Musterlösungen zur Linearen Algebra II Übungsklausur

Größe: px
Ab Seite anzeigen:

Download "Musterlösungen zur Linearen Algebra II Übungsklausur"

Transkript

1 Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix, dann gilt det(a =. c Ist A orthogonal, dann besitzt A einen Eigenwert λ mit λ = oder λ =. Die Aussage a ist falsch, da z.b. für die Matrix A := gilt det A =, aber A t A = A = I 3. Hingegen ist b richtig, denn für eine orthogonale Matrix A gilt det(a = det(a t det A = det(a t A = det I 3 = und damit det(a =. Für Teil c beachte man, dass die Eigenwerte einer orthogonalen Matrix stets den Betrag haben, denn ist v 0 Eigenvektor zum Eigenwert λ, so folgt λ v = Av = v t A t Av = v t v = v und damit die Behauptung. Da nun A eine 3 3-Matrix ist, hat das charakteristische Polynom von A Grad 3 und nach dem Zwischenwertsatz auch eine Nullstelle in R. Also besitzt A einen Eigenwert, und dieser muss dann auch ± sein. Aufgabe. Sei V ein endlichdimensionaler K-Vektorraum und F : V V K eine Bilinearform. Seien B und B zwei Basen von V mit Basiswechselmatrix S = B S B. Ist A die Matrix von F bezüglich B und A die Matrix von F bezüglich B, dann gilt: a A = S AS. b A = S t AS, c A = SAS, d A = SAS t.

2 Nach Satz 8.5 ist die Antwort b richtig. Aufgabe 3. Gegeben sei die quadratische Form q : R R, (x, x x + 6x x + x. a Geben Sie die Matrix der zu q gehörigen symmetrischen Bilinearform bezüglich der Standardbasis an. b Bestimmen Sie die Hauptachsen der Quadrik q(x =. c Skizzieren Sie die Quadrik bezüglich einer Orthonormalbasis. a Die Darstellungsmatrix ist gegeben durch ( 3 A :=. 3 b Die Hauptachsen der Quadrik sind definitionsgemäß normierte Vektoren, die die Eigenräume von A aufspannen. Nun berechnet man das charakteristische Polynom von A als χ A = (x 5(x +, und die zugehörigen Eigenräume werden durch aufgespannt, d.h. die Hauptachsen sind ( ( und ( und ( c Die Quadrik ist eine Hyperbel im R mit Asymptoten x x = 0 und x + x = 0, wie man der Rechnung in b entnimmt. Aufgabe. Welche der folgenden Matrizen definiert ein Skalarprodukt auf R? ( ( ( A :=, A :=, A 3 :=. Alle vorkommenden Matrizen sind symmetrisch, weshalb es ausreicht, die positive Definitheit der Matrizen zu überprüfen. Die Matrix A ist nicht positiv definit, da det A = 0. Die Matrix A 3 ist auch nicht positiv definit, da für den ersten kanonischen Basisvektor e gilt e t A 3 e = < 0. Die Matrix A hingegen ist positiv definit, denn es gilt ( ( x (x, y = x + xy + y = 3x + (x + y 0 y.

3 und 3x + (x + y = 0 genau dann, wenn x = 0 und damit auch y = 0. Aufgabe 5. Bestimmen Sie die Jordan-Normalform der folgenden Matrizen A := 0 0, B := 0 0, C := a Das charakteristische Polynom von A ist χ A = (x (x +. Da die Eigenräume zu den Eigenwerten und ein- bzw. zweidimensional sind, ist A diagonalisierbar und die Jordanform von A ist gegeben durch J A =. b Durch Entwickeln nach der dritten Spalte erhält man als charakteristisches Polynom von B χ B = (x+ (x. Auch hier sind die geometrischen Vielfachheiten der Eigenwerte gleich den algebraischen Vielfachheiten, d.h. der Eigenraum zum Eigenwert - ist zweidimensional und der zum Eigenwert eindimensional. Also ist J B = J A =. c Wiederum erhält man durch Entwickeln nach der letzten Spalte χ C = (x + (x = (x (x +. Hier ist der Eigenraum zum Eigenwert - allerdings eindimensional, also gilt J C =. Aufgabe 6. Sei V der Vektorraum aller reellen Polynomfunktionen von Grad höchstens. a Zeigen Sie, dass V mit der Abbildung, : V V R, (f, g f, g := f(ig(i i=0 ein euklidischer Vektorraum ist. 3

4 b Bestimmen Sie eine Orthonormalbasis von V bezüglich des in (a angegebenen Skalarproduktes. a Es ist klar, dass die Abbildung, eine symmetrische Bilinearform ist. Es bleibt zu zeigen, dass, positiv definit ist. Nun gilt für f V f, f = f(0 + f( + f( 0 mit Gleichheit genau dann, wenn f(0 = f( = f( = 0. Eine Polynomfunktion vom Grad mit drei Nullstellen kann aber nur die Nullfunktion sein, d.h. f = 0. Also ist, auch positiv definit. b Um eine Orthonormalbasis von V zu finden, kann man beispielsweise das Gram-Schmidt-Orthogonalisierungsverfahren auf eine Basis von V anwenden. In dieser speziellen Situation kann man aber auch einen Trick anwenden. Setzt man nämlich e 0 := (x (x, e := (x 0(x und e := (x 0(x, so sind die e i Polynome, die bei i keine Nullstelle haben, wohl aber an den beiden anderen Punkten. Daraus folgt sofort, dass die e i ein Orthogonalsystem bilden, und nach Normieren erhält man das Orthonormalsystem ( e 0, e, e, was aus Dimensionsgründen auch eine Orthonormalbasis von V ist. Aufgabe 7. Entscheiden Sie (mit Begründung, welche der folgenden Matrizen über R diagonalisierbar sind. a b 3 5 A := A := c A = B t CB, wobei B R n n eine beliebige Matrix und C R n n eine beliebige symmetrische Matrix sei.

5 a Da die Matrix A symmetrisch ist, kann sie nach dem Satz über die Hauptachsentransformation diagonalisiert werden. b Das charakteristische Polynom von A ist χ A = (x 3 (x 7, die algebraische Vielfachheit des Eigenwertes ist also 3. Da die geometrische Vielfachheit aber nur dim ker( I A = ist, kann A nicht diagonalisierbar sein, denn die beiden Vielfachheiten stimmen bei diagonalisierbaren Matrizen überein. c Die Matrix A ist symmetrisch, denn A t = B t C t (B t t = B t CB = A da C = C t. Da nach dem Satz über die Hauptachsentransformation symmetrische Matrizen diagonalisierbar sind, ist also A diagonalisierbar. 5

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

10. Übung zur Linearen Algebra II -

10. Übung zur Linearen Algebra II - 0. Übung zur Linearen Algebra II - Lösungen Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 7 Der ( linearen ) Abbildung ϕ : R R sei bzgl. der kanonischen Basis die Matrix zugeordnet.

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Aufgaben zu Kapitel 18

Aufgaben zu Kapitel 18 Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Verständnisfragen Aufgabe 8. Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A. (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Aufgabe 1. Welche der folgenden Abbildungen sind Sesquilinearformen oder Bilinearformen? Welche davon sind Skalarprodukte? (a) B 1 : R R R, (x, y) xy (b)

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) 2..27 Prof. Dr. Andreas Bley Dr. Anen Lakhal Name: Vorname: Matr.-Nr./Studiengang: Versuch-Nr.: Für jede Aufgabe gibt es Punkte.

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010 Lösungsvorschläge zur Klausur Lineare Algebra, Herbst 200 I. Es seien n eine natürliche Zahl, M = {,..., n} N und S n die Gruppe der Permutationen der Menge M. Zeigen Sie: a) Für jedes a M ist H a := {σ

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 26 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64) 2. Haupttest (FR, 2..27) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 42 Normale Endomorphismen Nach Satz 34.1 besitzt eine Isometrie über C eine Orthonormalbasis aus Eigenvektoren

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag Dr. Erwin Schörner 439: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 5 Lösungsvorschlag I.. Für n N mit n ist das inhomogene lineare Gleichungssystem in den n Unbekannten x,..., x n mit den n Gleichungen

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Probeklausur zur Linearen Algebra II

Probeklausur zur Linearen Algebra II Probeklausur zur Linearen Algebra II Prof. Dr. C. Löh/D. Fauser/J. Witzig 24. Juli 207 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Lineare Algebra II Zwischentest

Lineare Algebra II Zwischentest Lineare Algebra II Zwischentest Dr. Stephan Ehlen, Dr. Chris Jennings-Shaffer, Jonathan Schürr 14.06.18 Dieser Zwischentest besteht aus 7 Aufgaben und enthält insgesamt 12 Seiten. Sie haben für die Bearbeitung

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Ferienkurs Lineare Algebra

Ferienkurs Lineare Algebra Ferienkurs Lineare Algebra Wintersemester 9/ Lösungen Eigenwerte und Diagonalsierbarkeit Blatt Diagonalisierbarkeit. Zeigen sie, dass für eine diagonalisierbare Matrix A folgendes gilt: det(a) = wobei

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Lineare Algebra für PhysikerInnen

Lineare Algebra für PhysikerInnen Universität Wien, SS 2015 Lineare Algebra für PhysikerInnen Beispiele für Multiple-Choice-Fragen Punkteschlüssel: [Typ 1 aus 4] und [Typ 3 aus 4]... 0.8 Punkte [Typ 2 aus 4]... 1 Punkt Bei der schriftlichen

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr