikum Lasertechnik, Protokoll Versuch Halbleiter Praktikum Lasertechnik, Protokoll Versuch Halbleiter 16.06.2014 Ort: Laserlabor der Fachhochschule Aachen Campus Jülich Inhaltsverzeichnis 1 Einleitung 1 2 Fragen zur Vorbereitung 2 3 Geräteliste 2 4 Messung

Mehr

Elektrische Leistung und Joulesche Wärme

Elektrische Leistung und Joulesche Wärme lektrische eistung und Joulesche Wärme lektrische eistung: lektrische Arbeit beim Transport der adung dq über Spannung U: dw el = dq U Wenn dies in einer Zeit dt geschieht (U = const.), so ist die eistung

Mehr

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt 1 isierung 1.1 Der -Halbleiter-Kontakt 1.1.1 Kontaktierung von dotierten Halbleitern Nach der Herstellung der Transistoren im Siliciumsubstrat müssen diese mittels elektrischer Kontakte miteinander verbunden

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert FK06 Halbleiterdioden (Pr_PhII_FK06_Dioden_7, 24.10.2015) 1. 2. Name Matr. Nr. Gruppe

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Die Leuchtdiode (Artikelnr.: P )

Die Leuchtdiode (Artikelnr.: P ) Lehrer-/Dozentenblatt Gedruckt: 30.03.207 7:0:5 P37800 Die Leuchtdiode (Artikelnr.: P37800) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 0-3 Lehrplanthema: Elektrizitätslehre Unterthema:

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

10-1. Leybold-Heraeus: Grundlagen der Elektronik Tietze-Schenk: Halbleiter-Schaltungstechnik (Springer-Verlag, 1990)

10-1. Leybold-Heraeus: Grundlagen der Elektronik Tietze-Schenk: Halbleiter-Schaltungstechnik (Springer-Verlag, 1990) 10-1 Elektronik Vorbereitung: Halbleiter und deren charakteristische Eigenschaften, einfache Halbleiterbauelemente: Heißleiter NTC, Photowiderstand LDR, Eigenleitung, Störstellenleitung, pn-übergang, Aufbau

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Protokoll Versuch 27 Solarzellen Harald Meixner Sven Köppel Matr.-Nr. 3794465 Matr.-Nr. 3793686 Physik Bachelor 2. Semester Physik Bachelor 2.

Mehr

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes Halbleiterphysik 1. Physikalische Definition des elektrischen Stromes Nach dem Bohr schen Atommodell sind Atome aus positiven und negativen Ladungsträgern aufgebaut. Die positiven Ladungsträger (Protonen)

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E8 Kennlinien Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 08.01.2001 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Metalle 2.2 Halbleiter 2.3 Gasentzladugen 3.

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig.

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig. Schematische Darstellung des Effekts eines Donor oder Akzeptoratoms im Siliziumgitter das 5. Elektron ist fuer Bindung im Kristall nicht noetig und ist daher sehr schwach gebunden (grosser Radius) Fig.

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 -

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Name: Datum: weitere Gruppenmitglieder : Vorbereitung: DORN-BADER Mittelstufe S. 271, roter Kasten S. 272, roter Kasten, S. 273, Abschnitt 2. Thema:

Mehr

1. Teil: ANALOGELEKTRONIK

1. Teil: ANALOGELEKTRONIK 1. Teil: ANALOGELEKTRONIK 1. ELEKTRISCHE EIGENSCHAFTEN DER FESTEN MATERIE 1.1. EINLEITUNG Um zu verstehen, wie Halbleiter als Bauteile der Elektronik funktionieren, ist es nützlich, sich mit dem Aufbau

Mehr

4. Fehleranordnung und Diffusion

4. Fehleranordnung und Diffusion 4. Fehleranordnung und Diffusion 33 4. Fehleranordnung und Diffusion Annahme: dichtes, porenfreies Oxid Materialtransport nur durch Festkörperdiffusion möglich Schematisch: Mögliche Teilreaktionen:. Übergang

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Günter EIBENSTEINER Matrikelnummer 9856136 mit Christian J. ZÖPFL

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Günter EIBENSTEINER Matrikelnummer 9856136 mit Christian J. ZÖPFL NTL Baukasten Elektronik Die DIODE Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD Günter EIBENSTEINER Matrikelnummer 9856136 mit Christian J. ZÖPFL INHALTSVERZEICHNIS 1. Lernziele (Seite 3) 2. Stoffliche

Mehr

Der Transistor (Grundlagen)

Der Transistor (Grundlagen) Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt

Mehr

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),

Mehr

Aufgabe 1: Induktion Schlaumeiers Transformator

Aufgabe 1: Induktion Schlaumeiers Transformator Aufgabe 1: Induktion Schlaumeiers Transformator Gleichspannung führt nicht zu einer induzierten Spannung in der Spule (keine Änderung des Magnetfelds) Windungsanzahl der Primär und Sekundärspulen sind

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

14. November Silizium-Solarzelle. Gruppe 36. Simon Honc Christian Hütter

14. November Silizium-Solarzelle. Gruppe 36. Simon Honc Christian Hütter 14. November 25 Silizium-Solarzelle Gruppe 36 Simon Honc shonc@web.de Christian Hütter Christian.huetter@gmx.de 1 I. Inhaltsverzeichnis I. Inhaltsverzeichnis... 2 II. Theoretische Grundlagen... 3 1. Das

Mehr

PS 7 - Halbleiter I. 1. Der reine Halbleiter

PS 7 - Halbleiter I. 1. Der reine Halbleiter PS 7 - Halbleiter I 1. Der reine Halbleiter Halbleiter, genauer gesagt ihre Leitfähigkeit, hängt stark von der Temperatur ab. Im Gegensatz zu Metallen, die im Allgemeinen so genannte Kaltleiter (auch PTC

Mehr

Physik 4 Praktikum Auswertung PVM

Physik 4 Praktikum Auswertung PVM Physik 4 Praktikum Auswertung PVM Von J.W, I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Solarzelle......... 2 2.2. PV-Modul......... 2 2.3. Schaltzeichen........ 2 2.4. Zu ermittelnde

Mehr

Nichtlineare Bauelemente - Protokoll zum Versuch

Nichtlineare Bauelemente - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)

Mehr

Halbleiterdioden. Matrikelnummer: Versuchsziel und Versuchsmethode:

Halbleiterdioden. Matrikelnummer: Versuchsziel und Versuchsmethode: E24 Name: Halbleiterdioden Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Auswertung. C16: elektrische Leitung in Halbleitern

Auswertung. C16: elektrische Leitung in Halbleitern Auswertung zum Versuch C16: elektrische Leitung in Halbleitern Alexander FufaeV Partner: Jule Heier Gruppe 434 Einleitung In diesem Versuch sollen wir die elektrische Leitung in Halbleitern untersuchen.

Mehr