Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB."

Transkript

1 Logische Verknüpfungen. while-schleifen. Zahlarstellung auf dem Computer. Formatierung von Zahlen in MATLAB. Logische Verknüpfungen In der letzten Sitzung haben wir kennengelernt, wie wir Zahlen mit Operationen wie <, <=, ==, etc. vergleichen können. Das Ergebnis von solchen Operationen nennt man boolesche Werte. Diese Werte werden in MATLAB als Zahlen 1 (true, also wahr) und 0 (false, also falsch) gespeichert. Sind b1 und b2 zwei boolesche Variablen, so können wir die Konjunktion b1 b2 (wahr genau dann, wenn beide Variablen wahr sind) in MAT- LAB durch b1 && b2 ausdrücken. Die Disjunktion b1 b2 (wahr genau dann, wenn mindestens eine der Variablen wahr ist) durch b1 b2. >> (1 < 3) && (3 < 5) 1 >> (1 < 3) && (7 < 5) 0 >> (1 < 3) (7 < 5) 1 >> (5 < 3) (7 < 5) 0 Es gelten dieselben Klammerregeln wie in der Mathematik. Vergleichsoperationen müssen geklammert werden, wenn sie Teil eines anderen Ausdrucks sind. In MATLAB können immer nur Vergleichsoperationen zwischen zwei Zahlen durchgeführt werden, Ausdrücke wie 1 < x < 3 funktionieren nicht wie erwartet: MATLAB klammert zuerst die ersten beiden Terme 1

2 und konvertiert das Ergebnis dieses Vergleichs, den Wahrheitswert, in eine Zahl, mit welcher der zweite Vergleich durchgeführt wird. Zum Beispiel ist der Ausdruck 2 < 4 < 3 fälschlicherweise wahr. Mit Klammerung lautet er nämlich: (2 < 4) < 3. Da 2 < 4 wahr, also gleich 1, ist, wird der unsinnige Vergleich 1 < 3 durchgeführt, der wahr ist. Wir müssen solche Vergleiche also stets mit einem && in zwei einzelne Vergleiche umschreiben: (1 < x) && (x < 3). while-schleifen Mit for-schleifen können wir Befehle mehrmals ausführen, doch die Anzahl der Iterationen muss zum Beginn der Schleife angegeben werden. In vielen numerischen Verfahren ist jedoch die Anzahl der Iterationen a priori nicht bekannt, z.b. wenn man mit dem Newton-Verfahren die Nullstelle einer Funktion approximativ bis auf eine bestimmte Genauigkeit bestimmen will. Bei while-schleifen wird hingegen solange iteriert wie eine gegebene Bedingung, also ein boolescher Wert, wahr ist. Die allgemeine Syntax lautet: while ( Bedingung) (Befehle) Als erstes Beispiel wollen wir bestimmen, ab welchem i N die Fakultät von i größer als ist. Hier ist nun die Anzahl der Schleifurchläufe die Information, welche wir mit unserem Programm erhalten wollen. Wir wollen in jedem Durchlauf der Schleife die Variable i um 1 erhöhen und die Fakultät von i über die Rekursion i! = i(i 1)! berechnen, wobei der rechte Faktor bereits aus dem vorherigen Schleifurchlauf bekannt ist und wir daher nur mit i multiplizieren müssen. Die Schleife soll so lange laufen, wie die berechnete Fakultät kleiner als eine Million ist, dies können wir direkt in unseren Programmcode übersetzen. factorial = 1; i = 0; while factorial <= i = i + 1; factorial = factorial * i; 2

3 factorial i Anders als bei for-schleifen mussten wir uns hier um die Definition und das Erhöhen von i selbst kümmern. Bei der Arbeit mit while-schleifen kann es passieren, dass die angegebene Bedingung nie erfüllt wird, beispielsweise durch einen Programmierfehler. Wir haben es dann mit einer sogenannten Endlosschleife zu tun. Diese kann man dann durch Drücken von strg + C been. Das folge Beispiel zeigt einen häufig gemachten Fehler, in dem das Hochzählen von i vergessen, und somit eine Endlosschleife programmiert wurde: i = 1; while i < 10 2 * i Aufgabe 1. Für q ( 1, 1) sei an die geometrische Reihe k=0 q k = 1 1 q erinnert. Für welches n ist die Differenz zwischen der n-ten Partialsumme und der geometrischen Reihe zum ersten Mal kleiner als error? Testen Sie Ihr Programm für q = 0.1 und error = continue und break Bei while- und auch for-schleifen kann es in außergewöhnlichen Situationen vorkommen, dass wir eine Iteration überspringen oder die Schleife komplett abbrechen wollen. Hierfür gibt es in MATLAB die Befehle continue und break. continue lässt MATLAB alle nachfolgen Befehle im aktuellen Schleifurchlauf überspringen. Im folgen Beispiel überspringen wir für i == 2 die Berechnung von 2 * i: for i = 1:4 if i == 2 continue 3

4 2 * i Wir hätten das selbe Verhalten auch mit if... else... erzeugen können, continue ist lediglich eine alternative Lösung, die bei komplexeren Schleifen das Programm vereinfacht. Analog können wir auch break verwen. Hierbei wird die Schleife jedoch sofort komplett abgebrochen. Nur in Ausnahmefällen ist die Verwung von break angebracht, z.b. wenn bei der Durchführung eines Algorithmus bemerkt wird, dass der Algorithmus nicht funktionieren kann und die weitere Durchführung zwecklos ist. Aufgabe 2. Jede for-schleife kann zu einer while-schleife umgeschrieben werden. Wie sieht das folge Programm mit einer while-schleife aus? n = 10; sum = 0; for i = 1:n sum = sum + i; Gleitkommaarithmetik und Rechengenauigkeit In der Vorlesung bzw. in den Übungen haben Sie schon eine erste Einführung in die Darstellung von Zahlen auf dem Computer erhalten. Dieses Kapitel wollen wir nun unter anderem anhand der Übungsaufgaben vertiefen, doch zunächst folgt eine kleine auf die Praxis ausgerichtete Wiederholung. Das IEEE 754 Format Die Darstellung einer Zahl auf dem Computer erfolgt im IEEE 754 Format (siehe dazu auch Definition 1.11 in der Vorlesung). Die Darstellung einer Zahl x geschieht in der Form mit rd(x) = ±(1.m #m... m 1 ) 2 2 (e #e...e 1 ) 2 b 4

5 der Mantisse M = (1.m #m m 1 ) 2, dem Biaswert b = 2 #e 1 1 und dem Exponenten e = (e #e e 1 ) 2. Die Klammerung ( ) 2 bedeutet, dass die Zahl in den Klammern in Binärdarstellung aufzufassen ist. Als Ziffern sind in dieser Darstellung nur 0 oder 1 erlaubt, statt der Ziffern 0 bis 9 in der bekannten Dezimaldarstellung. Ist ( ) 10 die Dezimaldarstellung, so gilt: ( n ) (b n b 0.b 1 b m ) 2 = b k 2 k. k= m Der Computer kann die zwei Zustände im Binärsystem als Strom an / aus viel einfacher realisieren als die 10 Zustände im Dezimalsystem. Ein Zustand mit Werten in {0, 1} wird als Bit (binary digit) bezeichnet und 8 Bits zu einem Byte zusammengefasst. Ein Byte kann also 2 8 = 256 Zustände darstellen. Zur Speicherung von Gleitkommazahlen müssen auf dem Computer nur die folgen Bits gespeichert werden: Ein Bit s für das Vorzeichen. Für negative Zahlen ist dieser Bit s=1, sonst s=0. #e Bits für den Exponenten e #e... e 1. #m Bits für die Mantisse m #m... m 1. Die erste 1 vor dem Komma muss nicht gespeichert werden. Double und Single Precision Die Anzahl der Bits für den Exponenten und die Mantisse legt die Menge der darstellbaren Gleitkommazahlen fest. Der Computer verwet die folgen zwei Gleitkommadarstellungen. double precision single precision #m #e 11 8 Speicherplatz 64 Bit 32 Bit x max x min, ε

6 Dabei bezeichnet x max die größte und x min, die betragsmäßig kleinste darstellbare Zahl. Oft wird single precision auch als float bezeichnet. Die Zahl ε ist die Maschinengenauigkeit und gibt an, mit welcher Genauigkeit Rechenoperationen zwischen zwei Zahlen dargestellt werden können. Sie ist wie folgt definiert: ε := inf{ x > 0 rd(1 + x) > 1 } Daher es handelt sich um die kleinste positive Zahl, deren Summe bei Addition zu 1, zu eine Zahl echt größer als 1 aufgerundet wird. Die Zahl selbst muss nicht in der Menge des jeweils betrachteten Gleitkommasystems enthalten sein (siehe hierzu auch Präsenzübung 1.2). Zu ihrer Bestimmung gilt die Formel: ε = 1 2 2#m. Die Maschinengenauigkeit hängt also nur von der Länge der Mantisse ab! Dies sei auch an dem folgen Beispiel illustriert, wobei der Einfachheit halber die Mantissen- und Exponentenlängen #m = 2 und #e = 4 gesetzt werden. Machen Sie sich klar, dass die Zahlen a = (1.00) und b = (1.00) in dem vorgegebenen Rahmen darstellbar sind. Die Addition beider Zahlen erfordert das Angleichen der Exponenten, daher gilt: rd(a + b) = rd((1.00) 2 + (0.0001) 2 ) 2 0 = rd((1.0001) 2 ) 2 0 = (1.00) = a. Hätte man nun noch mehr Mantissenglieder zur Verfügung gehabt, so könnte das Ergebnis der Addition korrekt berechnet werden und würde nicht durch Rundung rd() verfälscht. Wie die Tabelle zeigt, ist die Maschinengenauigkeit jedoch nicht die kleinste darstellbare Zahl. Woran liegt das? Ausschlaggeb für die kleinste darstellbare Zahl ist der Wertebereich des Exponenten e, denn über diesen ermittelt sich der Biaswert, so dass sich für das kleinste Basiselement insgesamt der Exponent 0 2 b = 2 #e 1 1 ergibt. Setzt man nun zusätzlich m 1 = 1 und alle anderen Mantissenbits zu Null, so ergibt sich die kleinste darstellbare Zahl. Die Wahl e = 0 und m i = 0 für i = 1,..., #m ist für die Darstellung der Null reserviert und somit nicht möglich. Die kleinste dastellbare Zahl und die Rechengenauigkeit sind also zu unterscheiden. Insbesondere ist die Anzeige von mehr als 15 (bei double) bzw. mehr als 7 (bei single) Nachkommastellen im Dezimalsystem nicht sinnvoll, 6

7 da alle weiteren Nachkommastellen durch Rundung verfälscht sind. Man spricht deshalb bei den ersten 7 bzw. 15 auch von signifikanten Nachkommastellen. Zahlenformate und -darstellung in MATLAB ändern Man muss in MATLAB unterscheiden, wie Zahlen gespeichert und wie Zahlen dargestellt werden. Bei einer Rechnung wie 2+ 2 gibt MATLAB zwar nur 5 Nachkommastellen aus, rechnet und speichert intern jedoch die Zahlen mit double precision. Um die Zahlarstellung zu ändern, gibt es in MATLAB den Befehl format <Anzeigeformat>. Wenn Sie MATLAB starten, werden alle Zahlen standardmäßig mit dem Anzeigeformat short dargestellt: Es werden maximal 5 Nachkommastellen angezeigt. Um alle Zahlen mit der vollen Anzahl von signifikanten Stellen anzeigen zu lassen, tippen Sie im Command Window den Befehl format long ein. Je nachdem ob Sie mit double oder single precision arbeiten, werden dabei 15 oder 7 Nachkommastellen angezeigt. Manchmal ist es wünschenswert die Zahlen normalisiert, d.h. mit führer Stelle vor dem Komma ungleich Null, anzeigen zu lassen. Dies geschieht, wenn Sie den Befehl format longe eingeben. >> 1/ sqrt(2) >> format long >> 1/ sqrt(2) >> format longe >> 1/ sqrt(2) e-01 Der Suffix e-01 steht dabei für Zahlen können auch direkt in dieser Notation eingegeben werden. Dabei muss lediglich beachtet werden, dass vor dem e immer eine Zahl, zumindest eine 1, stehen muss. >> 5e

8 >> 2.5 e2 250 >>e2 Undefined function or variable 'e2'. Wie schon gesagt rechnet MATLAB standardmäßig in double precision. Wollen Sie eine Variable oder einen Wert bzw. eine Matrix allerdings lediglich in single precision speichern, so können Sie dies in MATLAB mit Hilfe des single Befehls angeben 1. >> single (1/3) >> format long >> ans Wenn Sie eine Rechenoperation zwischen zwei Zahlen in single precision durchführen, so ist das Ergebnis auch wieder eine Zahl in single precision. MATLAB rechnet dann auch intern nur in single precision. Anders ist die Situation, wenn Sie eine Rechenoperation zwischen einer Zahl d in double precision und einer anderen Zahl s in single precision durchführen wollen, dann ist das Ergebnis eine Zahl in single precision. Dies soll das folge Beispiel verdeutlichen. Der Befehl whos ist dabei ein nützliches Hilfsmittel um festzustellen in welcher Rechengenauigkeit das Ergebnis vorliegt. >> format long >> s1 = single( sqrt (2)) s1 = >> s2 = single( sqrt (5)) s2 = >> d1 = sqrt(5) d1 = Man beachte auch, dass nun bei der Umstellung auf format long nur noch 7 statt der bisher 15 Nachkommastellen angezeigt werden. 8

9 >> erg_1 = s1 + s2 erg_1 = >> erg_2 = s1 + d1 erg_2 = >> whos Name Size Bytes Class d1 1x1 8 double erg_1 1x1 4 single erg_2 1x1 4 single s1 1x1 4 single s2 1x1 4 single Die Umstellung auf single precision ist insofern attraktiv, als dass Operationen in single precision weniger Rechenzeit benötigen als in double precision. Ihr Algorithmus läuft also potentiell schneller, ist aber weniger stabil, da Rundungsfehler sich schneller auswirken. Wir werden deshalb, sofern nicht anders angegeben, auch weiterhin immer in double precision rechnen. Für die Ausgabe der Maschinengenauigkeit besitzt MATLAB den Befehl eps. Dieser gibt die Maschinengenauigkeit für double wieder. Um den Wert für single precision zu erhalten ist lediglich eine kleine Modifikation nötig. >> eps e-16 >> eps( single (1)) e-07 Gleitkommavergleiche Es kommt in der Numerik häufiger vor, dass Sie in einer if-abfrage zwei Zahlen miteinander vergleichen wollen. Mathematisch ist das Problem klar, doch durch Rundungsfehler sind Zahlen, die aus Rechnungen auf dem Computer entstanden sind, oftmals nicht exakt gleich. 9

10 Dies kann man sich anhand des folgen Beispiels klar machen, dass eine Abwandlung der Präsenzübungsaufgabe 1.1 ist. Wir wollen die Funktion ( x f(x) = x 3 x ) = x2 x x 2 1 an der Stelle x 0 = in single precision auswerten. Die beiden Terme rechts von f(x) sind mathematisch äquivalent, es ergibt sich jedoch: >> x = single (14000) x = >> f1 = x^3*(x/(x^2-1)-1/x) f1 = 0 >> f2 = x^2/(x^2-1) f2 = 1 >> f1 == f2 0 Dies ist ein Extremfall, aber er zeigt, dass der Test auf Gleichheit zu unerwarteten Ergebnissen führen kann. Daher ist es ratsam, statt der Gleichheit nur zu testen, ob die Differenz der beiden Zahlen unter einer gewissen Toleranzgrenze liegen, z.b. die der Maschinengenauigkeit. Statt a == b sollten Sie besser abs(a - b) < eps testen, dabei steht abs für den Absolutbetrag. Gleiches gilt auch für Vergleiche der Art ~=, =>, <=. 10

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,

Mehr

Erwin Grüner 09.02.2006

Erwin Grüner 09.02.2006 FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

Fallunterscheidung: if-statement

Fallunterscheidung: if-statement Fallunterscheidung: if-statement A E 1 E 2 V 1 V 2 Syntax: if ( ausdruck ) Semantik: else anweisungsfolge_1 anweisungsfolge_2 1. Der ausdruck wird bewertet 2. Ergibt die Bewertung einen Wert ungleich 0

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08 Kapitel 4 Programmierkurs Birgit Engels, Anna Schulze Wiederholung Kapitel 4 ZAIK Universität zu Köln WS 07/08 1 / 23 2 Datentypen Arten von Datentypen Bei der Deklaration einer Variablen(=Behälter für

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Rundungsfehler-Problematik bei Gleitpunktzahlen

Rundungsfehler-Problematik bei Gleitpunktzahlen Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54 PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten

Mehr

4.2 Gleitkommazahlen. Der Speicherbedarf (in Bits) ist üblicherweise. In vielen Anwendungen benötigt man gebrochene Werte. Physikalische Größen

4.2 Gleitkommazahlen. Der Speicherbedarf (in Bits) ist üblicherweise. In vielen Anwendungen benötigt man gebrochene Werte. Physikalische Größen . Gleitkommazahlen In vielen Anwendungen benötigt man gebrochene Werte. Physikalische Größen Umrechnen von Einheiten und Währungen Jede Zahl x Q mit x 0 lässt sich folgendermaßen schreiben: x = s m e mit

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

float: Fließkommazahl nach IEEE 754 Standard mit 32 bit

float: Fließkommazahl nach IEEE 754 Standard mit 32 bit Primitive Datentypen Fließkommazahlen float: Fließkommazahl nach IEEE 754 Standard mit 32 bit Vorzeichen Exponent 8 bit Mantisse 23 bit double: Fließkommazahl nach IEEE 754 Standard mit 64 bit Vorzeichen

Mehr

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff Programmieren in C Felder, Schleifen und Fließkommaarithmetik Prof. Dr. Nikolaus Wulff Addition von Zahlen 1 2 3 4 5 #include int main() { int x,y,z,sum; x = 1; y = 2; z = 4; sum = x + y + z;

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Java 7. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Dezember 2011 JAV7

Java 7. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Dezember 2011 JAV7 Java 7 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Dezember 2011 JAV7 5 Java 7 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging.

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Algorithmische Kernsprache Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Ausdrücke Anweisungen Ausdrücke bezeichnen einen Wert Kontext stellt Werte von Variablen Werte

Mehr

25 kann ohne Rest durch 5 geteilt werden! ist wahr

25 kann ohne Rest durch 5 geteilt werden! ist wahr Lehrbrief 2: Lektion 8 - C -Praxis 4-1 - 5.2 Einfache Entscheidungen mit if und die Vergleichsoperatoren Nun tauchen wir immer tiefer in die Geheimnisse von C ein und beschäftigen uns mit einem sehr wichtigen

Mehr

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann 1 Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann

Mehr

Java-Programmierung mit NetBeans

Java-Programmierung mit NetBeans Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dr-Ing Markus Kowarschik Numerisches Programmieren, Übungen Musterlösung

Mehr

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen.

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Wir wollen uns heute dem Thema Variablen widmen und uns damit beschäftigen, wie sich

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung.

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung. Zahldarstellung Lernziele: Vertiefen der Kenntnisse über Zahldarstellungen. Aufgabe 1: Werte/Konstanten Ergänzen Sie die Tabelle ganzzahliger Konstanten auf einem 16- Bit- System. Die Konstanten in einer

Mehr

Ein erstes Java-Programm

Ein erstes Java-Programm Ein erstes Java-Programm public class Rechnung { public static void main (String [] arguments) { int x, y; x = 10; y = -1 + 23 * 33 + 3 * 7 * (5 + 6); System.out.print ("Das Resultat ist "); System.out.println

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 017 Institut für Informatik Prof Dr Thomas Huckle Michael Obersteiner, Michael Rippl Numerisches Programmieren, Übungen Musterlösung 1 Übungsblatt: Zahlendarstellung,

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

2.5 Primitive Datentypen

2.5 Primitive Datentypen 2.5 Primitive Datentypen Wir unterscheiden 5 primitive Datentypen: ganze Zahlen -2, -1, -0, -1, -2,... reelle Zahlen 0.3, 0.3333..., π, 2.7 10 4 Zeichen a, b, c,... Zeichenreihen "Hello World", "TIFI",

Mehr

3. Datentypen, Ausdrücke und Operatoren

3. Datentypen, Ausdrücke und Operatoren 3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen

Mehr

C-Vorrangregeln. Version 1.3 6.7.2009. email: tb@ostc.de Web: www.ostc.de

C-Vorrangregeln. Version 1.3 6.7.2009. email: tb@ostc.de Web: www.ostc.de C-Vorrangregeln Version 1.3 6.7.2009 email: tb@ostc.de Web: www.ostc.de Die Informationen in diesem Skript wurden mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

JAVA-Datentypen und deren Wertebereich

JAVA-Datentypen und deren Wertebereich Folge 8 Variablen & Operatoren JAVA 8.1 Variablen JAVA nutzt zum Ablegen (Zwischenspeichern) von Daten Variablen. (Dies funktioniert wie beim Taschenrechner. Dort können Sie mit der Taste eine Zahl zwischenspeichern).

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

3 Numerisches Rechnen

3 Numerisches Rechnen E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als

Mehr

Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten)

Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten) Name: «Vorname» «Name» Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten) Informatik 12 2 VP je 2 VP 6 VP 0 Notieren Sie alle Antworten in einer Word-Datei Klausur1_«Name».doc

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2010/11 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund Wiederholungen - while - do-while - for

Mehr

Brückenkurs Programmieren

Brückenkurs Programmieren Brückenkurs Programmieren Verzweigungen, Operatoren, Schleifen, Arrays Christopher Schölzel Technische Hochschule Mittelhessen 01.10.2013 Christopher Schölzel (THM) Brückenkurs Programmieren 01.10.2013

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Schleifen in C/C++/Java

Schleifen in C/C++/Java Schleifen in C/C++/Java Alle 3 Sprachen stellen mindestens die folgenden 3 Schleifenkonstruktionen zur Verfügung. In C gibt es auch keine weiteren, C++, Java und C# haben noch weitere nützliche Varianten.

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo Aufgabe ist die Entwicklung einer vereinfachten Variante der beliebten Programmiersprache Logo. Die Aufgabe ist in drei Stufen zu erledigen, von der wir zunächst nur die erste Stufe bekannt geben. Die

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Wirtschaftsinformatik I

Wirtschaftsinformatik I Wirtschaftsinformatik I - Tutorium 6/ 7 (April 2010) Zusatzinformationen - Lösungsvorschläge Wirtschaftsinformatik I Tutorium Jochen Daum (4.Semester BWL) Universität Mannheim Rechtshinweis: Diese Präsentation

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 47 Einstieg in die Informatik mit Java Anweisungen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 47 1 Ausdrucksanweisung 2 Einfache Ausgabeanweisung 3 Einfache Eingabeanweisung,

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16 C++ Teil 4 Sven Groß IGPM, RWTH Aachen 30. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 4 30. Apr 2015 1 / 16 Themen der letzten Vorlesung Funktionen: Definition und Aufruf Wert- und Referenzparameter,

Mehr

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. michael.roth@h-da.de. Hochschule Darmstadt -Fachbereich Informatik-

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. michael.roth@h-da.de. Hochschule Darmstadt -Fachbereich Informatik- Informatik Studiengang Chemische Technologie Michael Roth michael.roth@h-da.de Hochschule Darmstadt -Fachbereich Informatik- WS 2012/2013 Inhalt Teil VII Einstieg in Java I Michael Roth (h_da) Informatik

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Java I Vorlesung Imperatives Programmieren

Java I Vorlesung Imperatives Programmieren Java I Vorlesung 2 Imperatives Programmieren 3.5.2004 Variablen -- Datentypen -- Werte Operatoren und Ausdrücke Kontrollstrukturen: if Imperatives Programmieren Im Kern ist Java eine imperative Programmiersprache.

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Datentypen (int, long, double, boolean, String) Variablen und Variablendeklarationen

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Inhalt dieser Einheit Variablen (Sinn und Aufgabe) Bezeichner Datentypen, Deklaration und Operationen Typenumwandlung (implizit/explizit) 2 Variablen

Mehr

Informatik A ( Frank Hoffmann)

Informatik A ( Frank Hoffmann) Teillösungen zum 1. Aufgabenblatt zur Vorlesung Informatik A ( Frank Hoffmann) 1. Improvisieren Stellen Sie die Zahl 6 dar durch einen Ausdruck, der genau dreimal die Ziffer i enthält und ansonsten neben

Mehr

Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen

Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen Computergrundlagen Zahlensysteme, Fließkommazahlen und Fehlerquellen Institut für Computerphysik Universität Stuttgart Wintersemester 2017/18 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von

Mehr

Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny

Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny 5. Kontrollstrukturen Allgemein Kontrollstrukturen dienen zur Steuerung des Programmablaufs. (Bemerkung: C und C++ besitzen die selben Kontrollstrukturen.)

Mehr