Fachhochschule Dortmund FB Nachrichtentechnik ELA - Prakt. Versuch 13: Frequenzweichenberechnung SS 1995

Größe: px
Ab Seite anzeigen:

Download "Fachhochschule Dortmund FB Nachrichtentechnik ELA - Prakt. Versuch 13: Frequenzweichenberechnung SS 1995"

Transkript

1 In der Praxis werden überwiegend Frequenzweichen erster, zweiter und dritter Ordnung verwendet, die im olgenden einzeln beschrieben werden. Frequenzweiche. Ordnung Diese Weiche kommt mit nur einem Bauteil in jedem weig aus. Der Tiepaß (läßt nur tiee Frequenzen zu) wird durch eine Reihenspule, der Hochpaß (läßt nur hohe Frequenzen durch) durch einen Reihenkondensator gebildet. Die renzrequenz liegt da, wo die Spannung um 3 db abgeallen ist. Die Flankensteilheit beträgt 6 db/oktave, d.h. bei jeder Verdoppelung der Frequenz verändert sich die Spannung am autsprecher um den Faktor. Vorteilhat ist der sehr geringe Bauteileauwand und ein günstiges Phasenverhalten. Breitbandige hassis mit ausgeglichenen Frequengängen können mit klanglich ausgezeichnetem Ergebnis so gekoppelt werden. Der Nachteil ist, daß der autsprecher Frequenzen zugeührt bekommt, die weit außerhalb seines optimalen Einsatzbereiches liegen. Kalottenhochtöner z.b. produzieren ot einen hohen Klirraktor bei der Resonanzrequenz. Wenn man die Trennrequenz eine Oktave höher als die Resonanzrequenz R legt, wird die Spannung bei R nur um den Faktor verringert. Das ist ot nicht ausreichend. Außerdem bringt das die eahr der mechanischen Überlastung durch zu große Amplituden der Kalotte mit sich. In solchen Fällen muß die Trennrequenz mindestens Oktaven höher als die Resonanzrequenz der Kalotte liegen oder man greit zu einer Weiche höherer Ordnung. 0 lg U T /U 0 0 lg U H /U 0-0dB k,6k,5k 4k 6,3k 0k 6k lg /Hz U 0 Tiepaß U T π Hochpaß U H

2 U 0 π Frequenzweiche. Ordnung Bei einer Frequenzweiche. Ordnung werden ür Tiepaß und ür Hochpaß je zwei Bauteile benötigt. 0 lg U T /U 0 0 lg U H /U 0-0dB k,6k,5k 4k 6,3k 0k 6k lg /Hz U 0 Tiepaß U T π U 0 Hochpaß U H Das hat den Vorteil, daß diese Weiche die einzelnen Frequenzbereiche stärker voneinander trennt als eine Weiche. Ordnung. Man kann die optimalen Frequenzbereiche eines autsprechers besser ausnutzen. Außerdem ist die eahr der Überlastung eines Hochtöners durch tiee Frequenzen geringer. Die Flankensteilheit hängt von der Dimensionierung der Bauteile ab. In der Regel wird db/oktave mit sogenannten Butterworth-harakteristik gewählt, da das ein guter Kompromiß zwischen Impulsverhalten und Flankensteilheit ist. Hoch -und Tiepaß verschieben die Phase im

3 Übernahmebereich so, daß man den autsprecher im Hochpaß umpolen muß. Andernalls heben sich im Übernahmebereich die Schallwellen au und man bekommt im Frequenzgang einen Einbruch (s. Abb.). 0 lg p/pmax -0dB ϕ ( U T ) - ϕ ( U H ) k,6k,5k 4k 6,3k 0k 6k lg /Hz Bis jetzt sind nur Frequenzweichen ür weiwegeboxen besprochen worden. Für Dreiwegeboxen braucht man einen Bandpaß, der nur mittlere Frequenzen durchläßt. Im Prinzip besteht er aus Tie -und Hochpaß, die hintereinandergeschaltet sind. Die Berechnung erolgt wie bei den einzelnen Pässen. Natürlich muß darau geachtet werden, daß sich die Frequenzbereiche überlappen, d.h. die Trennrequenz des Tiepasses liegt höher als die des Hochpasses. Um Phasenverschiebungen auszugleichen, werden bei einer Dreiwegweiche die autsprecher am Tie -und Hochpaß richtig, nur am Bandpaß dagegen verpolt angeschlossen. Bei kommerziellen Frequenzweichen ist dies meist schon durch eine Beschritung berücksichtigt, so daß der Pluspol des autsprechers mit dem Pluspol der Weiche verbunden werden muß. 0 lg U M /U 0-0dB U O 3

