Datenstrukturen & Algorithmen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Datenstrukturen & Algorithmen"

Transkript

1 Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010

2 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Eigenschaften der dynammischen Programmierung 2

3 Dynamische Programmierung Entwurfsstrategie, wie divide-and-conquer (teile-und-beherrsche) Programmierung bedeutet Tabellieren (historischer Hintergrund) Teile-und-beherrsche: Teilprobleme sind unabhängig Dynamische Programmierung: Teilprobleme bestehen ihrerseits aus gemeinsamen Teilproblemen 3

4 Dynamische Programmierung Lösung von Optimierungsproblemen Finde eine Lösung mit optimalen Eigenschaften Kleinster oder grösster Wert (Minimierung oder Maximierung) 4

5 Dynamische Programmierung Vier Schritte, um Algorithmus zu entwickeln 1. Beschreibe Struktur einer optimalen Lösung 2. Definiere Wert der optimalen Lösung rekursiv 3. Berechne Wert der optimalen Lösung bottom-up up 4. Konstruiere optimale Lösung basierend auf den vorherigen Berechnungen 5

6 Dynamische Programmierung Begriffe Optimale Teilstruktur Überlappende Teilprobleme Memoisierung 6

7 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Eigenschaften der dynammischen Programmierung 7

8 Ablaufkoord. von Montagebändern Autofabrik mit zwei Montagebändern Bänder haben dieselben Stationen, aber unterschiedliche Bearbeitungszeiten Autos können von einem zum anderen Band verschoben werden Problem: bestimme optimalen Ablauf durch die Bänder Bestimme, welche Stationen von welchem Band verwendet werden sollen 8

9 Optimaler Ablauf Alle Möglichkeiten ausprobieren? Jeder Ablauf gegeben durch Menge der Stationen von Band 1 (oder Band 2) Bänder haben n Stationen 2 n Teilmengen Exponentielle Anzahl Kandidaten Unpraktisch wenn n gross 9

10 1. Struktur der optimalen Lösung Betrachte schnellsten Weg zur Station S 1,j j=1: einfach Zeit zu S 1,1 j>=2: zwei Möglichkeiten zu S 1,j Via S 1,j-1 j 1, dann direkt zu S 1,j j Via S 2,j-1, dann Transfer zu zu S 1,j 10

11 1. Struktur der optimalen Lösung Annahme: Schnellster Weg zu S 1,j ist durch S 1,j-1 Beobachtung Müssen schnellsten Weg zu S 1,j-1 genommen haben Falls es einen schnelleren Weg zu S 1,j-1 gäbe, hätten wir diesen verwendet um einen noch schnelleren Weg zu S 1,j zu erhalten 11

12 1. Struktur der optimalen Lösung Annahme: Schnellster Weg zu S 1,j ist durch S 1,j-1 Beobachtung Müssen schnellsten Weg zu S 1,j-1 genommen haben Falls es einen schnelleren Weg zu S 1,j-1 gäbe, hätten wir diesen verwendet um einen noch schnelleren Weg zu S 1,j zu erhalten Selbes Argument für Weg zu S 1,j über S 2,j-1 12

13 1. Struktur der optimalen Lösung Optimale Teilstruktur: Optimale Lösung für ein Problem (Weg zu S 1,j ) enthält optimale Lösung zu Teilproblemen (Weg zu S 1,j-1 oder S 1,j-2 ) Benütze optimale Teilstruktur um optimale Lösung zu einem Problem aus optimalen Lösungen von Unterproblemen zu finden Um schnellsten Pfad zu S 1,j j zu finden, bestimme schnellsten Pfad zu S 1,j-1 und S 2,j-1 13

14 2. Rekursive Lösung Sei f i [j] kürzeste Zeit um S i,j zu durchlaufen Ziel: finde kürzeste Zeit f * durch alle Stationen 14

15 Analyse der rekursiven Lösung Anzahl Zugriffe auf f i [j] ist 2 n-j Gesamtzahl der Zugriffe auf alle f i [j] ist 2 n+1-2 Siehe Übung Exponentielle Laufzeit! 15

16 3. Bottom-up Algorithmus Speichere Zusatzinformation, um später Lösung rekonstruieren zu können Sei l i [j] = Band 1 oder 2, dessen Station j-1 auf dem Weg durch S i,j verwendet wird S li[j],j-1j 1 ist vor S ij i,j Beispiel 16

17 3.Bottom-up Algorithmus 17

18 4. Rekonstruktion der Lösung Verwende Zusatzinformation l i [j], um Lösung zu rekonstruieren 18

19 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Eigenschaften der dynammischen Programmierung 19

20 Längste gemeinsame Teilsequenz Gegeben zwei Sequenzen X=<x 1,...,x m > und Y=<y 1,...,y n >. Finde eine Sequenz von maximaler Länge, die in X und Y vorkommt Elemente der Sequenz müssen nicht konsekutiv, jedoch in korrekter Reihenfolge in X und Y vorkommen Longest common subsequence (LCS) Beispiele 20

21 Naive Lösung Für jede Teilsequenz von X, prüfe ob sie in Y vorkommt Aufwand Θ(n2( m ) 2 m Teilsequenzen in X Jeder Bitvektor der Länge m definiert eine Teilsequenz Überprüfen jeder Teilsequenz braucht Θ(n) Gesamte Sequenz Y muss durchlaufen werden Exponentiell! 21

22 Optimale Teilstruktur Notation X i bezeichnet Präfix <x 1,...,x i > Y i bezeichnet Präfix <y 1,...,y i > i y 1 y i Theorem Sei Z=<z 1,...,z k > LCS von X m und Y n 1. Falls x m=yy n, dann z k=x m=yy n und Z k-1 1 ist LCS von X m-1 und Y n-1 2. Falls x m y y n, dann bedeutet z k x x m, dass Z LCS von X m-1 und Y n 3. Falls x m y n, dann bedeutet z k y n, dass Z LCS von X m und Y n-1 22

23 Beweis Theorem 23

24 Optimale Teilstruktur Ein LCS von zwei Reihen hat ein Präfix, welches ein LCS von Präfixen der Reihen ist Jeder Präfix eines LCS von zwei Reihen ist ein LCS von Präfixen der Reihen => Das Problem erfüllt das Kriterium der optimalen Substruktur 24

25 Rekursive Formulierung Idee Berechne zuerst nur Länge der LCS Rekonstruiere nachher die LCS selbst Sei c[i,j] Länge LCS von X und Y Gesucht c[m,n] 25

26 Rekursive Formulierung Worst-case: x[i]=y[i] Evaluiere zwei Teilprobleme, je nur ein Parameter dekrementiert 26

27 Rekursionsbaum 27

28 Überlappende Unterprobleme Rekursive Lösung enthält eine kleine Anzahl verschiedener Unterprobleme, die wiederholt gelöst werden Anzahl verschiedener Unterprobleme für das LCS Problem mit Reihen der Länge m und n ist nur mn Dynamisches Programmieren stützt sich auf optimale Substruktur und überlappende Unterprobleme 28

29 Memoisierung Speichere Lösung von Teilproblemen in einer Tabelle Bei wiederholten Aufrufen des Teilproblems, lese Lösung aus Tabelle 29

30 Memoisierung Speichere Lösung von Teilproblemen in einer Tabelle c[ij] c[i,j] Bei wiederholten Aufrufen des Teilproblems, lese Lösung aus Tabelle Wie vorher! Aufwand Θ(mn) (Zeit und Platz) 30

31 Beispiel s a p a n k i n g a m p u t a t i o n 31

32 Rekonstruktion der LCS Jeder Eintrag c[i,j] hängt nur von drei anderen Einträgen c[i-1,j-1], 1 1] c[i-1,j], 1 und c[i,j-1] ab Gegeben c[ij] c[i,j], können in konstanter Zeit bestimmen, welcher vorhergehende Eintrag zur Berechnung verwendet wurde 32

33 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Eigenschaften der dynammischen Programmierung 33

34 Optimale binäre Suchbäume Gegeben Sequenz K=<k 1,k 2,..,k n > von Schlüsseln, sortiert nach k 1 <k 2 <... Wahrscheinlichkeit p i für Suche nach k i Problem: konstruiere binären Suchbaum mit minimalem erwartetem Aufwand für Suche Anwendung: Wörterbuch für automatische Übersetzungen Worthäufigkeiten bekannt 34

35 Erwartete Suchkosten Tatsächliche Kosten = #untersuchter Knoten Für k i, Kosten = depth(k i)+1 Erwartete Kosten 35

36 Beispiel 36

37 Beobachtungen Optimaler BST hat nicht unbedingt kleinste Höhe hat nicht unbedingt Schlüssel mit grösster Suchwahrscheinlichkeit an der Wurzel Naive Konstruktion Teste alle Möglichkeiten Aufwand exponentiell 37

38 Optimale Teilstruktur Gegeben ein optimaler BST T mit Teilbaum T Behauptung: Falls T ein optimaler BST ist, muss T auch optimal sein Beweis durch Widerspruch Falls T nicht optimal wäre, könnten wir ihn durch einen optimalen Teilbaum T ersetzen Dies würde die Gesamtkosten von T reduzieren, und somit wäre T nicht optimal 38

39 Teilprobleme Problem : gegeben Schlüssel k i,..,k j Sei k r Wurzel von k i,..,k j Teilprobleme Linker Teilbaum k i,..,k r-1 < k r Rechter Teilbaum k r+1,..,k j >k r Mögliche Lösung Für jedes Problem k i,..,k j, untersuche alle möglichen Wurzeln Bestimme jeweils optimale BST für linke und rechte Teilbäume 39

40 Rekursive Lösung Sei e[i,j] = erwartete Suchkosten für k i,..,k j Falls j=i-1, dann e[i,j]=0 Sei k r Wurzel für optimalen BST von k i,..,k j wobei Beachte Somit Rekursionsgleichung 40

41 Dynamische Programmierung Berechne Tabellen e[i,j] erwartete Kosten w[i,j] [ Wahrscheinlichkeit für Suche root[i,j] Wurzel Bottom-up Strategie, drei Schleifen Über alle Teilbäume mit l=i-j Schlüsseln, beginnend bei l=1 Über alle Teilbäume [i,j] der Grösse l Über alle möglichen Wurzeln jedes Teilbaums» Evaluiere Kosten, berechne Tabelleneinträge 41

42 Dynamische Programmierung 42

43 Beispiel 43

44 Rekonstruktion der Lösung Mittels einfachem rekursivem Algorithmus aus der root Tabelle Übung 44

45 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Eigenschaften der dynammischen Programmierung 45

46 Dynamische Programmierung Optimale Teilstruktur Überlappende Teilprobleme Memoisierung Rekonstruktion der optimalen Lösung 46

47 Optimale Substruktur Optimale Lösung eines Problems beinhaltet optimale Lösungen von Teilproblemen Rezept um zu zeigen, dass Problem Eigenschaft der optimalen Substruktur besitzt 1. Zeige, dass Problem gelöst werden kann, indem Teilprobleme ausgewählt werden können (Annahme, dass Teilprobleme bekannt sind, welche Teil der optimalen Lösung sind) 2. Zeige, dass Lösung der Teilprobleme optimal sein muss, um Optimale Lösung des Problems zu erhalten 47

48 Optimale Substruktur Wieviele Teilprobleme werden in einer optimalen Lösung benutzt? Wieviele Kandidaten für Teilprobleme gibt es? Fliessbänder 1 Teilproblem (um eins kürzeres Band) 2 Kandidaten (Teilproblem das auf Band 1 oder 2 endet) LCS 1 Teilproblem (LCS für Reihen, wo mindestens eine um eins kürzer ist) 1 oder 2 Kandidaten (welche Reihe wird um eins gekürzt) 48

49 Optimale Substruktur Dynamisches Programmieren verwendet optimale Teilstruktur bottom up Zuerst: finde Lösungen zu Teilproblemen Dann: wähle welche Teilprobleme zur optimalen Lösung des Problems gehören e Greedy Algorithmen arbeiten top down Nächstes Mal Nicht alle Optimierungsprobleme haben Eigenschaft der optimalen Substruktur! 49

50 Überlappende Teilprobleme Treten auf, wenn rekursiver Algorithmus dasselbe Problem mehrmals löst Effiziente Teile-und-beherrsche Algorithmen generieren ein neues Teilproblem in jedem Aufruf (Merge Sort, Quicksort) 50

51 Memoisierung Varianteder Reihenfolge, in welcher die Tabelle mit Lösung von Teilproblemen gefüllt wird Bevorzugter Ansatz im dynamischen Programmieren: bottom-up Berechnung der Teilprobleme ohne Rekursion Memoisierung Verwende Rekursiven Algorithmus Speichere Lösung von Teilproblemen in Tabelle Verfolge Rekursion nur dann weiter, wenn Lösung des Teilproblems in Tabelle noch nicht gespeichert LCS Problem Buch hat bottom up Algorithmus ohne Memoisierung 51

52 Nächstes Mal Greedy Algorithmen 52

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Dynamische Programmierung Markus Ullrich Norbert Baum Fachbereich Informatik - IIb07 Hochschule Zittau/Görlitz 28. Mai 2009 1 / 29 Wie sieht es mit langen Ketten aus? A 1 A

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei

Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei 7/7/ Das Rucksack-Problem Englisch: Knapsack Problem Das Problem: "Die Qual der Wahl" Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei Im Ladens

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 3

Algorithmen und Datenstrukturen 1 Kapitel 3 Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

11 Dynamisches Programmieren

11 Dynamisches Programmieren Algorithmen und Datenstrukturen 279 11 Dynamisches Programmieren Gegenstand dieses und des nächsten Kapitels sind noch einmal Algorithmen. Zunächst beschreiben wir das sog. dynamische Programmieren. kein

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Methoden für den Entwurf von Algorithmen

Methoden für den Entwurf von Algorithmen Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Ludwig Höcker 13.06.2012 Ludwig Höcker Dynamische Programmierung 13.06.2012 1 / 61 Gliederung Dynamic Programming Bsp.: FAU-Kabel Naiv Top-Down Bottom-Up Longest Increasing Subsequence

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Erstes Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Erstes Übungsblatt WS 05/06 Musterlösung Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Erstes

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

Effiziente Algorithmen 2

Effiziente Algorithmen 2 Effiziente Algorithmen 2 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Dynamische Programmierung Thomas Karmann 4. Juni 2010 1 / 36 Übersicht Einführung Definition Anwendung Funktionsweise Grundlagen Memoisation Top-Down Bottom-Up Grenzen Anwendungsbeispiele

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Manuel Grandeit Hallo Welt -Seminar 28.06.2011 Manuel Grandeit 1 / 40 Inhaltsübersicht Einführung Münzwechsel Was ist ein Zustand? Konstruktion einer DP-Lösung Top-Down-DP Bottom-Up-DP

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Simon Philippi - 53577 HTW Aalen Jasmin Ratajczyk - 57135 HTW Aalen 25. Januar 2017 Khaled Ahmed - 53558 HTW Aalen 1 Inhaltsverzeichnis 1 Einleitung 3 2 Definition 5 2.1 Top-Down...............................

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Gefädelte

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Suchen in Texten Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Textsuche Gegeben ist ein Zeichensatz (Alphabet) Σ. Für einen Text T Σ n und

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) sowie viele Tutoren Danksagung Animationen wurden übernommen aus dem Kurs:

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

6. Sich selbst organisierende Datenstrukturen

6. Sich selbst organisierende Datenstrukturen 6. Sich selbst organisierende Datenstrukturen 6.1 Motivation einfach, wenig Verwaltungsoverhead effizient im amortisierten Sinn EADS 6.1 Motivation 201/598 6.2 Sich selbst organisierende lineare Listen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

2.2 Der Algorithmus von Knuth, Morris und Pratt

2.2 Der Algorithmus von Knuth, Morris und Pratt Suchen in Texten 2.1 Grundlagen Ein Alphabet ist eine endliche Menge von Symbolen. Bsp.: Σ a, b, c,..., z, Σ 0, 1, Σ A, C, G, T. Wörter über Σ sind endliche Folgen von Symbolen aus Σ. Wörter werden manchmal

Mehr

Suchstrukturen. Übersicht. 8 Suchstrukturen. Allgemeines. H. Täubig (TUM) GAD SS

Suchstrukturen. Übersicht. 8 Suchstrukturen. Allgemeines. H. Täubig (TUM) GAD SS Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 309 Allgemeines Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 310

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 23

Inhaltsverzeichnis. Teil 1 Grundlagen 23 Inhaltsverzeichnis Vorwort 11 Umfang 12 Einsatz als Unterrichtsmittel 12 Algorithmen mit Praxisbezug 13 Programmiersprache 14 Danksagung 15 Vorwort des C++-Beraters 16 Hinweise zu den Übungen 21 Teil 1

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen Safe

Mehr

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85

Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85 Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2009 11. Vorlesung Uwe Quasthoff Universität Leipzig Institut für Informatik quasthoff@informatik.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Informatik B Sommersemester Musterlösung zur Klausur vom

Informatik B Sommersemester Musterlösung zur Klausur vom Informatik B Sommersemester 007 Musterlösung zur Klausur vom 0.07.007 Aufgabe : Graphen und Graphalgorithmen + + + () Punkte Für eine beliebige positive, ganze Zahl n definieren wir einen Graphen G n =

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, zwicker@iam.unibe.ch

Mehr

5.4 Das Rucksackproblem

5.4 Das Rucksackproblem Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen lausthal Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Erinnerung: Dynamische Programmierung Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13 Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13 Sven Grothklags University of Paderborn 10. Juli 2006 Sven Grothklags (University of Paderborn) DuA Übungsblatt 13 10. Juli 2006 1

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Algorithmen und Datenstrukturen Teil 3 Suchen in Listen Version vom: 15. November 2016

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Dynamisches Programmieren - Problemstruktur

Dynamisches Programmieren - Problemstruktur Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Heaps Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 469 Prioritätswarteschlange Problem Häufig ist das Prinzip einer einfachen Warteschlangen-Datenstruktur

Mehr

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, )

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) 6. Transitive Hülle 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) Gruppe Halbgruppe Halbgruppe Halbgruppe Wir betrachten den (kommutativen) Semiring über R { } mit

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (22 - AVL-Bäume: Entfernen) Prof. Dr. Susanne Albers Definition von AVL-Bäumen Definition: Ein binärer Suchbaum heißt AVL-Baum oder höhenbalanziert,

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Julian Brost 11. Juni 2013 Julian Brost Dynamische Programmierung 11. Juni 2013 1 / 39 Gliederung 1 Was ist dynamische Programmierung? Top-Down-DP Bottom-Up-DP 2 Matrix-Kettenmultiplikation

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 15 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 16 Untere Schranken für das Vergleichsbasierte Sortieren TU

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Danksagung Animationen wurden übernommen aus dem

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1 Algorithmen und Datenstrukturen 1. EINLEITUNG Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Allgemeines Einleitung Zu den Begriffen: Algorithmen und Datenstrukturen systematische

Mehr

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik > Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013 Parallele und Verteilte Systeme, Institut für Informatik Inhaltsverzeichnis 2 1 Besprechung des 4. Übungsblattes Aufgabe

Mehr

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz Gliederung Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung II D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

4 Rekursionen. 4.1 Erstes Beispiel

4 Rekursionen. 4.1 Erstes Beispiel 4 Rekursionen Viele Algorithmen besitzen sowohl eine iterative als auch eine rekursive Lösung. Sie unterscheiden sich darin, dass die iterative Version meist einen etwas längeren Kode besitzt, während

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

Algorithmen und Datenstrukturen I AVL-Bäume

Algorithmen und Datenstrukturen I AVL-Bäume Algorithmen und Datenstrukturen I AVL-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 01.12.2017 14:42 Algorithmen und Datenstrukturen I, AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky

Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky Robert Sedgewick Algorithmen in Java Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen Java-Beratung durch Michael Schidlowsky 3., überarbeitete Auflage \ PEARSON ein Imprint von Pearson Education München

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Mehrwegbäume Motivation

Mehrwegbäume Motivation Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Konzepte und Methoden der Programmierung Lösungen P. Fierz / FS 2012

Konzepte und Methoden der Programmierung Lösungen P. Fierz / FS 2012 Kapitel 1 Rekursion Alle Programme finden Sie im mitgelieferten zip-file. Aufgabe 1.1 [Fakultät] Für diese Übung brauchen Sie die Klassen Factorial Skelett und MyTimer. n! ist rekursiv folgendermassen

Mehr