Abitur 2009 Mathematik Seite 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abitur 2009 Mathematik Seite 1"

Transkript

1 Abitur 009 Mathematik Seite Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner zu bearbeiten. Das Arbeitsblatt wird nach einer Bearbeitungszeit von genau 45 Minuten eingesammelt. Zusätzliche Lösungsblätter sind mit Ihrem Namen zu versehen und in dieses Arbeitsblatt einzulegen. Analysis. In dem Koordinatensystem ist der Graph einer der Funktionen f() = oder g() = dargestellt. a) Geben Sie an, welche der beiden Funktionen dargestellt ist. Begründen Sie. b) Skizzieren Sie den Verlauf der Ableitungsfunktion der dargestellten Funktion in dasselbe Koordinatensystem. y Der Graph der Funktion mit der Gleichung f( ) = + b+ c hat im Punkt (3 ) den Anstieg. Berechnen Sie b und c..3 Begründen Sie, dass der Graph der Funktion besitzt. 4 f() = + 5 mit keinen Wendepunkt

2 Abitur 009 Mathematik Seite.4 Untersuchen Sie die Monotonie der Funktion f() = e und begründen Sie..5 Berechnen Sie alle Lösungen für k. k ( + 5)d = 45 Analytische Geometrie. Ein Dreieck ist durch die Eckpunkte A( ), B(3 ) und C( 3 ) gegeben. Prüfen Sie, ob der Winkel BAC ein rechter Winkel ist. Berechnen Sie die Länge der Strecke AB. Geben Sie den Mittelpunkt der Seite BC an.. Geben Sie den Vektor mithilfe der Vektoren a,b und c an. c b a

3 Abitur 009 Mathematik Seite 3.3 Bestimmen Sie einen Wert für k, sodass der Punkt P(3 k k) auf der Geraden AB mit A( 4) und B(0 5) liegt. 3 Stochastik 3. Eine Tür kann nur mit einem Code, der aus vier Feldern besteht, geöffnet werden. Für jedes Feld stehen die Zeichen 0 oder zur Verfügung. Wie viele verschiedene vierstellige Codes sind höchstens möglich? 3. Ein Würfel wird 00-mal geworfen. Formulieren Sie jeweils das Gegenereignis zu den folgenden Ereignissen. A: Weniger als 0-mal erscheint die Augenzahl 6. B: Mindestens bei der Hälfte der Würfe fällt eine 3 oder eine In einem Behälter liegen rote und 3 blaue Kugeln. Es wird eine Kugel zufällig gezogen, ihre Farbe notiert und nicht wieder in den Behälter gelegt. Anschließend wird dieser Vorgang mit einer zweiten Kugel wiederholt. a) Begründen Sie, dass es sich bei diesem Vorgang nicht um eine Bernoulli-Kette handelt. b) Ermitteln Sie die Wahrscheinlichkeit dafür, dass die beiden gezogenen Kugeln die gleiche Farbe besitzen.

4 Abitur 009 Mathematik ohne CAS Hinweise für Schüler Aufgabenwahl: Die Prüfungsarbeit besteht aus den Teilen A und B. Der Teil A ist von allen Prüfungsteilnehmern zu bearbeiten. Von den Aufgaben A, A und A3 sind zwei auszuwählen. Prüfungsteilnehmer, die die Prüfung unter erhöhten Anforderungen ablegen, bearbeiten zusätzlich den Prüfungsteil B. Von den Aufgaben B, B und B3 ist eine auszuwählen. Bearbeitungszeit: Allen Prüfungsteilnehmern steht eine Bearbeitungszeit von 95 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl zur Verfügung. Den Prüfungsteilnehmern, die die Prüfung unter erhöhten Anforderungen ablegen, stehen zusätzlich 60 Minuten Bearbeitungszeit zur Verfügung. Hilfsmittel: Für die Bearbeitung der Aufgaben sind zugelassen: das an der Schule eingeführte Tafelwerk, der an der Schule zugelassene Taschenrechner ohne CAS, Zeichengeräte ein Wörterbuch der deutschen Rechtschreibung. Hinweis: Die Lösungen sind in einer sprachlich korrekten, mathematisch eakten und äußerlich einwandfreien Form darzustellen. In der Niederschrift müssen die Lösungswege nachvollziehbar sein. Entwürfe können ergänzend zur Bewertung nur herangezogen werden, wenn sie zusammenhängend konzipiert sind und die Reinschrift etwa drei Viertel des zu erreichenden Gesamtumfanges beinhaltet. Sonstiges: Maimal zwei Bewertungseinheiten können zusätzlich vergeben werden bei guter Notation und Darstellung, eleganten, kreativen und rationellen Lösungswegen, vollständiger Lösung einer zusätzlichen Wahlaufgabe. Maimal zwei Bewertungseinheiten können bei mehrfachen Formverstößen abgezogen werden.

5 Abitur 009 Mathematik ohne CAS Seite 3 A Analysis (5 BE). Gegeben sind zwei Funktionen durch die Gleichungen 6,5 f() = mit, y K f() = 5,5 mit. K Der Graph von f ist K. Der Graph von f ist K... Begründen Sie rechnerisch, dass der Graph K symmetrisch zur y-achse ist... Berechnen Sie die Nullstellen von f. Geben Sie die Gleichungen der Asymptoten des Graphen K an. + 6,5..3 Zeigen Sie, dass F() = die Gleichung einer Stammfunktion von f ist...4 Der Querschnitt eines 0 m langen Wasserbeckens wird begrenzt durch: K in den Intervallen,5 und,5 K im Intervall. (Alle Längenangaben in Meter) Berechnen Sie das Volumen des Wasserbeckens in Liter, wenn es bis zum oberen Rand gefüllt ist. Das Becken wird nun bis zu einer Höhe von 5 m gefüllt. Zu wie viel Prozent ist das Becken dann gefüllt?. Gegeben ist eine Funktionenschar durch die Gleichung a f a() = mit,a,a 0. Die zugehörige Kurvenschar ist G a... Zeigen Sie, dass G a keine Etrempunkte und keine Wendepunkte besitzt... An jeden Graphen G a werden durch den Punkt P(a f a(a)) die Tangente und die Normale gelegt. Der Koordinatenursprung und die Schnittpunkte der Tangente mit den Koordinatenachsen bilden die Eckpunkte eines Dreiecks, des Tangentendreiecks. Der Koordinatenursprung und die Schnittpunkte der Normale mit den Koordinatenachsen bilden die Eckpunkte eines weiteren Dreiecks, des Normalendreiecks. Berechnen Sie das Verhältnis der Flächeninhalte von Normalen- und Tangentendreieck in Abhängigkeit von a.

6 Abitur 009 Mathematik ohne CAS Seite 4 A Analytische Geometrie (5 BE) Der Name eines Unternehmens wird mit den Großbuchstaben LFW abgekürzt. Dieses Logo soll für Werbezwecke aus Quadern mit quadratischem Querschnitt ( dm dm) hergestellt werden. Die Buchstabenhöhe soll 7 dm betragen. 7 dm I F G H 3 dm. Zeichnen Sie alle Kanten des L in einem geeigneten räumlichen Koordinatensystem. Geben Sie die Koordinaten der oberen vier Eckpunkte F, G, H und I an.. Zur Planung wird das W vorerst nur als Linienmodell betrachtet. In einem kartesischen Koordinatensystem sind die Punkte A( 8) und C( 5 7) durch ihre Koordinaten gegeben. Der Punkt B liegt auf der Geraden mit der Gleichung 0 g A : y = + r,r durch A z 8 4 und der Geraden mit der Gleichung 0 g C : y = + s, s durch C. z 5 3 A B C D E.. Berechnen Sie die Koordinaten des Punktes B. (zur Kontrolle: B( 3 )).. Prüfen Sie, ob der Punkt K( 7 3) auf der Strecke BC liegt...3 Berechnen Sie die Größe des Winkels CBA...4 Bestimmen Sie den Durchstoßpunkt der Geraden g A in der z-ebene...5 Beschreiben Sie die Lage des Buchstaben W in dem Koordinatensystem...6 Nutzen Sie die Symmetrie des Buchstaben W, um die Koordinaten der Punkte D und E zu ermitteln. Geben Sie diese an...7 Das Logo wird auf einer Fläche stehen, die in der Ebene ε mit der Gleichung ε : + 0y+ z= 4 liegt. Berechnen Sie den Abstand des Punktes C aus dem Linienmodell von dieser Ebene.

7 Abitur 009 Mathematik ohne CAS Seite 5 A3 Analysis und Stochastik (5 BE) 3. Die Skizze zeigt den Querschnitt eines Trägers in einem kartesischen Koordinatensystem. Die sichelförmige Querschnittsfläche wird durch zwei Parabelbögen p und p begrenzt, die die -Achse in den Punkten A( A y A ) und B( B y B ) schneiden. Längeneinheit entspricht m. A p p y Q T Abbildung nicht maßstäblich B 3.. Der obere Parabelbogen p ist der Graph der Funktion f mit der Gleichung 3 f() = + mit, A B Berechnen Sie die Spannweite AB. 3.. Der untere Parabelbogen p ist der Graph der Funktion g mit der Gleichung 4 g() = a + mit, A B. 5 Berechnen Sie den Wert der Konstante a. (zur Kontrolle: a = ) Die Strecke QT verläuft parallel zur y-achse. Die Länge dieser Strecke ist die Dicke des Trägers an der Stelle. Berechnen Sie die Dicke des Trägers an der Stelle. Geben Sie die größte Dicke des Trägers an Berechnen Sie die Querschnittsfläche des Trägers. Geben Sie die dazu erforderliche Stammfunktion an Der Träger soll mit senkrecht auf der -Achse aufgestellten Balken von 60 cm Länge unterstützt werden. Begründen Sie, warum dies möglich ist. Berechnen Sie die -Koordinaten der Punkte, an denen die Balken den Träger berühren. Die Breite der Balken wird vernachlässigt Im Punkt Q wird an die Parabel p die Tangente t gelegt. Berechnen Sie eine Gleichung für t, die Schnittstelle von t mit der -Achse, die Größe des Winkels, unter dem t die -Achse schneidet. Zu t gibt es eine Parallele, die die Parabel p im Punkt R berührt. Berechnen Sie die Koordinaten von R. Hinweis: Die Aufgabe wird auf der nächsten Seite fortgesetzt.

8 Abitur 009 Mathematik ohne CAS Seite 6 3. Bei der Herstellung von Balken werden zwei Fehler, Fehler I und Fehler II, registriert, die unabhängig voneinander auftreten. Der Fehler I wird erfahrungsgemäß bei 3 % aller Balken registriert, der Fehler II bei 5 %. Der laufenden Produktion wird auf gut Glück ein Balken entnommen und auf das Vorhandensein beider Fehler untersucht. 3.. Berechnen Sie die Wahrscheinlichkeit folgender Ereignisse. A: Der Balken hat den Fehler I, aber nicht den Fehler II. B: Bei dem Balken werden beide Fehler festgestellt. C: Der Balken ist fehlerfrei. 3.. Ermitteln Sie, wie viele fehlerfreie Balken man in einer Lieferung von 00 solcher Balken erwarten kann. Die Anzahl der fehlerfreien Balken kann als binomialverteilte Zufallsvariable angenommen werden Berechnen Sie, wie hoch der Prozentsatz der Balken mit registriertem Fehler II sein müsste, damit die Wahrscheinlichkeit für das Auftreten eines fehlerfreien Balkens bei sonst gleichen Bedingungen auf ca. 95 % steigt.

9 Abitur 009 Mathematik ohne CAS Seite 7 B Analysis (0 BE) Gegeben ist die Funktion f durch die Gleichung + f() e mit =. y K Der Graph von f ist K.. Der Graph K schließt mit den Koordinatenachsen und der Geraden = a mit a > 0 eine Fläche mit dem Inhalt A ein. Berechnen Sie A in Abhängigkeit von a. Ermitteln Sie lim A(a). a. Auf dem Graphen K ist ein Punkt P(r s) mit r > 0 gegeben. Durch P werden Parallelen zu den Koordinatenachsen gelegt. Diese Parallelen und die Koordinatenachsen begrenzen ein Rechteck. Bestimmen Sie die Koordinaten von P so, dass der Umfang dieses Rechtecks minimal wird. Geben Sie den minimalen Umfang an..3 Die Fläche zwischen den Graphen der Funktion f und der -Achse rotiere über dem Intervall [ 0;a] um die -Achse. Ermitteln Sie a so, dass das Volumen des entstehenden Rotationskörpers π (VE) beträgt. 8 e.4 Es sei Q(c d) ein Punkt auf K. Berechnen Sie den Wert von c so, dass die Tangente an den Graphen in Q durch den Punkt R( 0) verläuft.

10 Abitur 009 Mathematik ohne CAS Seite 8 B Analytische Geometrie (0 BE) Die Buchstaben des Firmenkürzels LFW sollen auf einer Verbrauchermesse zu Werbezwecken befestigt werden. Zur Planung wird der Sachverhalt in einem Linienmodell betrachtet. Der Buchstabe L wird durch die Punkte A, B und C festgelegt. Im Punkt A stoßen die beiden Teile des L zusammen, B und C sind die Endpunkte. In einem kartesischen Koordinatensystem ( LE dm) haben die Punkte folgende Koordinaten A( 3 4), B(5 5 ) und C(4 6 0).. Geben Sie eine Koordinatengleichung für die Ebene an, in der das L liegt.. Das L soll im Punkt A mit einem Stab auf dem Boden (y-ebene) befestigt werden. Geben Sie an, wie lang dieser Stab sein muss, wenn er senkrecht auf dem Boden steht..3 Zur Stabilisierung des rechten Winkels im Buchstaben L soll vom Punkt B zur Strecke AC eine möglichst lange Strebe angebracht werden. Der Befestigungspunkt an der Strecke AC befindet sich höchstens 7 dm über dem Boden (y-ebene). Errechnen Sie die Länge der Strebe..4 Zusätzlich wird durch den Punkt A senkrecht zu der angebrachten Strebe eine Versteifung eingebaut. Bestimmen Sie die Koordinaten des Punktes, in dem die Versteifung auf der Strebe endet..5 Durch Licht soll die Aufmerksamkeit der Besucher geweckt werden. Das L wird vom Punkt P(6 5 0) aus angestrahlt. Berechnen Sie die Länge des Schattens, den die längere der beiden Strecken des L, auf die hintere Wand (yz-ebene) wirft.

11 Abitur 009 Mathematik ohne CAS Seite 9 B3 Analysis und Stochastik (5 BE) Ein Ornament eines Schrankes wird durch die Graphen dreier ganzrationaler Funktionen nachgebildet (siehe Abbildungen). y G G 3 G Im Intervall besteht die Nachbildung aus dem Graphen G der quadratischen Funktion f. Dabei gilt: f besitzt die Nullstellen und. Zu G gehört der Punkt (0 0,8). Ermitteln Sie die Funktionsgleichung von f. (Zur Kontrolle: f () = 0, + 0,8 ) 3. Die Nachbildung wird durch den Graphen G der Funktion f mit der Gleichung 3 f() = 9 + 6,5+ a mit, 3,5,a fortgesetzt. Beide Intervallgrenzen sind Nullstellen von f. Berechnen Sie den Wert von a, die Koordinaten des lokalen Hochpunktes, die Stelle im Definitionsbereich, an der die Krümmung von G wechselt. 3.3 Berechnen Sie die Größe des Winkels, den die Tangenten an die Graphen G und G im Punkt ( 0) einschließen. 3.4 Der linke Teil der Nachbildung ist der Graph G 3 der Funktion f 3. Er entsteht durch Spiegelung des Graphen G an der y-achse. Geben Sie die Funktionsgleichung von f 3 an. 3.5 Berechnen Sie den Inhalt der Gesamtfläche, die von den Graphen G, G und G 3 sowie der -Achse begrenzt wird. Geben Sie die dazu erforderlichen Stammfunktionen an. Hinweis: Die Aufgabe wird auf der nächsten Seite fortgesetzt.

12 Abitur 009 Mathematik ohne CAS Seite Bei der Herstellung weisen erfahrungsgemäß maimal 4 % der Schränke Fehler auf. Die Anzahl der fehlerhaften Schränke wird als binomialverteilt angenommen. Es wird ein verändertes Herstellungsverfahren erprobt, von dem ein Kritiker behauptet, es erhöhe den Anteil der fehlerbehafteten Schränke. Um diese Behauptung zu überprüfen, werden der nach dem neuen Verfahren laufenden Produktion 0 Schränke zufällig entnommen und geprüft. Geben Sie eine Entscheidungsregel dieses Testes für den Fall an, dass die Irrtumswahrscheinlichkeit etwa 5 % betragen soll. 3.7 Erläutern Sie an diesem Beispiel, was man unter Fehlern. Art versteht. Tabelle der Binomialverteilung (Summenfunktion) für n=0 und p=0,04 k F 0;0,04 (k) 0,440 0,803 0,956 0,996 0,9990 0,9999 Alle nicht aufgeführten Werte sind auf 4 Dezimalstellen genau,0000.

Zentralabitur 2011 Mathematik mit CAS

Zentralabitur 2011 Mathematik mit CAS Mecklenburg-Vorpommern Zentralabitur 2011 Mathematik mit CAS N Abitur 2011 Mathematik mit CAS N Seite 2 Aufgaben Abitur 2011 Mathematik mit CAS N Seite 3 Hinweise für Schüler Aufgabenwahl: Die Prüfungsarbeit

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 2009 Mathematik Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl.

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl. Abitur 2005 Mathematik Gk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Hilfsmittel: Hinweise: Sonstiges: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben

Mehr

Beispielarbeit. MATHEMATIK (ohne CAS)

Beispielarbeit. MATHEMATIK (ohne CAS) Abitur 008 Mathematik (ohne CAS) Beispielarbeit Seite 1 Abitur 008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (ohne CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2005 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik

Schriftliche Abiturprüfung Grundkursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2007 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: grafikfähig) Tafelwerk 270 Minuten Taschenrechner (nicht programmierbar, nicht Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Leistungskurs) Arbeitszeit: 00 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten L 1, L

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 0 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gmnasium, Fachberater Mathematik Gmnasium, CAS-Multiplikatoren Hinweise für Prüfungsteilnehmerinnen

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin - Sächsisches Staatsministerium Geltungsbereich: für Kultus - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg Schuljahr 2002/03 - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 200 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 200 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 1998/99 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Wahlpflichtaufgabe

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 2008/09 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus und Sport Schuljahr 010/11 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten Januar 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema.

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema. Gegeben sind die Funktionen f und g durch y y f() g(), ln, D f R, und! 0. Ihre Graphen werden mit F bzw. G bezeichnet. a) Ermitteln Sie den größtmöglichen Definitionsbereich D f der Funktion f. Untersuchen

Mehr

Abiturprüfung. Mecklenburg-Vorpommern Stochastik. Wahl- und Pflichtaufgaben. Aus den Jahren 2009 bis Datei Nr Stand 5.

Abiturprüfung. Mecklenburg-Vorpommern Stochastik. Wahl- und Pflichtaufgaben. Aus den Jahren 2009 bis Datei Nr Stand 5. Abiturprüfung Mecklenburg-Vorpommern Stochastik Wahl- und Pflichtaufgaben Aus den Jahren 2009 bis 2016 Datei Nr. 73111 Stand 5. August 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 73111

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 017 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben.

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben. Fundus für den Pflichtbereich / Mathematik-Abitur ab 4 Themenbereiche Der Pflichtteil soll aus kleineren Aufgaben bestehen, die ohne Hilfsmittel zu bearbeiten sind. Er soll die Grundkompetenzen abprüfen.

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 004/05 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material für Schüler

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material für Schüler Sächsisches Staatsministerium für Kultus Schuljahr 04/5 Geltungsbereich: Schüler der Klassenstufe 0 an allgemeinbildenden Gymnasien Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N -

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 006/007 Geltungsbereich: Schüler der Klassenstufe 10 an allgemein bildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung Mathematik

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik A. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

Nachtermin 1997/98 1. Schriftliche Abiturprüfung. Leistungskursfach Mathematik. - Nachtermin im Schuljahr 1997/98-

Nachtermin 1997/98 1. Schriftliche Abiturprüfung. Leistungskursfach Mathematik. - Nachtermin im Schuljahr 1997/98- Nachtermin 1997/98 1 Schriftliche Abiturprüfung Leistungskursfach Mathematik - Nachtermin im Schuljahr 1997/98- Inhaltsverzeichnis Vorwort... Material für den Prüfungsteilnehmer... Allgemeine Arbeitshinweise...

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 1

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 1 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 015 Aufgabenvorschlag Teil 1 Hilfsmittel: nicht für Aufgabenstellung

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

2016/2017 Abitur Sachsen - Grundkurs Mathematik

2016/2017 Abitur Sachsen - Grundkurs Mathematik Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten Schriftliche Maturitätsprüfung 015 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach Prüfende Lehrperson Lukas Fischer (lukas.fischer@edulu.ch) Klasse 6Wa Prüfungsdatum 6. Mai 015 Prüfungsdauer

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung II

Abitur 2014 Mathematik Infinitesimalrechnung II Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2014 Mathematik Infinitesimalrechnung II Geben Sie jeweils den Term einer in R definierten periodischen Funktion an, die die angegebene Eigenschaft hat.

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 1998 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - 0 GM1. INFINITESIMALRECHNUNG x

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 26 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik -NACHTERMIN-

Schriftliche Abiturprüfung Grundkursfach Mathematik -NACHTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

Zentrale schriftliche Abiturprüfung Mathematik

Zentrale schriftliche Abiturprüfung Mathematik LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 mit CAS Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 1

Zentrale schriftliche Abiturprüfung Mathematik. Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 1 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2015 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS-

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS- HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie 3 auswählen. Sie müssen

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN-

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 0 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für Prüfungsteilnehmerinnen

Mehr

Ich wünsche euch allen viel Erfolg!

Ich wünsche euch allen viel Erfolg! Klasse 6B, 007 Allgemeine Bemerkungen Im Prüfungsmäppchen sollen enthalten sein: Prüfung bestehend aus diesem Titelblatt und 4 weiteren Seiten Formelsammlung Schreibpapier Bemerkungen zur Prüfung Erlaubte

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

MATURITÄTSPRÜFUNGEN 2006

MATURITÄTSPRÜFUNGEN 2006 KANTONSSCHULE ROMANSHORN MATURITÄTSPRÜFUNGEN 2006 MATHEMATIK 3 Std. Klasse 4 Ma hcs Hilfsmittel: Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung DMK Beachten Sie:Jede Aufgabe ist auf

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten November 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Länderübergreifende gemeinsame nteile in den Abiturprüfungen der Länder Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Schleswig-Holstein und Sachsen Musteraufgaben für das Fach Mathematik Die

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A Sächsisches Staatsministerium Geltungsbereich: Berufliches Gymnasium für Kultus Fachrichtung: Agrarwissenschaft Schuljahr 2008/2009 Ernährungswissenschaft Informations- und Kommunikationstechnologie Technikwissenschaft

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Arbeit A Seite 1 Mecklenburg - Vorpommern Realschulprüfung 1996 im Fach Mathematik Arbeit A Seite 2 Pflichtteil 1. Bei einer Geschwindigkeitskontrolle innerhalb einer Ortschaft durchfuhren die Meßstelle

Mehr