4 k,6k,5k 4k 6,3k 0k 6k lg /Hz U M U π U O π O Frequenzweiche 3. Ordnung Will man noch höhere Flankensteilheit verwirklichen, muß man pro weig noch ein weiteres Bauteil verwenden. Die Flankensteilheit ist mit 8 db pro Oktave wieder um 6 db pro Oktave gegenüber einer Weiche. Ordnung gestiegen. Mit dieser Frequenzweiche kann man z.b. Treiber noch sehr nahe an die kritische ut-o-frequenz eines Horns ankoppeln. Bandpässe 3. Ordnung benötigen allein sechs Bauteile. In den meisten Fällen lohnt sich dieser Auwand nicht. 0 lg U T /U 0 0 lg U H /U 0-0dB k,6k,5k 4k 6,3k 0k 6k lg /Hz H H T T 4

5 U 0 Tiepaß T U T U 0 Hochpaß H U H Tiepaßelemente: T π T 3 T Hochpaßelemente: H 3 8π H 3π H π Versuchsvorbereitungen (Hausaugaben): Warum beträgt bei einem Tiepaß.Ordnung die Flankensteilheit -6dB/Oktave? Warum beträgt bei einem Tiepaß.Ordnung die Flankensteilheit -db/oktave? Warum beträgt bei einem Tiepaß 3.Ordnung die Flankensteilheit -8dB/Oktave? Welche Näherung wird bei der Herleitung der oben angegebenen Formeln ür angenommen? eben sie die exakte Formel ür die Übertragungsunktion U H ()/U 0 () ür die Frequenzweiche mit dem Hochpaß.Ordung an. Berechnen Sie die Elemente einer Frequenzweiche.Ordnung mit: 5kHz P max 00W (4Ω-Tietöner) φ 35mm (mittlerer Wickeldurchmesser) Berechnen Sie den Drahtdurchmesser der Spule so, daß dieser mit maximal 0A/mm² belastet werden kann. Versuchsdurchührung: 5

6 Unter Anleitung wird eine Spulen gewickelt. Anschließend wird mit dem berechneten Kondensator eine Weiche augebaut und an eine Box angeschlossen. In einem Hörtest wird diese mit einer Frequenzweiche.Ordnung verglichen. Die Ergebnisse werden protokolliert. Mit einem Programm wird die Übertragungsunktion einer Weiche 3.Ordnung berechnet und dargestellt. 6

= 16 V geschaltet. Bei einer Frequenz f 0

= 16 V geschaltet. Bei einer Frequenz f 0 Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie

Mehr

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied.

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied. 5. Versuch Aktive HochpaßiIter. und. Ordnung (Durchührung Seite I-7 ) ) Filter. Ordnung Bestimmung des Frequenz- und Phasenganges eines Hochpaßilters. und. Ordnung sowie Messen der Grenzrequenz. Verhalten

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 10.01.2017 Erstellt am 11.01.2017 von Poppenberger Übungsteilnehmer

Mehr

Aktive Filter mit OPV

Aktive Filter mit OPV Aktive Filter mit OPV Pascal Seiler Sommersemester 2013 14. Mai 2013 1 Inhaltsverzeichnis Passive Filter Aktive Filter Filterdesign Filter im Projektlabor 14. Mai 2013 2 Pascal Seiler Aktive Filter mit

Mehr

Wechselstrom- und Impulsverhalten von RCL-Schaltungen

Wechselstrom- und Impulsverhalten von RCL-Schaltungen Fakultät für Technik Bereich Informationstechnik Wechselstrom- und Impulsverhalten von RCL-Schaltungen Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemees Mittels passiven Komponenten (R, C, L) werden

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

Versuche P1-53,53,55. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag:

Versuche P1-53,53,55. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: Versuche P-53,53,55 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut ür Technologie, Bachelor Physik Versuchstag: 7..200 Augabe - Hochpass und Tiepass Abbildung : R-C Spannungsteiler Ein R-C Spannungsteiler

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 10.01.2017 Erstellt am 11.01.2017 von Poppenberger Übungsteilnehmer

Mehr

Labor Grundlagen Elektrotechnik

Labor Grundlagen Elektrotechnik Fakultät für Technik Bereich Informationstechnik ersuch 5 Elektrische Filter und Schwgkreise SS 2008 Name: Gruppe: Datum: ersion: 1 2 3 Alte ersionen sd mit abzugeben! Bei ersion 2 ist ersion 1 mit abzugeben.

Mehr

Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay

Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay Aktives LR12-Filter mit Bassentzerrung und Hochpassdelay Dieses Filter trennt das Signal eines Stereokanals in einen Hochpasszweig und einen Tiefpasszweig 2. Ordnung nach Linkwitz-Riley auf. Die Trennfrequenz

Mehr

4. Passive elektronische Filter

4. Passive elektronische Filter 4.1 Wiederholung über die Grundbauelemente an Wechselspannung X Cf(f) X Lf(f) Rf(f) 4.2 Einleitung Aufgabe 1: Entwickle mit deinen Kenntnissen über die Grundbauelemente an Wechselspannung die Schaltung

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld Grundlagen der Elektrotechnik Protokoll Schwingkreise Christian Kötz, Jan Nabbefeld 29. Mai 200 3. Versuchsdurchführung 3.. Versuchsvorbereitung 3..2. Herleitung Resonanzfrequenz und der 45 o Frequenz

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Frequenzselektion durch Zwei- und Vierpole

Frequenzselektion durch Zwei- und Vierpole Frequenzselektion durch wei- und Vierpole i u i 1 u 1 Vierpol u 2 i 2 Reihenschwingkreis L R C Reihenschwingkreis Admitanzverlauf des Reihenschwingkreises: Die Höhe ist durch R die Breite durch Q R bestimmt.

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

7. Ausgewählte Wechselstromanordnungen

7. Ausgewählte Wechselstromanordnungen 7. Ausgewählte Wechselstromanordnungen 7. Ausgewählte Wechselstromanordnungen 7. Schaltungen mit requenzselektiven Eigenschaten (t) y(t) Zeitbereich: Bildbereich (komplee Ebene): d y( t) ( ( t),, ( t)

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Grundlagen bioeletrische Systeme SS2008/

Grundlagen bioeletrische Systeme SS2008/ SS2008/09 0.06.2009 Prüfung.06.2008. Gruppe.. Ermitteln sie den Amplituden- und Frequenzbereich des EMG Aus Tabelle abgelesen: fgu=20hz fgo=khz A = 250µV (geschätzt EKG liegt ca. bei 200 µv)..2 Entwerfen

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Vergleich der Schallabstrahlung von Schallwand und Waveguide

Vergleich der Schallabstrahlung von Schallwand und Waveguide Vergleich der Schallabstrahlung von Schallwand und Waveguide Die Stichworte sind: Primärschallquelle, Sekundärschallquelle, Baffel Step, zeitrichtig. Autor: Dipl-Ing. Leo Kirchner 2007 Copyright Kirchner

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Resonanzkurve eines Federpendels

Resonanzkurve eines Federpendels Resonanzkurve eines Federpendels Die Resonanzkurve eines Federpendels zu messen ist im Prinzip einach. Trotzdem kommt man um einen gewissen Auwand nicht herum. Mein Vorschlag ist die nacholgende Apparatur.

Mehr

AfuTUB-Kurs Schwingkreis

AfuTUB-Kurs Schwingkreis Technik Klasse A 04: e & Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 -Frequenzgang cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Betriebsanleitung PC AMP II

Betriebsanleitung PC AMP II Betriebsanleitung PC AMP II Volume Output Speaker ext. Min Max Input 0 230VAC / 0.5 Amp Electronics Verstärker-Modul Inhaltsverzeichnis Wichtige Sicherheitshinweise Technische Daten / Garantie... 2 Einleitung...

Mehr

Sparbox der Lautsprecher für den kleinen Geldbeutel

Sparbox der Lautsprecher für den kleinen Geldbeutel Sparbox der Lautsprecher für den kleinen Geldbeutel Der Hersteller Visaton hat bereits eine Vielzahl von Selbstbauprojekten auf die Beine gestellt. Von preiswert bis hochwertig ist alles vertreten. Ein

Mehr

Berechnungen um die Schallplatte Teil 1

Berechnungen um die Schallplatte Teil 1 Pievox Information Copyright by Ernst Schmid, München Berechnungen um die Schallplatte Teil 1 Die Faktoren sind Schnelle, Auslenkung / Amplitude und Frequenz Grundsätzlich ist es von Vorteil, den Abtaster

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter Filter Filter! Hochpassfilter! Tiefpassfilter! Bandpassfilter (Bandsperrfilter)! FIRFilter! Oktav/Terz... nteloktavfilter wird Titel 2 Hochpassfilter LowCutFilter HighPassFilter Trittschallfilter BassCutFilter

Mehr

P1-53,54,55: Vierpole und Leitungen

P1-53,54,55: Vierpole und Leitungen Physikalisches Anfängerpraktikum (P1 P1-53,54,55: Vierpole und Leitungen Matthias Ernst (Gruppe Mo-24 Ziel des Versuchs ist die Durchführung mehrerer Messungen an einem bzw. mehreren Vierpolen (Drosselkette

Mehr

Labor für Technische Akustik

Labor für Technische Akustik L a: Oszilloskop e: Ultraschallwandler 40 khz b: C-Verstärker : Generator 40 khz c: Ultraschallwandler 40 khz g: Generator 40 khz d: Ultraschallwandler 40 khz 1. Versuchsziele Mit einem Oszilloskop soll

Mehr

Elektrotechnik. Prüfung 5 E-SB Copyright Elektro-Ausbildungszentrum. ELEKTRO-SICHERHEITSBERATER/IN E-SB 0*100 Seite 1 PRÜFUNG 5, ELEKTROTECHNIK

Elektrotechnik. Prüfung 5 E-SB Copyright Elektro-Ausbildungszentrum. ELEKTRO-SICHERHEITSBERATER/IN E-SB 0*100 Seite 1 PRÜFUNG 5, ELEKTROTECHNIK ELEKTRO-SICHERHEITSBERATER/IN E-SB 0*00 Seite Elektrotechnik Prüfung 5 E-SB 0500 Kandidatennummer Name, Vorname Datum Punkte/Maximum / 60 Note Klassenschnitt/ Maximalnote / Bemerkung zur Prüfung Punktemaximum

Mehr

GEL Laborbericht Versuch: Reihenschwingkreis

GEL Laborbericht Versuch: Reihenschwingkreis GEL Laborbericht Versuch: ihenschwingkreis Andreas Hofmeier Axel Schmidt 2. Januar 2004. Zusammenfassung Die Schaltung vierhielt sich bis auf kleinere Bauteil- und Messtoleranzen wie berechnet. Ziemlich

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Praktikum II RE: Elektrische Resonanz

Praktikum II RE: Elektrische Resonanz Praktikum II E: Elektrische esonanz Betreuer: Dr. Torsten Hehl Hanno ein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 29. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Tontechnik 1. Lautsprecher. Lautsprecher. dynamisches Prinzip. Konuslautsprecher. Kalottenlautsprecher

Tontechnik 1. Lautsprecher. Lautsprecher. dynamisches Prinzip. Konuslautsprecher. Kalottenlautsprecher Tontechnik 1 Lautsprecher Audiovisuelle Medien HdM Stuttgart Lautsprecher dynamisches Prinzip Schwingspule im Dauermagnetfeld Vorteile / Nachteile Konuslautsprecher Kalottenlautsprecher kleine Membran

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

(* = HB3 Stoff, die Kennzeichnung der für HB3 wichtigen Teile mit einem Stern (*) ist eine wertvolle Hilfe beim praktischen Studium).

(* = HB3 Stoff, die Kennzeichnung der für HB3 wichtigen Teile mit einem Stern (*) ist eine wertvolle Hilfe beim praktischen Studium). Inhalt (* = HB3 Sto, die Kennzeichnung der ür HB3 wichtigen Teile mit einem Stern (*) ist eine wertvolle Hile beim praktischen Studium). 7 RÖHREN 7 7.1 Schwingkreis-Details* 7 7.1.1 Verlustparameter 8

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Tetaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger Taschenrechner,

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung

Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung Tontechnik 2 Entzerrung Audiovisuelle Medien HdM Stuttgart Entzerrung Entzerrung Anhebung bzw. Absenkung ausgewählter Frequenzbereiche zur Klangfarbenänderung Einstellung grundsätzlich nach Gehör, nicht

Mehr

Photo Story OK². Das Team. Michael Borowski, Jürgen Pack, Dipl.-Ing. Leo Kirchner unser Techniker der Mann mit den der Autor feinen Ohren

Photo Story OK². Das Team. Michael Borowski, Jürgen Pack, Dipl.-Ing. Leo Kirchner unser Techniker der Mann mit den der Autor feinen Ohren Photo Story OK² Die Geschichte beschreibt die Entwicklung eines Selbstbaulautsprechers, der OK². Die neue Technologie der OK² besitzt kein bekannter Fertiglautsprecher. Das Team Michael Borowski, Jürgen

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 04: Schwingkreise & Filter. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 04: Schwingkreise & Filter. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 04: e & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 11.05.2017 - cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Elektromagnetische Schwingkreise Nummer: 28 Kompiliert am: 13. Dezember 2018 Letzte Änderung: 11.12.2018 Beschreibung: Webseite:

Mehr

Lineare Netzwerke: R-C-Filter

Lineare Netzwerke: R-C-Filter Lineare Netzwerke: R-C-Filter Ziele In Lautsprecherboxen werden Frequenzweichen eingebaut, um die tiefen Frequenzen vom Hochtonlautsprecher fernzuhalten und nur hohe Frequenzen durchzulassen (Hochpass)

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

sin ωt sin (ωt + ϕ) d sin ωt = ω cos ωt d cos ωt = ω sin ωt sin ωt dt = 1 ω cos ωt cos ωt dt = 1 ω sin ωt sin ωt =cos (ωt + π 2 )

sin ωt sin (ωt + ϕ) d sin ωt = ω cos ωt d cos ωt = ω sin ωt sin ωt dt = 1 ω cos ωt cos ωt dt = 1 ω sin ωt sin ωt =cos (ωt + π 2 ) Elektronische Ssteme 4. Wechselspannungskreise 4. Wechselspannungskreise 4. Phasenbeziehungen sin t sin (t ) nachfolgend sin (t + ) voreilend < 0: nachfolgend positiv verschobene eitachse, Rechtssinn gedreht

Mehr

Übungen zu Experimentalphysik 2 für MSE

Übungen zu Experimentalphysik 2 für MSE Physik-Department LS für Funktionelle Materialien SS 28 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Spule mit und ohne ferromagnetischen Kern

Spule mit und ohne ferromagnetischen Kern Spule mit und ohne ferromagnetischen Kern Auf Basis der in der Vorlesung gelernten theoretischen Grundlagen sollen nun die Eigenschaften einer Luftspule und einer Spule mit ferromagnetischem Kern untersucht

Mehr

benutzt wird? 3. Berechnen Sie den Scheinwiderstand Z der Spule bei einer Frequenz von 500Hz.

benutzt wird? 3. Berechnen Sie den Scheinwiderstand Z der Spule bei einer Frequenz von 500Hz. +DXVDUEHLW Aufgabe: Gegeben ist ein Ringkern-Spulenkörper mit einem Durchmesser von d cm, einem Kerndurchmesser von d cm und einer ermeabilitätszahl von 6.. Wieviel Windungen muß man auf diesen Spulenkörper

Mehr

Elektrischer Schwingkreis

Elektrischer Schwingkreis Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch

Mehr

RC - Breitbandverstärker

RC - Breitbandverstärker Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten

Mehr

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt?

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 2. Welchen Wert hat der Strom eine halbe Sekunde nach dem Einschalten, wenn die Induktivität einer Drosselspule

Mehr

Allgemeine Einführung in Filter

Allgemeine Einführung in Filter Allgemeine Einführung in Filter Konstantin Koslowski TU-Berlin 3. November 2009 Konstantin Koslowski (TU-Berlin) Allgemeine Einführung in Filter 3. November 2009 1 / 22 Inhalt 1 Einführung Was sind Filter

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

A-123 VCF Einführung. doepfer System A VCF 4 A-123

A-123 VCF Einführung. doepfer System A VCF 4 A-123 doepfer System A - 100 VCF 4 A-123 1. Einführung Lev el 2 Audio In 1 2 A-123 VCF 4 Frequency Das Modul A-123 (VCF 4) ist ein spannungsgesteuertes Hochpaßfilter, das aus einem Klangspektrum die unteren

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (894) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Physik Klasse 12 ÜA 07 stehende Wellen Ks 2012

Physik Klasse 12 ÜA 07 stehende Wellen Ks 2012 Afg.1: Zwei Lautsprecher liegen mit Einem Mikrofon fast auf einer Geraden. Δ x einige Meter Die Lautsprecher schwingen phasengleich mit 1,36 khz. Für Δx = 0 cm registriert das Mikrofon eine Wechselspannung

Mehr

Tontechnik 1. Lautsprecher. Lautsprecher. dynamisches Prinzip. Konuslautsprecher. Kalottenlautsprecher

Tontechnik 1. Lautsprecher. Lautsprecher. dynamisches Prinzip. Konuslautsprecher. Kalottenlautsprecher Tontechnik 1 Lautsprecher Audiovisuelle Medien HdM Stuttgart Lautsprecher dynamisches Prinzip Schwingspule im Dauermagnetfeld Vorteile / Nachteile Konuslautsprecher Kalottenlautsprecher kleine Membran

Mehr

Die SteinMusic Bobby M und Bobby L, das heißt die Bobby S mit Bass-Erweiterungen.

Die SteinMusic Bobby M und Bobby L, das heißt die Bobby S mit Bass-Erweiterungen. Die SteinMusic Bobby M und Bobby L, das heißt die Bobby S mit Bass-Erweiterungen. Die Bobby Bass Erweiterung wurde speziell entwickelt, um die Möglichkeiten der Bobby S und Bobby S Signature Monitorlautsprecher

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Passive LC-Schaltungen erster Ordnung Übertragungsfunktionen, die durch die Entwurfsverfahren bestimmt werden,

Mehr

bauer audio Whitepaper zum Standlautsprecher LS 3g Willibald Bauer und Joachim Gerhard, November 2018 Bauer Audio, Pollinger Straße 4, München

bauer audio Whitepaper zum Standlautsprecher LS 3g Willibald Bauer und Joachim Gerhard, November 2018 Bauer Audio, Pollinger Straße 4, München Willibald Bauer und Joachim Gerhard, November 2018 Bauer Audio, Pollinger Straße 4, 81377 München Zielsetzung und Hintergrund Der Drei-Wege-Standlautsprecher LS 3g von Bauer Audio ist der Nachfolger der

Mehr

Aktive NF-Filter. 2.3 Aktive NF-Filter. Bild 2.3.1: Dreistufiger aktiver NF-Tiefpass (Quelle: Hans-Jürgen Kowalski)

Aktive NF-Filter. 2.3 Aktive NF-Filter. Bild 2.3.1: Dreistufiger aktiver NF-Tiefpass (Quelle: Hans-Jürgen Kowalski) Bild 2.3.1: Dreistufiger aktiver NF-Tiefpass (Quelle: Hans-Jürgen Kowalski) 2.3 Aktive NF-Filter Bei den aktiven Filtern im Amateurbereich kann man zwischen Tiefpässen mit etwa 3 khz Eckfrequenz (für SSB)

Mehr

Der Schall. L p = 20 lg p p 0

Der Schall. L p = 20 lg p p 0 Der Schall Aufgabennummer: B_067 Technologieeinsatz: möglich erforderlich S Als Schalldruck p werden die Druckschwankungen eines kompressiblen Schallübertragungsmediums (üblicherweise Luft) bezeichnet,

Mehr

Elektrischer Schwingkreis

Elektrischer Schwingkreis Versuch 37 Elektrischer Schwingkreis al Erlebach Augaben 4. Aunahme des Amplituden- und Phasengangs am angeregten Parallelschwingkreis, Bestimmung der esonanzrequenz, des eihenverlustwiderstandes und der

Mehr

Verstärker in Kollektor-Schaltung

Verstärker in Kollektor-Schaltung Verstärker in Kollektor-Schaltung Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 16.12.2002 Samuel Benz Inhaltsverzeichnis

Mehr

Das Elektronenstrahloszilloskop

Das Elektronenstrahloszilloskop Phsikalisches Grundpraktikum Versuch 4 al rlebach Das lektronenstrahloszilloskop ugaben. Graphische Darstellung einer Wechselspannung (zwei unterschiedliche blenkspannungen) nach dem bbild am Oszilloskop.

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

1. Vorbereitung 1.1 Datenblätter 1.2 Ein- und Ausgangssignale des EXOR-Gatters

1. Vorbereitung 1.1 Datenblätter 1.2 Ein- und Ausgangssignale des EXOR-Gatters 1. Vorbereitung 1.1 Datenblätter 1.2 Ein- und Ausgangssignale des EXOR-Gatters EXOR X1 X2 Y 0 0 0 0 1 1 1 0 1 1 1 0 A: B1: B2: B3: A exor A: A exor B1: A exor B2: A exor B3: 1.3 Bedeutung des Tiepasses

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Tiefpass, Hochpass - 1

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Tiefpass, Hochpass - 1 TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 20.12.2016 Erstellt am 26.12.2016 von Pascal Zoehrer Übungsteilnehmer

Mehr

TUM. Anfängerpraktikum für Physiker II. Wintersemester 2006/2007. Oszilloskop (OSZ) 23. Januar 2007

TUM. Anfängerpraktikum für Physiker II. Wintersemester 2006/2007. Oszilloskop (OSZ) 23. Januar 2007 TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Oszilloskop (OSZ) Inhaltsverzeichnis 23. Januar 27. Einleitung... 2 2. Versuchsauswertung... 2 2.. Durchlaßkurve Hochpaß... 2 2.2. Qualitative

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Mischer, Tiefpass, Hochpass,..., Superhet

Mischer, Tiefpass, Hochpass,..., Superhet Mischer, Tiefpass, Hochpass,..., Superhet David Vajda 0. März 207 Tiefpass, Hochpass,...,Mischer Begriff: Tiefpass Hochpass Bandpass Bandsperre Filter Mischer Symbole: Tiefpass Hochpass Bandpasse Bandsperre

Mehr

3. Grundlagen des Drehstromsystems

3. Grundlagen des Drehstromsystems Themen: Einführung Zeitverläufe Mathematische Beschreibung Drehstromschaltkreise Anwendungen Symmetrische und unsymmetrische Belastung Einführung Drehstrom - Dreiphasenwechselstrom: Wechselstrom und Drehstrom

Mehr

Y und Z sind zwei mittelwertfreie, voneinander unabhängige Zufallsgrössen mit

Y und Z sind zwei mittelwertfreie, voneinander unabhängige Zufallsgrössen mit AUFGABEN STOCHASTISCHE SIGNALE Augabe Ein stationäres Zuallssignal Xt) besitzt den Gleichanteil mx. Der Wechselanteil des Signals ist somit gegeben durch XACt) Xt) mx. a) Zeigen Sie, dass olgende Beziehung

Mehr

7. Filter. Aufgabe von Filtern

7. Filter. Aufgabe von Filtern . Filter Aufgabe von Filtern Amplitude Sperren einer Frequenz oder eines Frequenzbereichs Durchlassen einer Frequenz oder eines Frequenzbereichs möglichst kleine Phasenänderung Phase Phasenverschiebung

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-niversität Greifswald Fachbereich hysik Elektronikpraktikum rotokoll-nr.: 3 chwingkreise rotokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 6.4.997 rotokoll abgegeben: 23.4.997

Mehr

Vorbereitung: Ferromagnetische Hysteresis

Vorbereitung: Ferromagnetische Hysteresis Vorbereitung: Ferromagnetische Hysteresis Carsten Röttele 10. Dezember 2011 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Luftspule 2 1.1 Messung..................................... 2

Mehr

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter: Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

8. Akustik, Schallwellen

8. Akustik, Schallwellen Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Empfohlene Frequenzweichen- und Filtereinstellungen

Empfohlene Frequenzweichen- und Filtereinstellungen Empfohlene Frequenzweichen- und Filtereinstellungen Christie Vive Audio Systeme sind konzipiert für die Verwendung spezieller Frequenzweichen- und Filtereinstellungen für den Betrieb im 2-Wege-Bi-Amp-Modus,

Mehr

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte Praktikum ETiT V / Vorbereitungsaufgaben V. Vorbereitungsaufgaben (Versuch Summe pro Aufgabe 4 Punkte. a Geben Sie die Formel für die Kapazität eines Plattenkondensator mit Dielektrikum an (P. Wie groß

Mehr

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses)

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses) 51 Frequenzgang eines RC-Tiepasses (RC-Hochpasses) EBll-2 Augabe In dieser Übung soll ein RC-Tiepaß bzw. wahlweise eln RC- Hochpaß mit R = 10 kq und C = 22 nf augebaut und Deßtechnisch untersucht werden.

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr