Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB.

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB."

Transkript

1 Logische Verknüpfungen. while-schleifen. Zahlarstellung auf dem Computer. Formatierung von Zahlen in MATLAB. Logische Verknüpfungen In der letzten Sitzung haben wir kennengelernt, wie wir Zahlen mit Operationen wie <, <=, ==, etc. vergleichen können. Das Ergebnis von solchen Operationen nennt man boolesche Werte. Diese Werte werden in MATLAB als Zahlen 1 (true, also wahr) und 0 (false, also falsch) gespeichert. Sind b1 und b2 zwei boolesche Variablen, so können wir die Konjunktion b1 b2 (wahr genau dann, wenn beide Variablen wahr sind) in MAT- LAB durch b1 && b2 ausdrücken. Die Disjunktion b1 b2 (wahr genau dann, wenn mindestens eine der Variablen wahr ist) durch b1 b2. >> (1 < 3) && (3 < 5) 1 >> (1 < 3) && (7 < 5) 0 >> (1 < 3) (7 < 5) 1 >> (5 < 3) (7 < 5) 0 Es gelten dieselben Klammerregeln wie in der Mathematik. Vergleichsoperationen müssen geklammert werden, wenn sie Teil eines anderen Ausdrucks sind. In MATLAB können immer nur Vergleichsoperationen zwischen zwei Zahlen durchgeführt werden, Ausdrücke wie 1 < x < 3 funktionieren nicht wie erwartet: MATLAB klammert zuerst die ersten beiden Terme 1

2 und konvertiert das Ergebnis dieses Vergleichs, den Wahrheitswert, in eine Zahl, mit welcher der zweite Vergleich durchgeführt wird. Zum Beispiel ist der Ausdruck 2 < 4 < 3 fälschlicherweise wahr. Mit Klammerung lautet er nämlich: (2 < 4) < 3. Da 2 < 4 wahr, also gleich 1, ist, wird der unsinnige Vergleich 1 < 3 durchgeführt, der wahr ist. Wir müssen solche Vergleiche also stets mit einem && in zwei einzelne Vergleiche umschreiben: (1 < x) && (x < 3). while-schleifen Mit for-schleifen können wir Befehle mehrmals ausführen, doch die Anzahl der Iterationen muss zum Beginn der Schleife angegeben werden. In vielen numerischen Verfahren ist jedoch die Anzahl der Iterationen a priori nicht bekannt, z.b. wenn man mit dem Newton-Verfahren die Nullstelle einer Funktion approximativ bis auf eine bestimmte Genauigkeit bestimmen will. Bei while-schleifen wird hingegen solange iteriert wie eine gegebene Bedingung, also ein boolescher Wert, wahr ist. Die allgemeine Syntax lautet: while ( Bedingung) (Befehle) Als erstes Beispiel wollen wir bestimmen, ab welchem i N die Fakultät von i größer als ist. Hier ist nun die Anzahl der Schleifurchläufe die Information, welche wir mit unserem Programm erhalten wollen. Wir wollen in jedem Durchlauf der Schleife die Variable i um 1 erhöhen und die Fakultät von i über die Rekursion i! = i(i 1)! berechnen, wobei der rechte Faktor bereits aus dem vorherigen Schleifurchlauf bekannt ist und wir daher nur mit i multiplizieren müssen. Die Schleife soll so lange laufen, wie die berechnete Fakultät kleiner als eine Million ist, dies können wir direkt in unseren Programmcode übersetzen. factorial = 1; i = 0; while factorial <= i = i + 1; factorial = factorial * i; 2

3 factorial i Anders als bei for-schleifen mussten wir uns hier um die Definition und das Erhöhen von i selbst kümmern. Bei der Arbeit mit while-schleifen kann es passieren, dass die angegebene Bedingung nie erfüllt wird, beispielsweise durch einen Programmierfehler. Wir haben es dann mit einer sogenannten Endlosschleife zu tun. Diese kann man dann durch Drücken von strg + C been. Das folge Beispiel zeigt einen häufig gemachten Fehler, in dem das Hochzählen von i vergessen, und somit eine Endlosschleife programmiert wurde: i = 1; while i < 10 2 * i Aufgabe 1. Für q ( 1, 1) sei an die geometrische Reihe k=0 q k = 1 1 q erinnert. Für welches n ist die Differenz zwischen der n-ten Partialsumme und der geometrischen Reihe zum ersten Mal kleiner als error? Testen Sie Ihr Programm für q = 0.1 und error = continue und break Bei while- und auch for-schleifen kann es in außergewöhnlichen Situationen vorkommen, dass wir eine Iteration überspringen oder die Schleife komplett abbrechen wollen. Hierfür gibt es in MATLAB die Befehle continue und break. continue lässt MATLAB alle nachfolgen Befehle im aktuellen Schleifurchlauf überspringen. Im folgen Beispiel überspringen wir für i == 2 die Berechnung von 2 * i: for i = 1:4 if i == 2 continue 3

4 2 * i Wir hätten das selbe Verhalten auch mit if... else... erzeugen können, continue ist lediglich eine alternative Lösung, die bei komplexeren Schleifen das Programm vereinfacht. Analog können wir auch break verwen. Hierbei wird die Schleife jedoch sofort komplett abgebrochen. Nur in Ausnahmefällen ist die Verwung von break angebracht, z.b. wenn bei der Durchführung eines Algorithmus bemerkt wird, dass der Algorithmus nicht funktionieren kann und die weitere Durchführung zwecklos ist. Aufgabe 2. Jede for-schleife kann zu einer while-schleife umgeschrieben werden. Wie sieht das folge Programm mit einer while-schleife aus? n = 10; sum = 0; for i = 1:n sum = sum + i; Gleitkommaarithmetik und Rechengenauigkeit In der Vorlesung bzw. in den Übungen haben Sie schon eine erste Einführung in die Darstellung von Zahlen auf dem Computer erhalten. Dieses Kapitel wollen wir nun unter anderem anhand der Übungsaufgaben vertiefen, doch zunächst folgt eine kleine auf die Praxis ausgerichtete Wiederholung. Das IEEE 754 Format Die Darstellung einer Zahl auf dem Computer erfolgt im IEEE 754 Format (siehe dazu auch Definition 1.11 in der Vorlesung). Die Darstellung einer Zahl x geschieht in der Form mit rd(x) = ±(1.m #m... m 1 ) 2 2 (e #e...e 1 ) 2 b 4

5 der Mantisse M = (1.m #m m 1 ) 2, dem Biaswert b = 2 #e 1 1 und dem Exponenten e = (e #e e 1 ) 2. Die Klammerung ( ) 2 bedeutet, dass die Zahl in den Klammern in Binärdarstellung aufzufassen ist. Als Ziffern sind in dieser Darstellung nur 0 oder 1 erlaubt, statt der Ziffern 0 bis 9 in der bekannten Dezimaldarstellung. Ist ( ) 10 die Dezimaldarstellung, so gilt: ( n ) (b n b 0.b 1 b m ) 2 = b k 2 k. k= m Der Computer kann die zwei Zustände im Binärsystem als Strom an / aus viel einfacher realisieren als die 10 Zustände im Dezimalsystem. Ein Zustand mit Werten in {0, 1} wird als Bit (binary digit) bezeichnet und 8 Bits zu einem Byte zusammengefasst. Ein Byte kann also 2 8 = 256 Zustände darstellen. Zur Speicherung von Gleitkommazahlen müssen auf dem Computer nur die folgen Bits gespeichert werden: Ein Bit s für das Vorzeichen. Für negative Zahlen ist dieser Bit s=1, sonst s=0. #e Bits für den Exponenten e #e... e 1. #m Bits für die Mantisse m #m... m 1. Die erste 1 vor dem Komma muss nicht gespeichert werden. Double und Single Precision Die Anzahl der Bits für den Exponenten und die Mantisse legt die Menge der darstellbaren Gleitkommazahlen fest. Der Computer verwet die folgen zwei Gleitkommadarstellungen. double precision single precision #m #e 11 8 Speicherplatz 64 Bit 32 Bit x max x min, ε

6 Dabei bezeichnet x max die größte und x min, die betragsmäßig kleinste darstellbare Zahl. Oft wird single precision auch als float bezeichnet. Die Zahl ε ist die Maschinengenauigkeit und gibt an, mit welcher Genauigkeit Rechenoperationen zwischen zwei Zahlen dargestellt werden können. Sie ist wie folgt definiert: ε := inf{ x > 0 rd(1 + x) > 1 } Daher es handelt sich um die kleinste positive Zahl, deren Summe bei Addition zu 1, zu eine Zahl echt größer als 1 aufgerundet wird. Die Zahl selbst muss nicht in der Menge des jeweils betrachteten Gleitkommasystems enthalten sein (siehe hierzu auch Präsenzübung 1.2). Zu ihrer Bestimmung gilt die Formel: ε = 1 2 2#m. Die Maschinengenauigkeit hängt also nur von der Länge der Mantisse ab! Dies sei auch an dem folgen Beispiel illustriert, wobei der Einfachheit halber die Mantissen- und Exponentenlängen #m = 2 und #e = 4 gesetzt werden. Machen Sie sich klar, dass die Zahlen a = (1.00) und b = (1.00) in dem vorgegebenen Rahmen darstellbar sind. Die Addition beider Zahlen erfordert das Angleichen der Exponenten, daher gilt: rd(a + b) = rd((1.00) 2 + (0.0001) 2 ) 2 0 = rd((1.0001) 2 ) 2 0 = (1.00) = a. Hätte man nun noch mehr Mantissenglieder zur Verfügung gehabt, so könnte das Ergebnis der Addition korrekt berechnet werden und würde nicht durch Rundung rd() verfälscht. Wie die Tabelle zeigt, ist die Maschinengenauigkeit jedoch nicht die kleinste darstellbare Zahl. Woran liegt das? Ausschlaggeb für die kleinste darstellbare Zahl ist der Wertebereich des Exponenten e, denn über diesen ermittelt sich der Biaswert, so dass sich für das kleinste Basiselement insgesamt der Exponent 0 2 b = 2 #e 1 1 ergibt. Setzt man nun zusätzlich m 1 = 1 und alle anderen Mantissenbits zu Null, so ergibt sich die kleinste darstellbare Zahl. Die Wahl e = 0 und m i = 0 für i = 1,..., #m ist für die Darstellung der Null reserviert und somit nicht möglich. Die kleinste dastellbare Zahl und die Rechengenauigkeit sind also zu unterscheiden. Insbesondere ist die Anzeige von mehr als 15 (bei double) bzw. mehr als 7 (bei single) Nachkommastellen im Dezimalsystem nicht sinnvoll, 6

7 da alle weiteren Nachkommastellen durch Rundung verfälscht sind. Man spricht deshalb bei den ersten 7 bzw. 15 auch von signifikanten Nachkommastellen. Zahlenformate und -darstellung in MATLAB ändern Man muss in MATLAB unterscheiden, wie Zahlen gespeichert und wie Zahlen dargestellt werden. Bei einer Rechnung wie 2+ 2 gibt MATLAB zwar nur 5 Nachkommastellen aus, rechnet und speichert intern jedoch die Zahlen mit double precision. Um die Zahlarstellung zu ändern, gibt es in MATLAB den Befehl format <Anzeigeformat>. Wenn Sie MATLAB starten, werden alle Zahlen standardmäßig mit dem Anzeigeformat short dargestellt: Es werden maximal 5 Nachkommastellen angezeigt. Um alle Zahlen mit der vollen Anzahl von signifikanten Stellen anzeigen zu lassen, tippen Sie im Command Window den Befehl format long ein. Je nachdem ob Sie mit double oder single precision arbeiten, werden dabei 15 oder 7 Nachkommastellen angezeigt. Manchmal ist es wünschenswert die Zahlen normalisiert, d.h. mit führer Stelle vor dem Komma ungleich Null, anzeigen zu lassen. Dies geschieht, wenn Sie den Befehl format longe eingeben. >> 1/ sqrt(2) >> format long >> 1/ sqrt(2) >> format longe >> 1/ sqrt(2) e-01 Der Suffix e-01 steht dabei für Zahlen können auch direkt in dieser Notation eingegeben werden. Dabei muss lediglich beachtet werden, dass vor dem e immer eine Zahl, zumindest eine 1, stehen muss. >> 5e

8 >> 2.5 e2 250 >>e2 Undefined function or variable 'e2'. Wie schon gesagt rechnet MATLAB standardmäßig in double precision. Wollen Sie eine Variable oder einen Wert bzw. eine Matrix allerdings lediglich in single precision speichern, so können Sie dies in MATLAB mit Hilfe des single Befehls angeben 1. >> single (1/3) >> format long >> ans Wenn Sie eine Rechenoperation zwischen zwei Zahlen in single precision durchführen, so ist das Ergebnis auch wieder eine Zahl in single precision. MATLAB rechnet dann auch intern nur in single precision. Anders ist die Situation, wenn Sie eine Rechenoperation zwischen einer Zahl d in double precision und einer anderen Zahl s in single precision durchführen wollen, dann ist das Ergebnis eine Zahl in single precision. Dies soll das folge Beispiel verdeutlichen. Der Befehl whos ist dabei ein nützliches Hilfsmittel um festzustellen in welcher Rechengenauigkeit das Ergebnis vorliegt. >> format long >> s1 = single( sqrt (2)) s1 = >> s2 = single( sqrt (5)) s2 = >> d1 = sqrt(5) d1 = Man beachte auch, dass nun bei der Umstellung auf format long nur noch 7 statt der bisher 15 Nachkommastellen angezeigt werden. 8

9 >> erg_1 = s1 + s2 erg_1 = >> erg_2 = s1 + d1 erg_2 = >> whos Name Size Bytes Class d1 1x1 8 double erg_1 1x1 4 single erg_2 1x1 4 single s1 1x1 4 single s2 1x1 4 single Die Umstellung auf single precision ist insofern attraktiv, als dass Operationen in single precision weniger Rechenzeit benötigen als in double precision. Ihr Algorithmus läuft also potentiell schneller, ist aber weniger stabil, da Rundungsfehler sich schneller auswirken. Wir werden deshalb, sofern nicht anders angegeben, auch weiterhin immer in double precision rechnen. Für die Ausgabe der Maschinengenauigkeit besitzt MATLAB den Befehl eps. Dieser gibt die Maschinengenauigkeit für double wieder. Um den Wert für single precision zu erhalten ist lediglich eine kleine Modifikation nötig. >> eps e-16 >> eps( single (1)) e-07 Gleitkommavergleiche Es kommt in der Numerik häufiger vor, dass Sie in einer if-abfrage zwei Zahlen miteinander vergleichen wollen. Mathematisch ist das Problem klar, doch durch Rundungsfehler sind Zahlen, die aus Rechnungen auf dem Computer entstanden sind, oftmals nicht exakt gleich. 9

10 Dies kann man sich anhand des folgen Beispiels klar machen, dass eine Abwandlung der Präsenzübungsaufgabe 1.1 ist. Wir wollen die Funktion ( x f(x) = x 3 x ) = x2 x x 2 1 an der Stelle x 0 = in single precision auswerten. Die beiden Terme rechts von f(x) sind mathematisch äquivalent, es ergibt sich jedoch: >> x = single (14000) x = >> f1 = x^3*(x/(x^2-1)-1/x) f1 = 0 >> f2 = x^2/(x^2-1) f2 = 1 >> f1 == f2 0 Dies ist ein Extremfall, aber er zeigt, dass der Test auf Gleichheit zu unerwarteten Ergebnissen führen kann. Daher ist es ratsam, statt der Gleichheit nur zu testen, ob die Differenz der beiden Zahlen unter einer gewissen Toleranzgrenze liegen, z.b. die der Maschinengenauigkeit. Statt a == b sollten Sie besser abs(a - b) < eps testen, dabei steht abs für den Absolutbetrag. Gleiches gilt auch für Vergleiche der Art ~=, =>, <=. 10

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Erwin Grüner 09.02.2006

Erwin Grüner 09.02.2006 FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Dossier: Rechnungen und Lieferscheine in Word

Dossier: Rechnungen und Lieferscheine in Word www.sekretaerinnen-service.de Dossier: Rechnungen und Lieferscheine in Word Es muss nicht immer Excel sein Wenn Sie eine Vorlage für eine Rechnung oder einen Lieferschein erstellen möchten, brauchen Sie

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book

Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book Wir wollen wissen wieviel Umsatz Vertreter Müller im Juni gemacht hat? Dazu klicken wir irgendwo in ein Feld und geben ein: =SVERWEIS

Mehr

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff Programmieren in C Felder, Schleifen und Fließkommaarithmetik Prof. Dr. Nikolaus Wulff Addition von Zahlen 1 2 3 4 5 #include int main() { int x,y,z,sum; x = 1; y = 2; z = 4; sum = x + y + z;

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Java-Programmierung mit NetBeans

Java-Programmierung mit NetBeans Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Berechnungen in Access Teil I

Berechnungen in Access Teil I in Access Teil I Viele Daten müssen in eine Datenbank nicht eingetragen werden, weil sie sich aus anderen Daten berechnen lassen. Zum Beispiel lässt sich die Mehrwertsteuer oder der Bruttopreis in einer

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Grundlagen der Informatik (BSc) Übung Nr. 5

Grundlagen der Informatik (BSc) Übung Nr. 5 Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Inhalt. 1 Einleitung AUTOMATISCHE DATENSICHERUNG AUF EINEN CLOUDSPEICHER

Inhalt. 1 Einleitung AUTOMATISCHE DATENSICHERUNG AUF EINEN CLOUDSPEICHER AUTOMATISCHE DATENSICHERUNG AUF EINEN CLOUDSPEICHER Inhalt 1 Einleitung... 1 2 Einrichtung der Aufgabe für die automatische Sicherung... 2 2.1 Die Aufgabenplanung... 2 2.2 Der erste Testlauf... 9 3 Problembehebung...

Mehr

Ihre Interessentendatensätze bei inobroker. 1. Interessentendatensätze

Ihre Interessentendatensätze bei inobroker. 1. Interessentendatensätze Ihre Interessentendatensätze bei inobroker Wenn Sie oder Ihre Kunden die Prozesse von inobroker nutzen, werden Interessentendatensätze erzeugt. Diese können Sie direkt über inobroker bearbeiten oder mit

Mehr

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Aufgabe 3: Konto Um Geldbeträge korrekt zu verwalten, sind zwecks Vermeidung von Rundungsfehlern entweder alle Beträge in Cents umzuwandeln und

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen Übungen if / else / else if... 2... 2 Aufgabe 2:... 2 Aufgabe 3:... 2 Aufgabe 4:... 2 Aufgabe 5:... 2 Aufgabe 6:... 2 Aufgabe 7:... 3 Aufgabe 8:... 3 Aufgabe 9:... 3 Aufgabe 10:... 3 switch... 4... 4 Aufgabe

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014)

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014) Handbuch NAFI Online-Spezial 1. Auflage (Stand: 24.09.2014) Copyright 2016 by NAFI GmbH Unerlaubte Vervielfältigungen sind untersagt! Inhaltsangabe Einleitung... 3 Kundenauswahl... 3 Kunde hinzufügen...

Mehr

Wir arbeiten mit Zufallszahlen

Wir arbeiten mit Zufallszahlen Abb. 1: Bei Kartenspielen müssen zu Beginn die Karten zufällig ausgeteilt werden. Wir arbeiten mit Zufallszahlen Jedesmal wenn ein neues Patience-Spiel gestartet wird, muss das Computerprogramm die Karten

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"

AZK 1- Freistil. Der Dialog Arbeitszeitkonten Grundsätzliches zum Dialog Arbeitszeitkonten AZK 1- Freistil Nur bei Bedarf werden dafür gekennzeichnete Lohnbestandteile (Stundenzahl und Stundensatz) zwischen dem aktuellen Bruttolohnjournal und dem AZK ausgetauscht. Das Ansparen und das Auszahlen

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Was Sie bald kennen und können

Was Sie bald kennen und können Den Rechner verwenden 6 Heutzutage gehört auf jeden Schreibtisch auch ein Taschenrechner denn wer vertraut im Computer-Zeitalter noch seinen eigenen Rechenkünsten? Und da Microsoft mit Windows die Vision

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

WinWerk. Prozess 4 Akonto. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon

WinWerk. Prozess 4 Akonto. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon Prozess 4 Akonto WinWerk 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052 740 11 71 E-Mail info@kmuratgeber.ch Internet: www.winwerk.ch Inhaltsverzeichnis 1 Akonto... 2 1.1 Allgemein... 2 2 Akontobeträge

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

1. So einfach ist der Excel-Bildschirm

1. So einfach ist der Excel-Bildschirm 1. So einfach ist der Excel-Bildschirm So sieht Excel aus, wenn ich es gestartet habe. Leider ist bei vielen Symbolen in der Menüleiste nicht auf den ersten Blick zu erkennen, welche Funktion sie übernehmen.

Mehr

Zimmertypen. Zimmertypen anlegen

Zimmertypen. Zimmertypen anlegen Zimmertypen anlegen Hier legen Sie Ihre Zimmer an, damit sie auf der Homepage dargestellt werden und online buchbar gemacht werden können. Wobei wir ausdrücklich darauf hinweisen möchten, dass es ganz

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Übung RA, Kapitel 1.2

Übung RA, Kapitel 1.2 Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Funktion Erläuterung Beispiel

Funktion Erläuterung Beispiel WESTFÄLISCHE WILHELMS-UNIVERSITÄT WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BETRIEBLICHE DATENVERARBEITUNG Folgende Befehle werden typischerweise im Excel-Testat benötigt. Die Beispiele in diesem Dokument

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

Der elektronische Stromzähler EDL 21. Bedienungsanleitung. Service

Der elektronische Stromzähler EDL 21. Bedienungsanleitung. Service Der elektronische Stromzähler EDL 21 Bedienungsanleitung Service Mit dem elektronischen Stromzähler EDL 21* verfügen Sie über einen Zähler der neuen Generation. In dieser Broschüre erklären wir Ihnen,

Mehr

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag Ludwig-Maximilians-Universität München WS 2015/16 Institut für Informatik Übungsblatt 5 Prof. Dr. R. Hennicker, A. Klarl Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung:

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

1 Einleitung. Lernziele. Symbolleiste für den Schnellzugriff anpassen. Notizenseiten drucken. eine Präsentation abwärtskompatibel speichern

1 Einleitung. Lernziele. Symbolleiste für den Schnellzugriff anpassen. Notizenseiten drucken. eine Präsentation abwärtskompatibel speichern 1 Einleitung Lernziele Symbolleiste für den Schnellzugriff anpassen Notizenseiten drucken eine Präsentation abwärtskompatibel speichern eine Präsentation auf CD oder USB-Stick speichern Lerndauer 4 Minuten

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Inhaltsverzeichnis 1. Anmeldung... 2 1.1 Startbildschirm... 3 2. Die PDF-Dateien hochladen... 4 2.1 Neue PDF-Datei erstellen... 5 3. Obelix-Datei

Mehr

Mediator 9 - Lernprogramm

Mediator 9 - Lernprogramm Mediator 9 - Lernprogramm Ein Lernprogramm mit Mediator erstellen Mediator 9 bietet viele Möglichkeiten, CBT-Module (Computer Based Training = Computerunterstütztes Lernen) zu erstellen, z. B. Drag & Drop

Mehr

4. BEZIEHUNGEN ZWISCHEN TABELLEN

4. BEZIEHUNGEN ZWISCHEN TABELLEN 4. BEZIEHUNGEN ZWISCHEN TABELLEN Zwischen Tabellen können in MS Access Beziehungen bestehen. Durch das Verwenden von Tabellen, die zueinander in Beziehung stehen, können Sie Folgendes erreichen: Die Größe

Mehr

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse Übung 03: Schleifen Abgabetermin: xx.xx.xxxx Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Prähofer) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben elektronisch Aufgabe 03.1 12

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Einrichtung des Cisco VPN Clients (IPSEC) in Windows7

Einrichtung des Cisco VPN Clients (IPSEC) in Windows7 Einrichtung des Cisco VPN Clients (IPSEC) in Windows7 Diese Verbindung muss einmalig eingerichtet werden und wird benötigt, um den Zugriff vom privaten Rechner oder der Workstation im Home Office über

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr